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 Abstract 

By an alternative interpretation of Compton effect experiment, I concluded that waves generate electrons 
and that waves are quantized into units of mass (which I called phosons). 
 
A phoson is defined as a fundamental unit of energy carrying variable mass and the origin of quantization 
where phosons are the waves particles which also comprise electrons’ mass. 

A model to describe the particles’ behavior of phosons based on describing its propagation as a continuous 
interchange of two type of kinetic energies (spinning and translational) and a mass variation proportional 
to the translational kinetic energy is proposed. 

Since theory of relativity states that waves’ particle (photons) are massless which contradicts my phoson 
theory, a discussion to show its failure in defining relativistic mass and consequently relativistic time and 
length is included in this paper. . 
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1 Definition of phosons  

1.1 Phosons and Compton experiment  

This section is to show that electrons and waves are comprised of the same type of particles (which I will 
call phosons for identification) where phosons work as fundamental unit of energy carrying variable mass. 

This discussion assumes that any beam of light consists of rays of streams of phosons. 

Compton’s famous equation for the change in wave length             

  𝛥𝜆 =
ℎ

𝑚.𝑐
 ( 1 − 𝑐𝑜𝑠𝜃 ) was the major conclusion of his experiment (where m is the electron’s mass).  

This experiment was explained as a collision and scattering physical event using the principle of energy 
and momentum conservations to prove that light consists of particles which can scatter waves and eject 
electrons. 

The part (Δ λ = 
h

m.c 
) consists of constants and represents a full value of Δλ when ignoring the fraction 

caused by the other part of the equation. 

If each phoson occupies one wave length, then the frequency of 
the wave corresponds to the number of phosons in one second of 
the wave’s ray (figure 1.1). Accordingly, the absence of phosons 
represents an increase in wave length and a decrease in frequency 
proportional to the number of missing phosons. 

The results of Compton experiment gave two peaks of scattered 
waves, one for the part of the wave which is scattered without being involved in the interaction and the 
other is for the part of the wave after losing some of its phosons in the interaction at specific scattering 
angles. 

The second peak at 90° and 180° scattering angles corresponds to a full Compton wave length and 
consequently a full interaction. 

The interactions in this experiment are one of three types, the first is scattering without wave length 
alteration where phosons are not involved in the interaction, the second is with increased wave length 
which is a fraction of λc where the wave loses part of its phosons in a partial interaction and the third is at 
scattering angles 90° or 180° which represents a full interaction where the wave length increment equals 
to λc or 2λc. 

The latter case can have an interpretation other than what Compton gave. The first is the possibility to 
have a newly generated electron by the wave’s phosons and the second is when both the wave and the 
electron are composed of the same identical number of particles, the wave’s phosons replace the 
electron’s phosons while the original electron’s phosons being ejected as an electron which leads to the 
number of phosons in the electron and consequently the number of phosons involved from the wave.  

Compton frequency fc ban be defined as the number of missing phosons in the scattered wave when the 
increment in wave length is equal to λc or 2λc which contributed in generating a new electron or involved 
in a full interaction (electron replacement and ejection). 
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The number of phosons in the ejected electron and the number of phosons lost by the wave are the same 
where we can conclude that the mass of the electron equals to summation of the masses of the wave’s 
phosons involved. 

The number of phosons involved equals to the decrease in frequency of the scattered wave 

fc = c / λc              
fc = (me.c²) /h                                 
fc = 1.235589965 x 10 20 Hz 

Compton frequency corresponds to number of phosons involved in the interaction and consequently the 
phoson’s mass is the resultant of dividing the electron mass by this number. 

mphs = me / fc          1.1   
mphs = 7.372497201 x 10 -51 Kg. s         1.2  

Where mphs is the phoson’s mass and   

λc = h / (me.c) = (mphs. c²)/(me.c) = c / fc 

Using the famous equation (E = m.c²) we can also find the energy and mass of the phoson in an equivalent 
way where 

E = h = mphs.c²          1.3  
mphs = h/c²          1.4 

Therefore, we can say that the ejected electrons in Compton experiment are composed (and can be 
generated) by fc number of phosons and if one of these electrons is emitted fully as a wave (not ejected 
as an electron) it produces a wave with fc frequency and λc. Wave length.  

Consequently, this implies that waves are quantized into phosons and electrons also are comprised of 
phosons. 

 1.2 Planks Constant unit  

One of the definitions of frequency is the number of regularly occurring events in one second where the 

event and the output of the process are of the same type and have the same unit. 

