Meth8/VL4 re-evaluates the multi-valued neutrosophic logic, with τ as the designated proof value.

LET: $\text{(%p}>\text{#p}) 1; s$ discrete values of neutrosophic logic.

Define values in neutrosophic logic and sets as: $\text{(1 or 0) or (less_than 1 and greater_than 0)}$.

\[s=((\text{(#p}>\text{p})+((\text{(#p}>\text{p})-(\text{(#p}>\text{p})))) + ((s<(\text{(#p}>\text{p}))&(s>(%\text{p}>\text{p})-(\text{#p}>\text{p})))) \]
\[FFFF FFFF TTTT TTTT \]

(1.1)

To use one as tautology $(p=p)$ and zero as contradiction $\neg(p=p)$, then re-write Eq. 1.1 as:

Define values in neutrosophic logic and sets as $\text{(proof or non-proof) or (less_than proof and greater_than non-proof)}$.

\[s=((p=p)+\neg(p=p)) + ((s<(p=p))&(s>\neg(p=p))) \]
\[FFFF FFFF TTTT TTTT \]

(2.1)

Eqs. 1.2 and 2.2 as rendered are not tautologous. This means the multivalued neutrosophic logic is refuted, not bivalent, and hence not exact.