AN UNIVERSE FINITE: COSMIC MICROWAVE BACKGROUND AND
NEWTON LAW OF GRAVITATION

Alberto Coe. Independent researcher
albamv8@gmail.com

Abstract

Is the Universe finite or infinite? In this paper we assume that the Universe is finite. The sites for possible stars the Universe could admit of is finite. Such number can be described from a dimensionless parameter. This dimensionless parameter consists of two particular length dimensions: Bohr radius and Planck's length. Besides length dimensions, since the universe is dynamic, we must include an exponential parameter.

Keywords: Universe finite, gravitational potential energy, cosmic microwave background (CMB)

Method

The aim of this article is to describe the behaviour of a finite universe. The numerical equivalence between the gravitational potential energy and the energy associated to the photons of the cosmic microwave background (CMB).

Let’s start defining a dimensionless number that works as a quantifier parameter i.e. a parameter that displays how many elements could be involved in any system. That we call confined number. It’s worth to note that the confined number of elements about what we are hypothesizing, take for granted a finite Universe.

\[
(N_c) = \frac{1}{e^m} \frac{a_0}{L_p} = 1.2045 \times 10^{24}
\]

(1)

In the above definition are two physical constants and a mathematical constant. As for the physical constants they represents length dimensions

\[a_0\] refers to Bohr radius = 5.291772 \times 10^{-11} m

\[L_p\] refers to Planck’s length = 1.6162 \times 10^{-35} m

Mathematical constant is represented by Euler’s number

\[e = 2.7182818 \ldots\]
A logical consequence of a finite Universe compel us to apply the parameter \((N)\) as a quantifier parameter of the elements involved in any system. In the case at hand, the system is the universe. Since the definition of \((N)\) involves physical length constants (Bohr radius and Planck’s length) such elements are the number of sites or gaps for potential stars. At this point it is essential to explain the meaning of potential stars. As the figure 1 shows, the number of active stars are not the same 400,000 years after the big bang than \(10^{11}\) years after the big bang. Which means that parameter \((N)\) is conceived as the number of “potential stars.” Universe finite entails finite energy and finite celestial bodies such as stars. Therefore is constant.

Besides a finite Universe, we see a dynamical Universe. According to the standard model of cosmology the size of the universe varies over time, displaying an exponential dynamics. For that reason we have incorporated the concept \(e^m\) in equation (1)

As for the exponent \(m\), it involves cosmological concepts

\[m = xt \]
(2)

where \(x = \frac{rH}{C}\)
(3)

\(r\) has length dimension, meters. \(H\) has dimension \(T^{-2}\) or \(\frac{1}{s^2}\)

and \(C\) is the speed of light in vacuum. Let’s type the equation (2) using SI units (meter, second)

\[m = \frac{sm t}{m s^2} \]
(4)

Will apply specific values in equation (2) at the present time

\(r \sim 1.3 \times 10^{26} m\), \(H \sim 5.23 \times 10^{-36} s^2\), \(C = 299792458 m s^{-1}\), \(t_0 \sim 4.4 \times 10^{17} s\)

\(r\) represents the radius of the observable universe and symbol \(H\) is defined as

\[H = \left[\frac{H_0}{M_{pc}} \right]^2 \sim 5.23 \times 10^{-36} s^2 \] where

\(H_0 \sim 7.0630 \times 10^4 m s^{-1} M_{pc}^{-1}\) current value of Hubble parameter

\(M_{pc} = 3.0857 \times 10^{22} m\) astronomical unit of distance measurement called megaparsec

As for the symbol \(t_0\), it represents the life time of the universe.
Hydrogen atom and CMB

Type the numerical equivalence

\[\frac{P}{V} = \frac{N_s}{(N_{\ldots})} \] \hspace{1cm} (5)

describe all symbols

\[V = G_N \frac{p_m e_m}{r} \] \hspace{1cm} (6)

where \(G_N \) refers to the Newtonian constant of gravitation:

\[6.674 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2} \]

\(p_m \) symbolizes the mass of the proton: \(1.673 \times 10^{-27} \text{ kg} \),

\(e_m \) refers to electron's mass: \(9.11 \times 10^{-31} \text{ kg} \)

and \(r \) the distance between both particles: \(r \sim 10^{-11} \text{ m} \), next to the Bohr radius

\[P = h \nu_0 \] where \(h \) is the reduced Planck constant: \(1.054572 \times 10^{-34} \text{ J s} \)

the spectral radiance peak of the cosmic microwave backgroud (CMB) occurs at

\[\nu_0 \sim 1.602 \times 10^{11} \text{ s}^{-1} \]

\((N_{\ldots}) \) the quantifier parameter already defined, a dimensionless constant that represents the confined-number of stars in the universe

\[N_s \sim 2 \times 10^{57} \] refers to the approximate number of hydrogen atoms required to ignite a star like the sun.

Scholium

A few words about equation (5). Plausibility of numerical and physical relationship between gravitational potential energy of an atom of hydrogen with respect to the emission of photons whose frequency mode of vibration is equal to the spectral radiance peak of the CMB. Oscillations of the gravitational field in hydrogen atom leads to the emission of photons. The probability of such events could be calculated by means of the equation (5). Or in alternative way

\[G_N \frac{p_m e_m}{r} \frac{N_s}{h\nu_0} = (N_{\ldots}) \] \hspace{1cm} (6)

Further analysis is required.
Figure 1.