In Planks equation (E = nhf), n is a positive multiplication factor (integer) and f is the number of repetitions 

which means (h) is multiplied by two factors to get the energy E and the unit chosen to (h) is (J.s) which is 

(kg.m²/s) the unit of angular momentum. 

There is no logic in understanding this equation as the repetitions of a constant angular momentum 

multiplied by a positive integer gives energy, E and in h should be of same the type and have the same 

unit. 

If a wave duration of flow is one second, then its power and energy are the same and if the duration of 

flow is less than one second, power has no significance. 

If the time of flow is greater than one second, the energy of the wave in one second is its power (p = hf) 

(J.s/s) while its energy after a specific time of flow t is (E = h.f.t) (J.s). 
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It is obvious that to get proper units, (Joule) for energy and (Joule/sec) for power, h should be measured 

in (Joules) and we can say: “The energy of one photon of a wave equals to the power of the wave and 

both are equal to hf. 

In the black body radiation experiment, the energy is (E = nhf) where n is a positive integer taking values 

(1,2, 3….) representing wave amplification in forming standing waves.  

In the photoelectric experiment, n = 1, that’s why waves seemed to be quantized into photons of energy 

(E = hf) while, it’s our measurement units which are quantized into values/s not the wave. 

The only way to measure a contiouasly flowing wave of particles which corresponds to the input of an 

experiment (event) is by its energy per second i.e. its power which was considered as a particle called 

photon in interpreting the photoelectric experiment.  

Accordingly, saying that waves are quantized into photons of energy E = hf is just like saying that nature 

follows our manmade measurement units). 

When we think of the electron mass as composed of f number of phosons and can be emitted as a wave 

with frequency f, then we should pay attention to that f in the first case is just a unitless number and in 

the second case is a frequency with unit (1/s). 

Therefore, when using (mc² = hf), (f) is a unitless figure representing the number of phosons composing 

the electron mass with (h) in joules. 

However, I will keep the unit (J.s) because all the history of quantum mechanics was based on this unit, 

noting the following: 

 

 E (J) = Ephs (J.s). f = hf  Where Ephs (J.s) = h (J.s)       1.5 

2.0 Relativity  

2.1 Relativistic Mass  

The claim that waves’ particles have mass contradicts with the theory of relativity which is the most 
confusing and misguiding theory in the history of physics where it is a direct translation of mathematics 
and does not reflect reality. 

 After about 100 years of dealing with relativity, it became a default setting of our understanding 
 of modern physics. 

 Relativistic mass was derived by combining the energy-mass behavior which happens at the speed of light 
 with the energy-velocity behavior which happens at speeds below the speed of light using  
 mathematical derivations based on assumptions to get a mixture of correct and wrong conclusions.      

Experiments proved that waves’ particles have momentum which is an exclusive property of mass. 

I will start this discussion with a familiar derivation of E=mc² where an object of mass m is moving under 
an applied external force. 

   ∂k = ∂W = F.∂s 

Where F is an external force and W is the work done in a distance s.  

   F= ∂P / ∂t = ∂/∂t (mv)     

   F = m ∂v/∂t + v ∂m/∂t 
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   ∂k =∂s. m ∂v/∂t + ∂s. v ∂m/∂t  (∂s/∂t = v) 

   ∂k = mv∂v + v²∂m       2.1  

Also, ɣ is expressed as 

    m = m₀ /√1 −
𝑣2

𝑐2        2.2 

   m² = m₀² / (1 - v²/c²) 

   m²c² - m²v² = m₀²c²       2.3 

   2mc²∂m – 2mv²∂m – 2m²v∂v = 0  (deriving equation 2.3)   2.4 

   c²∂m = v²∂m + mv∂v    (Dividing equation 2.4 by 2m) 2.5 

Comparing equation 2.1 with 2.5 we get  

   ∂k = c²∂m = mv∂v + v²∂m       2.6 

   E = k + m₀c² = c² (m - m₀) + m₀c² = mc²  

 Equation 2.3 without squaring the masses is   

   mc² - mv² = m₀c²       2.7  

if we derive equation 2.7 we get 

   c²∂m = 2mv∂v + v² ∂m       2.8 

The following points are to be noted: 

• Comparing equation 2.8 and 2.5, we find the same (c²∂m = ∂k) in equation 2.5 and (c²∂m = ∂k + 
mv∂v) in equation 2.8. 

