New coordinate vacuum solution in general relativity theory

Sangwha-Yi Department of Math , Taejon University 300-716

ABSTRACT

In the general relativity theory, we discover new vacuum solution by Einstein's gravity field equation in general relativity theory. We investigate the new coordinate in general relativity theory.

PACS Number:04,04.90.+e,98.80,98.80.E

Key words:General relativity theory,
Gravity field equation
New coordinate solution
e-mail address:sangwhal@nate.com

Tel:051-624-3953

1. Introduction

We solve new vacuum solution by gravity field equation in general relativity theory.

New spherical coordinate is

$$d\tau^{2} = dt^{2} - \frac{1}{c^{2}} [dr^{2} + V(t, r) \{ d\theta^{2} + \sin^{2}\theta d\phi^{2} \}]$$

$$V(t, r) = C_{1} (act + br)^{2}, \quad C_{1} = \frac{1}{b^{2} - a^{2}}$$

$$a, b, C_{1} \text{ is constant, } C \text{ is light's velocity.}$$

(1)

(3)

In this time, Einstein's gravity equation is

$$R_{tt} = \frac{1}{2} \frac{\ddot{U}}{U} - \frac{\dot{U}^2}{4U^2}$$

$$= \frac{2a^2}{(act + br)^2} - \frac{1}{2} \frac{4a^2}{(act + br)^2} = 0$$

$$R_{rr} = \frac{V''}{V} - \frac{1}{2} \frac{V'^2}{V^2}$$

$$= \frac{2b^2}{(act + br)^2} - \frac{1}{2} \frac{4b^2}{(act + br)^2} = 0$$
(2)

$$R_{\theta\theta} = -\frac{\ddot{V}}{2} + \frac{V''}{2} - 1$$

$$= -C_1 a^2 + C_1 b^2 - 1 = 0 (4)$$

$$R_{\theta\theta} = \sin^2 \theta R_{\theta\theta} = 0 \tag{5}$$

$$R_{tr} = \frac{\dot{V}'}{V} - \frac{\dot{V}V'}{2V^2}$$

$$= \frac{2C_1 ab}{(act + br)^2} - \frac{1}{2} \frac{4C_1 ab}{(act + br)^2} = 0$$
(6)

In this time,

$$V' = 2C_1b(act + br), \dot{V} = 2C_1a(act + br), V'' = 2C_1a^2, \ddot{V} = 2C_1b^2$$

$$A' = \frac{\partial A}{\partial r}, \dot{A} = \frac{1}{c} \frac{\partial A}{\partial t}$$

2. New vacuum solution in general relativity theory

Hence, new vacuum solution is

$$d\tau^2 = dt^2 - \frac{1}{c^2} \left[dr^2 + \frac{1}{b^2 - a^2} (act + br)^2 \left\{ d\theta^2 + \sin^2 \theta d\phi^2 \right\} \right]$$

 a, b, C_1 are constant, C is light's velocity. (7)

In this time, if f' is

$$r' = \frac{1}{\sqrt{b^2 - a^2}} (act + br)$$

As

$$dr' = \frac{1}{\sqrt{b^2 - a^2}} (acdt + bdr)$$

Or

$$dr = \frac{\sqrt{b^2 - a^2}}{b} dr' - \frac{a}{b} c dt \tag{8}$$

If new solution Eq(7) is inserted by transformation Eq(8),

$$dr^{2} = \frac{b^{2} - a^{2}}{b^{2}} dr'^{2} - 2\frac{a}{b^{2}} \sqrt{b^{2} - a^{2}} dr' c dt + \frac{a^{2}}{b^{2}} c^{2} dt^{2}$$
(9)

In this time, if α_0 is

$$\alpha_0 = \frac{a}{b} \tag{10}$$

Hence, proper time $\partial \tau$ of new solution is

$$d\tau^{2} = (1 - \alpha_{0}^{2})dt^{2} + 2\alpha_{0}\sqrt{1 - \alpha_{0}^{2}}dr'\frac{dt}{c} - \frac{1}{c^{2}}[(1 - \alpha_{0}^{2})dr'^{2} + r'^{2}\{d\theta^{2} + \sin^{2}\theta d\phi^{2}\}]$$
(11)

In this time, if ∂t^{1} is

$$dt' = \sqrt{1 - \alpha_0^2} dt \tag{12}$$

Therefore, new solution is

$$d\tau^{2} = dt^{'2} + 2\alpha_{0}dr^{'}\frac{dt^{'}}{c} - \frac{1}{c^{2}}[(1 - \alpha_{0}^{2})dr^{'2} + r^{'2}\{d\theta^{2} + \sin^{2}\theta d\phi^{2}\}]$$
 (13)

If we rewrite dt, dr instead of dt', dr', the proper time $d\tau$ of new solution is

$$d\tau^{2} = dt^{2} + 2\alpha_{0}dr\frac{dt}{c} - \frac{1}{c^{2}}[(1 - \alpha_{0}^{2})dr^{2} + r^{2}\{d\theta^{2} + \sin^{2}\theta d\phi^{2}\}]$$
 (14)

3. Conclusion

Therefore, new spherical solution in general relativity theory is

$$d\tau^{2} = dt^{2} + 2\alpha_{0}dr\frac{dt}{c} - \frac{1}{c^{2}}[(1 - \alpha_{0}^{2})dr^{2} + r^{2}\{d\theta^{2} + \sin^{2}\theta d\phi^{2}\}]$$

$$\alpha_{0} \text{ is constant}$$

(15)

Reference

[1]S.Weinberg, Gravitation and Cosmology (John wiley & Sons, Inc, 1972)

[2]P.Bergman, Introduction to the Theory of Relativity (Dover Pub. Co., Inc., New York, 1976), Chapter V

[3] C.Misner, K, Thorne and J. Wheeler, Gravitation (W.H. Freedman & Co., 1973)

[4]S.Hawking and G. Ellis, The Large Scale Structure of Space-Time(Cam-bridge University Press, 1973)

[5]R.Adler,M.Bazin and M.Schiffer,Introduction to General Relativity(McGraw-Hill,Inc.,1965)

[6]E.Kasner, Am. J. Math. 43, 217(1921)

[7]G.Birkoff,Relativity and Modern Physics(Harvard University Press,1923),p.253

[8]T.Kaluza, Berl. Ber. 996(1921); O. Klein, Z. Phys. 37, 895(1926)

[9]Y. Cho, J. Math. Phys. 16, 2029(1975); Y. Cho and P. Freund, Phys. Rev. D12, 1711(1975)

[10]P. van Nieuwenhuizen, Phys. Rep. 68. 189(1981)