We evaluate:

en.wikipedia.org/wiki/Pauli_exclusion_principle, Connection to quantum state symmetry:

"[A]ntisymmetry under exchange means that \(A(x,y) = -A(y,x) \).
This implies \(A(x,y) = 0 \) when \(x = y \), which is Pauli exclusion.\)

(1.1)

We assume the apparatus and method of Meth8/VL4, with the designated proof value of \(T \). The 16-valued proof table is row-major and horizontal.

LET \(A x y: s, p, q; 0 ((%p>#p)-(%p>#q)).\)

\[
((s&(p&q))=-(s&(q&p))) > ((p=q)>((s&(p&q))=((%p>#p)-(%p>#q))) ;
\]

TTTT TTTT TTTT TTTT

(1.2)

Eq. 1.2 as rendered is tautologous. This confirms Eq. 1.1 and the Pauli exclusion principle.