• Because the left and right sides of equation 2.5 are not equal if understood as normal addition, 
an escape from this case is to multiply by 2m in equation 2.4 when going back to equation 2.2 
converting the normal addition to a vector addition of scalar quantities. 
Actually, the left-side equals to each of the terms in the right side individually i.e. each works in a 
separate domain. 

• Replacing m₀v (as it should be) by mv in equation 2.3 is behind the idea of relativistic mass. 

From equation 2.8 and 2.1 with exchanging m by m₀ for v < c i.e. (2mv∂v) works when v varies, and mass 
does not. 

   c²∂m = ∂k + m₀.v.∂v        2.9 

At the speed of light where ∂k = ½ mc² - ½ m₀c², equation 2.9 gives 

   c²(m-m₀) = (½ mc² - ½ m₀c²) + m₀v²/2     2.10 

   ½ mc² - ½ m₀c² = ½ m₀v²  

   mc² - m₀c² = m₀v²       2.11 

………………………………………………………………………………………………………………….. 



Page 6 of 14 
 

At speeds below the speed of light, ∂k = ½ m₀v² - ½ m₀v₀² = ½ m₀v² with v₀ = 0, equation 2.9 gives  

   mc²-m₀c² = ½ m₀v² + ½ m₀v² 

   mc² - m₀c² = m₀v²        2.12 

Both equations 2.11 and 2.12 give         

m = m₀ (1+
𝒗𝟐

𝒄𝟐 )        2.13 

Equation 2.9 works for all speeds from zero to C and can be written as  

   c²(m-m₀) - ½ m₀v² = Δk       2.14 

Equation 2.13 defines the relativistic mass at the speed of light while mass does not change with increasing 
speed at speeds below the speed of light. 

The equivalency in equation 2.14 means that accelerating a particle from rest to a speed (v) to gain a 
specific translational kinetic energy by an external force is equivalent to 
gaining the same kinetic energy at the speed of light when mass is increased 
from (m₀) to (m) by an initial energy equal to ½ m₀v². 

As an example, figure 2.1 shows a particle traveling at the speed of light 
from point A to point B with mass and kinetic energy (m₀, k₀) at point A and 
(m, k) at point B.  

With no external source of energy or force, the energy at point A equals to the energy at point B  

   ½ mc² = ½ m₀c² + Ep.       2.15 

Where Ep. is an additional energy carried by the particle at point A in another form of energy which works 
as an initial potential energy. 

   ½ mc² - ½ m₀c² = Δk = Ep      2.16 

If we define Ep. in a translational kinetic energy scale to be equivalent to the energy required to accelerate 
the particle from rest to speed v (maximum value of v = c) with constant mass m₀, then  

   Ep =   ½ m₀v² 

Substituting in equation 2.15 we get 

   ½ mc² - ½ m₀c² = ½ m₀v²      1.17 

   mc² - m₀c² = m₀v²       1.18 

    m = m₀ (1+
𝒗𝟐

𝒄𝟐 )         1.19 

Since the maximum value of v is C, then substituting C for v in equation 2.19 gives (m = 2m₀) Also, equation 
2.16 with v equals to C is  

   Δk = ½ m₀c²          2.20 

       
 𝜟𝒎

𝒎 ₀
=

𝒗𝟐 

𝒄𝟐          2.21  
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If Ep = ½ m₀c² at point A, the total carried energy is  

   k = k₀ + Ep = ½ m₀c² + ½ m₀c² = m₀c²     2.22 

At point B with m = 2m₀ where all the energy Ep is converted to translational kinetic energy, the total 
carried energy is  

   E = ½ (2m₀) c² = m₀c²       2.23 

While the particle travels at the speed of light, it tends to resist motion by increasing its mass and 
converting the potential kinetic energy into translational kinetic energy until all the potential energy is 
consumed to reach to a translational kinetic energy equal to m₀c². 

Thus, equation 2.1 should be understood as working in two domains, the first at speeds below the speed 
of light where translational kinetic energy increases with velocity under the effect of an external force and 
the second where translational kinetic energy increases with mass at the speed of light without the need 
of an external force but by an initial potential energy. 

The theory of relativity combined the energy/mass behavior at the speed of light to the energy/velocity 
behavior at speeds below the speed of light to force both to act at speeds below the speed of light. 

2.2 Relativistic time and length  

The issue of time dilation and length contraction is not directly related to the subject of this paper, but I 

can’t claim that part of relativity fails and keep the other.   

