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Abstract. Quantum entanglement is of great importance to quantum cryptography
and computation. So far, all experimental demonstrations of entanglement are designed
to check Bell’s inequality which is based on Bell’s formulation for EPR paradox. In this
note, we specify the assumptions needed in Bell’s mathematical argument. We then
show the contradictions among these assumptions. As a result, it becomes very easy to
see that Bell’s inequality is trivial.
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1 Introduction

The question of interpreting the mathematical formulation of quantum mechanics has given rise
to a variety of di erent answers from people of di erent philosophical backgrounds [3}/13}/14]. The
most popular interpretation of quantum mechanics is known as the Copenhagen interpretation.
It says that a measurement causes an instantaneous collapse of the wave function describing the
guantum system, and the system after the collapse is random.

Albert Einstein did not believe in the idea of genuine randomness in nature, the main argument
in the Copenhagen interpretation. In his view, quantum mechanics is incomplete and suggests that
there should be ‘hidden’ variables responsible for random measurement results. In 1935, Einstein,
Podolsky and Rosen [9] proposed a thought experiment and condensed the philosophical discussion
into a physical argument. In 1964, J. Bell [2] proposed his mathematical formulation for EPR
paradox. He constructed a well-known inequality and showed that it was incompatible with the
statistical predictions of quantum mechanics.

In the past decades, Bell’s formulation has been frequently questioned. The vast majority of
opponents are non-academic writers. On the contrary, many experiments have been performed by
professionals to test the Bell’s inequality [1,6{8,/10]. Today, Bell’s inequality is overwhelming in
the sciences of quantum information and computation [4,5}/11,(12].

In this note, we put the controversy about Bell’s formulation for EPR paradox aside. We concen-
trate on the assumptions needed in Bell’s mathematical argument. We then show the contradictions
among these assumptions. Consequently, it is easy to see that Bell’s inequality is trivial.
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2 Review of Bell’s formulation and arguments

2.1 The formulation for EPR paradox

Consider a pair of spin one-half particles formed somehow in the singlet spin state and moving
freely in opposite directions. Measurements can be made, say by Stern-Glerlach magnets, on
| [ [ | [
selected components of the spins = 1 and = ,. If measurement of the component =; a, where a
is some unit vector, yields the value +1 then, according to quantum mechanics, measurement of
z 2 & must yield the value 1 and vice versa.
Let this more complete speci cation be e ected by means of parameters . Without loss of
. . . . . N
generality, we write as if were a single continuous parameter. The I’eSLUt A of measuring =1 a
. . T . L . . .
is then determlqed by a and , and the result B of measuring =, b in the same instance is
determined by b and , and

[Assumption 1] AR )= 1. B(b: )= 1 1)

If () is the probability distribution of then the expectation value of the product of the two
components =~ 1 5 and !2 b is

z
L T
[De nition] P(&:b)= ()A(&: )B(bH: )d )
This should equal the quantum mechanical expectation value, which for the singlet state is
r ¢ ¢ % x I
h=, a; 2 bi= a b

But it will be shown that this is not possible.

2.2 The argument for Bell’s inequality

R
Since is a normalized probability distribution, ( )'d = 1: Because of the properties (1),
P in (2) cannot be less than 1. It can reach 1 at 8=0 only if

A(d; )= B(&; ) 3)
except at a set of points  of zero probability. Assuming this, (2) can be rewritten
p I 'l 1
P(a;b)= ( )A(a; )A(b; )d (4)
It follows that E is another unit \Z/ector
P(d:0) P(AY) = O HAG: ) AG: A d ®)
Z

Il 1 1 x
= ()A(a; )A(D; JIA(D; )A(T; ) 1]d

T R ||
using (1), whence iP(8:5) P(&:8) ()1 A(b: )A(E: )]d . The second term on
the right is P( b ; E), whence

PA:B) P Yy 1ep(h: Y ®)



2.3 The argument for the wanted contradiction

5 T
Let us con3|qer the functlon§ P(a 5) and a b where the bar denotes mdependent aver-
aging of P(8% b%and A&° 50 over vectors &° and 50 within speci ed small angles of & and
b . Suppose that for all & and 6 the di erence is bounded by :
T Fr
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jP(a;b)+a bj @)
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Suppose that for all 8 and b

Then we have

P by+4 b+ ®)
From (2) 7
I | o _
P(a;b)=  ()A(a; )B(b; )d ©)]
where '
AR, )i L and jB(B; )i 1 (10)
From (8) and (9), with a8 = E
Z | | | |
()A(D; )B(b; )+1]d + (11)
From (9),
— . ¥ _—n z — — 0 =,
P(a;b) P(a;c) = (OIAE; )B( ;) A(a; )B(t; )ld
Z
= (A% BB L +Ah: B HNd
Z
(A )B(E: HL+A(b: )B(b; )d
Using (10) then
z Z
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jP(a;b) P(a;c) ()1+A(b; )B(C; )d +  ()[A+A(b; )B(b; )ld

Then using (9) and (11)
R I SN | . _ 1y
JP(a;B) P(a; c)j 1+P(5;C)+ +

Finally, using (8)
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i & 3 Bj 20+) 1 b E+2(+)
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Take for example 8 =08 b="5b € =1= 2 Then 4 + ) 2 1. Therefore, for small
nite ; cannot be arbitrarily small. Thus, the guantum mechanical expectation value cannot be
represented, either accurately or arbitrarily closely, in the form (2).
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3 Remarks on Bell’s arguments

Remark 1. The eqyality (3) holds on the condition 8= 5 Likewise, the equallty ) holds
on the condition & = b, too. Note that the equallty (5) holds on the condition A=Db=cC.
Thus, the inequality (6) holds on the condition 8= 5 = E too. Consequently, the inequality
(6) could be rewritten as

P(&;8) P(A; &) 1+P(&;4)
By the de nition of P and Assumption 1, we nd the mequallty (6} is as trivial as that O' 1

Remarkpz The inequality (11) holds on the cgndltlon & = b. But it later take; a
b T =1= 2. Apparently, the assumption 8 = b contradicts the assumption LI
That means Bell’s mathematical argument is totally illogical.

