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Abstract: A neutrosophic cubic set is the hybridization of the concept of a neutrosophic set and an
interval neutrosophic set. A neutrosophic cubic set has the capacity to express the hybrid information
of both the interval neutrosophic set and the single valued neutrosophic set simultaneously. As newly
defined, little research on the operations and applications of neutrosophic cubic sets has been
reported in the current literature. In the present paper, we propose the score and accuracy functions
for neutrosophic cubic sets and prove their basic properties. We also develop a strategy for ranking of
neutrosophic cubic numbers based on the score and accuracy functions. We firstly develop a TODIM
(Tomada de decisao interativa e multicritévio) in the neutrosophic cubic set (NC) environment,
which we call the NC-TODIM. We establish a new NC-TODIM strategy for solving multi attribute
group decision making (MAGDM) in neutrosophic cubic set environment. We illustrate the proposed
NC-TODIM strategy for solving a multi attribute group decision making problem to show the
applicability and effectiveness of the developed strategy. We also conduct sensitivity analysis to show
the impact of ranking order of the alternatives for different values of the attenuation factor of losses
for multi-attribute group decision making strategies.

Keywords: neutrosophic cubic set; single valued neutrosophic set; interval neutrosophic set; multi
attribute group decision making; TODIM strategy; NC-TODIM

1. Introduction

While modelling multi attribute decision making (MADM) and multi attribute group decision
making (MAGDM), it is often observed that the parameters of the problem are not precisely known.
The parameters often involve uncertainty. To deal with uncertainty, Zadeh [1] left an important mark
to represent and compute with imperfect information by introducing the fuzzy set. The fuzzy set
fostered a broad research community, and its impact has also been clearly felt at the application level
in MADM [2–4] and MAGDM [5–9].

Atanassov [10] incorporated the non-membership function as an independent component and
defined the intuitionistic fuzzy set (IFS) at first to express uncertainty in a more meaningful way.
IFSs have been applied in many MADM problems [11–13]. Smarandache [14] proposed the notion of
the neutrosophic set (NS) by introducing indeterminacy as an independent component. Wang et al. [15]
grounded the concept of the single valued neutrosophic set (SVNS), an instance of the neutrosophic set,
to deal with incomplete, inconsistent, and indeterminate information in a realistic way. Wang et al. [16]
proposed the interval neutrosophic set (INS) as a subclass of neutrosophic sets in which the values of
truth, indeterminacy, and falsity membership degrees are interval numbers. Theoretical development
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and applications of SVNSs and INSs are found in [17–37] for MADM or MAGDM. Some studies on
MADM in single valued neutrosophic hesitant fuzzy set environments are found in [38–41].

NS and INS are both capable of handling uncertainty and incomplete information. By fusing NS
and INS, Ali et al. [42] proposed the neutrosophic cubic set (NCS) and defined external and internal
neutrosophic cubic sets, and established some of their properties. In the same study, Ali et al. [42]
proposed an adjustable strategy to NCS-based decision making. Jun et al. [43] also defined NCS
by combining NS and INS. In decision making process, the advantage of NCSs is that the decision
makers can employ the hybrid information comprising of INSs and SVNSs for evaluating and rating
of the alternatives with respect to their predefined attributes. However, there are only a few studies
in the literature to deal with MADM and MAGDM in the NCS environment. Banerjee et al. [44]
established grey relational analysis (GRA) [45–47] based on the new MADM strategy in the NCS
environment. In the same study, Banerjee et al. [44] proposed the Hamming distances for weighted
grey relational coefficients and ideal grey relational coefficients, and offered the concept of relative
closeness coefficients for presenting the ranking order of the alternatives based on the descending
order of their relative closeness coefficients.

Similarity measure is an important mathematical tool in decision-making problems.
Pramanik et al. [48] at first defined similarity measure for NCSs and proved its basic properties.
In the same study, Pramanik et al. [48] developed a new MAGDM strategy in the NCS environment.
Lu and Ye [49] proposed cosine measures between NCSs and established their basic properties. In
the same study, Lu and Ye [49] proposed three new cosine measures-based MADM strategies under a
NCS environment.