When physical events are accompanied by a change in energy caused by a frame of reference or an object 
in a frame of reference, then the event is referred 
to that frame of reference. 

Figure 2.3 shows how the fundamental ideas of 
relativity were concluded about time and length. 

If the origins of the frames of reference S (x, y, z) 
and S` (x`, y`, z`) coincide at (t = t`= 0) when an 
event (light signal is emitted from the origin in the 
direction shown) and the frame of reference S` 
starts to move with a constant velocity v in the 
same direction away from the fixed frame S, then 
after a specific time t, the coordinates of the signal in the frame of reference S are ( ct,0) and in S` are 
(ct`,0). 

The two equations of Lorenz transformation used in relativity are  

 x = ɣ (x` + vt`)       2.24 

 x` = ɣ (x – vt)      2.25 

Substituting for x and x ` we get  

 ct = ɣ (ct` + vt`)      2.26 

 ct` = ɣ (ct – vt)      2.27 

solving for ɣ gives  ɣ = 1 / √1 − 𝑣2/𝑐²       2.28 
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Equations 2.26 and 2.27 with ignoring ɣ are  

 ct = ct` + vt`       2.29 

 ct = ct` + vt       2.30 

Equations 2.29 and 2.30 are exactly the same except that vt is replaced by vt`. 

 If (x = ct), (y = ct`), (z = vt) then we can write equation 2.27 as  

 y = ɣ (x – z)        2.31 

An expression for find vt` is found as     

 (x / y) = ct / ct` 

 (t/t`) = (x/y) 

 t` = t. (y/x) 

 vt` = vt. (y/x) 

 vt` = z. (y/x) 

Equation 2.26 becomes  

 x = ɣ {y + z. (y/x)}      2.32 

solving equations 2.31 and 2.32 for ɣ we get 

 xy = ɣ² {xy + yz -yz + z². (y/x)} 

 ɣ² = xy / {xy – (z² / x²)} 

  ɣ = 1 /  √1 −
𝑧2

𝑥²
 

Substituting for z = vt and x = ct we get 

 ɣ = 1 / √1 −
𝑣2

𝑐2      2.33 

Thus, replacing (vt) by (vt`) in equation 2.24 and 2.26 is equivalent to adding the factor (y/x) in equation 
2.32 to force the distance vt to be contracted. 

x = ct and x` = ct` with the same velocity c, the distance x is contracted to x`, relativity applied the same 
factor of reduction to vt. This is similar to considering that mass changes at speeds below the speed of 
light by replacing m₀v by mv in equations 2.2 to 2.4.  

  ɣ = (ct`/ct) = (t`/t) = y/x 

Equations 2.31 and 2.32 become  

 y = (y/x) (x -z)      2.34 

 x = (y/x) {(y + z (y/x)}     2.35 
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Solving equations 2.34 and 2.35 gives the same value of ɣ 

Substituting for x, y and z in equations 2.34 gives 

 ct` = (t`/t) (ct – vt) 

 ct` = ct` - vt`       2.36 

 ct = (t`/t) {ct` + vt (t`/t)} 

 ct = ct`²/t + vt`²/t      2.37 

 (ct)² = (ct`)² + (vt`)² 

Solving equations 2.36 and 2.37 produces the value of ɣ  but we should note the following:  

• vt in equation 2.36 is reduced twice by the factor (t`/t) 

• ct` which is a reduced value of ct and reduced again by the factor (t`/t) in equation 2.36 

• Equation 2.36 gives (c = c - v) which is impossible unless v = 0 and this equation is no longer 
describing relativity between frames. 

• Equation 2.37 represents a conversion from normal addition to vector addition where normal 
addition does not work when the equation is not accurate.  

Thus, it is clear that this theory was customized to give the same square root of relativistic mass which 
itself was based on mathematical work. 

It is impossible to prove time dilation or length contraction 
experimentally because it is a pure imaginary idea. 

3.0 Phoson model 

The following points are fundamental to understand this model: 

• At the speed of light, the source of mass increment is not the 
energy involved, mass and energy are conserved individually. 

• Phosons as fundamental units of mass work as energy carriers.  

Figure 3.1 shows a sketch of the proposed behavior of phosons 
while travelling as part of a wave. 

Phoson is shown as a ring of varying mass where usually each wave 
length is occupied by one phoson (different stages of one phoson is 
shown in one wave length travel for clarity).  