F_
1:p§.

4 Conclusion

In this note, we remark that Bell’s argument for EPR paradox is illogical because it had confused
some assumptions. Besides, we show that Bell’s inequality is a trivial one. For readers’ convenience,
we append Bell’s original paper to this note.
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I. Introduction

THE paradox of Einstein, Podolsky and Rosen [1] was advanced as an argument that quantum mechanics
could not be a complete theory but should be supplemented by additional variables. These additional vari-
ables were to restore to the theory causality and locality [2]. In this note that idea will be formulated
mathematically and shown to be incompatible with the statistical predictions of quantum mechanics. It is
the requirement of locality, or more precisely that the result of a measurement on one system be unaffected
by operations on a distant system with which it has interacted in the past, that creates the essential dif-
ficulty. There have been attempts [3] to show that even without such a separability or locality require-
ment no ‘‘hidden variable’’ interpretation of quantum mechanics is possible. These attempts have been
examined elsewhere [4] and found wanting. Moreover, a hidden variable interpretation of elementary quan-
tum theory [5] has been explicitly constructed. That particular interpretation has indeed a grossly non-
local structure. This is characteristic, according to the result to be proved here, of any such theory which
reproduces exactly the quantum mechanical predictions.

II. Formulation

With the example advocated by Bohm and Aharonov [6], the EPR argument is the following. Consider
a pair of spin one-half particles formed somehow in the singlet spin state and moving freely in opposite
directions., Measurements can be made, say by Stern-Gerlach magnets, on selected components of the
spins &, and &,. If measurement of the component G, &, where 3 is some unit vector, yields the value
+1 then, according to quantum mechanics, measurement of &, 3 must yield the value -1 and vice versa.
Now we make the hypothesis [2], and it seems one at least worth considering, that if the two measure-
ments are made at places remote from one another the orientation of one magnet does not influence the
result obtained with the other. Since we can predict in advance the result of measuring any chosen compo-
nent of &,, by previously measuring the same component of ,, it follows that the result of any such
measurement must actually be predetermined. Since the initial quantum mechanical wave function does not
determine the result of an individual measurement, this predetermination implies the possibility of a more
complete specification of the state.

Let this more complete specification be effected by means of parameters A. It is a matter of indiffer-
ence in the following whether A denotes a single variable or a set, or even a set of functions, and whether
the variables are discrete or continuous. However, we write as if A were a single continuous parameter.
The result A of measuring 7, - & is then determined by & and A, and the result B of measuring 0, b in the
same instance is determined by % and A, and
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A(G, A = +1, B(B, A) = 1. (1)

The vital assumption [2] is that the result B for particle 2 does not depend on the setting a, of the magnet
for particle 1, nor A on 3

If p()\) 1s the probablhty distribution of A then the expectation value of the product of the two com-
ponents o1 .a and 02 B is

mam=/bpr@MB@M 2
This should equal the quantum mechanical expectation value, which for the singlet state is
<o, a oy b>=-a-b. (3)

But it will be shown that this is not possible.

Some might prefer a formulation in which the hidden variables fall into two sets, with A dependent on
one and B on the other; this possibility is contained in the above, since A stands for any number of vari-
ables and the dependences thereon of A and B are unrestricted. In a complete physical theory of the
type envisaged by Einstein, the hidden variables would have dynamical significance and laws of motion;
our A can then be thought of as initial values of these variables at some suitable instant.

Itl. IMustration

The proof of the main result is quite simple. Before giving it, however, a number of illustrations may
serve to put it in perspective.

Firstly, there is no difficulty in giving a hidden variable account of spin measurements on a single
partlcle Suppose we have a spin half particle in a pure spin state with polarization denoted by a unit
vector p. Let the h1dden variable be (for example) a unit vector X with uniform probab111ty distribution
over the hemisphere X-p>0. Specify that the result of measurement of a component o ais

sign X-a' , )

where a' is a unit vector depending on 2dand p ina way to be specified, and the sign function is + 1 or
~1 according to the sign of its argument. Actually this leaves the result undetermined when A - a’ = 0,
but as the probability of this is zero we will not make special prescriptions for it. Averaging over A the
expectation value is

-

<gra>=1-20"/r, (5)

where @' is the angle between a' and 3 Suppose then that 3’ is obtained from a by rotation towards p
until

]

l—ﬁz—cose (6)

m
where @ is the angle between a and p. Then we have the desired result
<g-a>=cosf )
So in this simple case there is no difficulty in the view that the result of every measurement is determined

by the value of an extra variable, and that the statistical features of quantum mechanics arise because the
. value of this variable is unknown in individual instances.
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