Due to little research on the operations and application of NCSs, Pramanik et al. [50] proposed
several operational rules on NCSs, and defined Euclidean distances and arithmetic average operators
of NCSs. In the same study, Pramanik et al. [50] also employed the information entropy scheme to
calculate the unknown weights of the attributes, and developed a new extended TOPSIS strategy for
MADM under the NCS environment. Zhan et al. [51] proposed a new algorithm for multi-criteria
decision making (MCDM) in an NCS environment based on a weighted average operator and a
weighted geometric operator. Ye [52] established the concept of a linguistic neutrosophic cubic number
(LNCN). In the same study, Ye [52] developed a new MADM strategy based on a LNCN weighted
arithmetic averaging (LNCNWAA) operator and a LNCN weighted geometric averaging (LNCNWGA)
operator under a linguistic NCS environment.

In the literature, there are only six strategies [44,48–52] for MADM and MAGDM in NCS
environment. However, we say that none of them is generally superior to all others. So, new strategies
for MADM and MAGDM should be explored under the NCS environment for the development of
neutrosophic studies.

TODIM (an acronym in Portuguese for interactive multi-criteria decision making strategy named
Tomada de decisao interativa e multicritévio) is an important MADM strategy, since it considers the
decision makers’ bounded rationality. Firstly, Gomes and Lima [53] introduced the TODIM strategy
based on prospect theory [54]. Krohling and Souza [55] defined the fuzzy TODIM strategy to solve
MCDM problems. Several researchers applied the TODIM strategy in various fuzzy MADM or
MAGDM problems [56–58]. Fan et al. [59] introduced the extended TODIM strategy to deal with the
hybrid MADM problems. Krohling et al. [60] extended the TODIM strategy from fuzzy environment to
intuitionistic fuzzy environment to process the intuitionistic fuzzy information. Wang [61] introduced
TODIM strategy into multi-valued neutrosophic set environment. Zhang et al. [62] proposed the
TODIM strategy for MAGDM problems under a neutrosophic number environment. Ji et al. [63]
proposed the TODIM strategy under a multi-valued neutrosophic environment and employed it
to solve personal selection problems. In 2017, Xu et al. [64] developed the TODIM strategy in a
single valued neutrosophic setting and extended it into interval neutrosophic setting. Neutrosophic
TODIM [64] is capable of dealing with only single-valued neutrosophic information or interval
neutrosophic information.
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NCS can be used to express the interval neutrosophic information and neutrosophic information
in the process of MADGM. It seems that TODIM in NCSs has an enormous chance of success to
deal with group decision making problems. In the NCS environment, the TODIM strategy is yet to
appear. Motivated by these, we initiated the study of TODIM in the NCS environment, which we
call NC-TODIM.

However, NCSs comprise of hybrid information of INSs and SVNSs simultaneously, which are
more flexible and elegant for expressing neutrosophic cubic information. To apply NCSs to MADGM
problems, we introduce some basic operations of neutrosophic cubic (NC) numbers and the score,
and accuracy functions of NC numbers, and the ranking strategy of NC numbers.

In this paper we develop a TODIM strategy (for short, NC-TODIM strategy) for MAGDM in
the NCS environment. The proposed NC-TODIM strategy was proven to be capable of successfully
dealing with MAGDM problems by solving an illustrative example. What is more, a comparative
analysis ensured the feasibility of the proposed NC-TODIM strategy.

The remainder of the paper is divided into seven sections that are organized as follows: Section 2
presents some basic definitions of NS, SVNS, INS, and NCS. Section 3 presents comparison strategy
of two NC-numbers. Section 4 is devoted to present the proposed NC-TODIM strategy. Section 5
presents an illustrative numerical example of MAGDM in the NCS environment. Section 6 is devoted
to analyzing the ranking order with different values of attenuation factors of losses. Section 7 presents
a comparative analysis between the developed strategy and other existing strategies in the NCS
environment. Section 8 presents the conclusion and the future scope of research.

2. Preliminaries

In this section, we review some basic definitions which are important to develop the paper.

Definition 1. [14] NS. Let U be a space of points (objects) with a generic element in U denoted by u, i.e.,
u ∈ U. A neutrosophic set R in U is characterized by truth-membership function tR, indeterminacy-membership
function iR, and falsity-membership function fR, where tR, iR, fR are the functions from U to ]−0, 1+[ i.e., tR,
iR, fR: U→]−0, 1+[ that means tR(u), iR(u), fR(u) are the real standard or non-standard subset of ]−0,
1+ [. The neutrosophic set can be expressed as R = {<u; (tR(u), iR(u), fR(u))>: ∀u∈U}. Since tR(u), iR(u),
fR(u) are the subset of ]−0, 1+[, there the sum (tR(u) + iR(u) + fR(u)) lies between −0 and 3+, where −0 = 0 − ε
and 3+ = 3 + ε, ε > 0.