The phoson goes from state 1 to state 2 in half wave length and back 
to state 1 in the other half. 

State1: The phoson has minimum mass m₀, minimum translational kinetic energy (h/2) and maximum 
spinning kinetic energy.  

The ring shape comes from the high spinning with a moment of inertia (I = m. r²). 

The phoson keeps a total energy expressed as  

   ET = K + S         3.1 
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Where    ∂K/∂t = - ∂S/∂t  

    K = ½ m₀ .c²        3.2 

   S = ½ I. ω²= ½ m₀. r2. ω2       3.3  

buy   (r.ω = v) 

Where v is the tangential velocity of spinning, then   

   ET = K + S = ½ m₀c² + ½ m₀v² = ½ m₀. (c²+v²) = ½ m₀c²( 1 + v²/c²)               

When the phoson spins with maximum energy at (v = c), the total energy becomes    

   ET = h = m₀ c2         3.4 

The spinning energy S is equivalent to the potential energy mentioned previously. 

state 2: The phoson has maximum mass (m), maximum translational kinetic energy, and zero spinning 
kinetic energy.  

The increase in translational kinetic energy is supplied by the spinning kinetic energy until it is consumed 
fully where the total energy becomes translational. 

The increase in energy can’t appear as an in increase in velocity but as an increase in mass i.e.  

   ET =K = ½ m. c 2 

   ET =K = ½ m₀ (1+v²/c²). c 2 

When (v = c), m = 2m₀ and 

   ET = ½ (2m₀).c2 

   ET = h = m₀. c 2          3.5 

This is an unstable state of the phoson because it can’t stay 
without spinning, so it starts to decrease its translational 
kinetic energy again and reduce its mass to suit this 
decrease with restoring its spinning energy back in the 
other half wave length.   

During motion, the phoson maintains a constant 
translational kinetic energy equal to (h/2) beside the 
energy (½ m₀v²) exchanged with the spinning energy. 

The energy ET is 

   ET = 
1

2
𝑚₀ . 𝑐2 +

1

2
 𝐼. 𝜔2       3.6  

   ET = 
1

2
𝑚₀. 𝑐2( 1 +

𝑟2𝜔2

𝑐2 )       3.7 

   ET =
1

2
. 𝑚₀ 𝑐²( 1 +

𝑟2𝜔2

𝑐2 )      3.8 

   ET = ½ m₀ c²(1+v²/c²)       3.9 
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This equation also shows how the translational kinetic energy increases at the speed of light where the 
term between brackets corresponds to the relativistic mass.  

When (v = c) then  ET = m₀c² 

In trigonometric form, when (S = h = ½ m₀c²) at (v = c) (figure 3.3) both energies can be expressed as  

   K = h/4 {cos (kx-ωt)-π) + 3} = h/4{3-cos(kx-ωt)}     3.10 

   S = h/4{cos(kx-ωt) + 1}        3.11 

Figure 3.3 shows the behavior of translational and spinning kinetic energies when the initial potential 
spinning energy is ½ mc² where the phosons keeps a constant energy m₀c² all the time and in this case if 
(m = mphs) then  

   f.λ = c = (m.c²) / (m.c) = h / p 

   λ = h /pf = c /f        3.12 

   k = 2π / λ 

   k = 𝜔.
𝑝

ℎ
= 𝑓.

𝑝

ℏ
        3.13  

Where the wave number is the reciprocal of the wave length. 

The energy between any two points like 1 and 2 in figure 3.1 is 

   ½ m.c²+ ½ I1.ω1 = ½ (m + Δ m).c² + ½ I2. ω2 

   ½. (Δm. c²) = ½ I1.ω1 – ½ I2. ω2 

   Δk = ½ Δm. c² = ΔS       3.14 

If the total change in mass Δm = m₀ in half wave length, then 

   ΔK = ΔS = ½ m₀ .c2        3.15 

 In the same way we can find the translational momentum to be 

   ΔP= m₀. c        3.16                                                                                                                                                                                                                                                                                                                                                           

With the increase in phoson’s mass in half wave length, it generates a 
change in translational momentum which causes the force to increase 
in the same rate. 

Figure 3.4 shows the change in phoson’s mass during propagation 
when the initial energy is ½ m₀c². 

Usually external forces make a change in velocity and consequently a 
change in momentum with constant mass. 

In the phoson’s case, the variable is the mass with constant speed, this 
mass variation produces a change in momentum which generates 
force. 

The force produced by one phoson in half wave length is derived as  
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   F = c.∂m/∂t 

   F = c (m-m₀)/t 

   F = 2m₀.c. f   (t = T/2 and Δm = m₀)  

Where mass is in (Kg. s) and force in (N.s)      

   F = 2P₀. f  m₀.c = P₀ 

   F = P.f    P = 2P₀      3.17 

To find the energy  k = F.λ/2  

   k = P.f. λ/2    

   k = m.c.f.λ /2 

   k = ½ mc² 

   k = m₀c²         3.18 

4.0 Conclusions 

Phosons and quantization 

• As another interpretation of Compton experiment, the wave used in the experiment generates 

the ejected electrons or replace it with the same number of particles (which I called phosons).  

• Waves are quantized into phosons which are described as discrete fundamental energy carrying 

variable mass particles. 

• Electron’s mass is comprised of phosons. 

• Phoson mass is (mphs =7.372497201x10-51 Kg. s) is its mass when its translational and spinning 

kinetic energies maintain a total energy of h (6.626x10-34 J.s) during propagation.  

Thus, a wave can generate electrons only when each phoson has an initial spinning energy equal 

to ½ m₀c² with a total energy of h (J.s) energy. 

• Phoson, h or mc² have the same meaning, any object which complies with E = mc² should be 

comprised of phosons. 

• If an electron is emitted as a wave, it will produce a wave with frequency equals to the number of 

phosons comprising it with a wave length fulfilling the relation c = f.λ   

• The energy of the phoson is equal to m₀c² only when it is equal to h. 

 

Plank’s constant  

• Plank’s constant is a fundamental unit of energy repeated each wave length of the wave with unit 

(J.s) which is the unit of angular momentum and was chosen to avoid the time involvement. 

• Keeping h in (J.s) and f in (1/s) is to avoid time involvement but energy and any derived parameter 

to describe phosons follow the unit of h (J.s) like (Kg. s), (N.s). etc. 
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Relativity 

The theory of relativity is a reflection of mathematical derivations which are based on assumptions 

combining the energy – mass behavior which happens at the speed of light with the energy – velocity 

behavior which happens at speeds below the speed of light to give either correct conclusion describing 

wrong events or wrong nonpractical theoretical conclusions.     

• Any object does not experience an increase in its mass when travelling at speeds below the speed 

of light. 

• When a particle of mass m₀ travels at the speed of light, its mass varies following its translational 

kinetic energy. 

• The equations which describe relativistic mass at the speed of light is  

 

  c²(m-m₀) - ½ m₀v² = Δk  

  m = m₀ (1+
𝑣2

𝑐2 )   

Where v represents an increase in energy not velocity   

• Accelerating a particle from rest to a speed v to gain a specific kinetic energy by an 

external force is equivalent to gain the same kinetic energy at the speed of light when 

mass is increased from m₀ to m by an initial energy equal to ½ m₀v². 

• At the speed of light, the potential energy increases the translational kinetic energy with 

increasing mass while at speeds below the speed of light the translational kinetic energy 

is increased by increasing velocity only. 

• When the wave particle has an initial potential energy ½ m₀c², then it maintains always 

an energy equal to h = m₀c² and in this case it can generate mass. 

• While mass varies only at the speed of light, time and length are nonrelativistic physical 

variables at all speeds. 

 

Phoson Model 

The model describing the particle behavior of waves’ phosons is based on: 

• Phoson is a ring of mass which propagates by a continuous energy interchange between 

translational and angular (spinning) kinetic energies accompanied with a continuous mass 

variation following the translational kinetic energy. 

• Each phoson occupies one wave length and has two peak states, one with minimum translational 

kinetic energy, maximum angular kinetic energy and minimum mass and the other is with 

maximum translational kinetic energy, zero angular kinetic energy and maximum mass where it 

travels between the two states in half wave length. 

• Phoson keeps h/2 translational kinetic energy all the time besides the energy it gains during 

interchanging with the spinning initial potential energy. 

• Phoson’s mass varies between its original mass m₀ and double the original mass when its initial 
spinning energy is ½ m₀c². 
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With phoson’s mass m = mphs,  and initial energy ½ m₀c² the wave length and number can be expressed as   

   λ = h /pf = c /f        

   k = 𝜔.
𝑝

ℎ
= 𝑓.

𝑝

ℏ
  

The force produced by one phoson in half wave length is  

   F = P.f where P is the momentum of maximum mass   
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