Example 1. Suppose that U = {u1, u2, u3, . . .} is the universal set. Let R1 be any neutrosophic set in U.
Then R1 expressed as R1 = {<u1; (0.6, 0.3, 0.4)>: u1∈U}.

Definition 2. [15] SVNS. Let U be a space of points (objects) with a generic element in U denoted by u. A single
valued neutrosophic set H in U is expressed by H = {<u, (tH(u), iH(u), fH(u))>; u∈U}, where tH(u), iH(u),
fH(u)∈[0, 1]. Therefore for each u∈U, tH(u), iH(u), fH(u)∈[0, 1] and 0 ≤ tH(u) + iH(u) + fH(u) ≤ 3.

Definition 3. [16] INS. Let G be a non-empty set. An interval neutrosophic set G̃ in G is characterized by
truth-membership function tG̃, the indeterminacy membership function iG̃ and falsity membership function fG̃.
For each g∈G, tG̃(g), iG̃(g), fG̃(g) ⊆ [0, 1] and G̃ defined as

G̃ = {< g; [t−
G̃
(g), t+

G̃
(g)], [i−

G̃
(g), i+

G̃
(g), ], [f−

G̃
(g), f+

G̃
(g)] : ∀g ∈ G}.

Here,
t−
G̃
(g), t+

G̃
(g), i−

G̃
(g), i+

G̃
(g), f−

G̃
(g), f+

G̃
(g) : G→]−0, 1+[,

and
−0 ≤ sup t+

G̃
(g) + sup i+

G̃
(g) + sup f+

G̃
(g) ≤ 3+.
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In real problems it is difficult to express the truth-memberships function, indeterminacy-membership
function and falsity-membership function in the form of

t−
G̃
(g), t+

G̃
(g), i−

G̃
(g), i+

G̃
(g), f−

G̃
(g), f+

G̃
(g) : G→]−0, 1+[.

Here,
t−
G̃
(g), t+

G̃
(g), i−

G̃
(g), i+

G̃
(g), f−

G̃
(g), f+

G̃
(g) : G→ [0, 1].

Example 2. Suppose that G = {g1, g2, g3, . . ., gn} is a non-empty set. Let G̃1 be an INS. Then G̃1 is
expressed as

G̃1 = {< g1; [0.39, 0.47], [0.17, 0.43], [0.18, 0.36] : g1 ∈ G}.

Definition 4. [42,43] NCS. A NCS in a non-empty set G is defined as © = {<g; G̃(g), R(g)>: ∀g∈G}, where G̃
and R are the INS and NS in G respectively. NCS can be presented as an order pair © = <G̃, R>, then we call it
as a neutrosophic cubic (NC) number.

Example 3. Suppose that G = {g1, g2, g3, . . ., gn} is a non-empty set. Let ©1 be any NC-number. Then ©1

can be expressed as ©1 = {<g1; [0.39, 0.47], [0.17, 0.43], [0.18, 0.36], (0.6, 0.3, 0.4)>: g1∈G}.

Some operations of NC-numbers:

i. Union of any two NC-numbers
Let ©1 =< G̃1, R1 > and ©2 =< G̃2, R2 > be any two NC-numbers in a non-empty set G.

Then the union of ©1 and ©2denoted by ©1 ∪©2 and defined as

©1 ∪ ©2 =< G̃1(g) ∪ G̃1(g), R1(g) ∪ R2(g) ∀g ∈ G >,

where G̃1(g) ∪ G̃1(g) = {<g, [max {t−
G̃1

(g), t−
G̃2

(g)},max {t+
G̃1

(g), t+
G̃2

(g)}], [max {i−
G̃1

(g), i−
G̃2

(g)}, max {i+
G̃1

(g),

i+
G̃2

(g)}], [min {f−
G̃1

(g), f−
G̃2

(g)}, min {f+
G̃1

(g), f+
G̃2

(g)}]>: g∈G} and R1(g) ∪ R2(g) = {<g, max {tR1 (g), tR2 (g)},
max {iR1 (g), iR2 (g)}, min {fR1 (g), fR2 (g)}>:∀g∈U}.

Example 4. Let ©1 and ©2 be two NC-numbers in G presented as follows:

©1 =< [0.39, 0.47], [0.17, 0.43], [0.18, 0.36], (0.6, 0.3, 0.4) >

and
©2 =< [0.56, 0.70], [0.27, 0.42], [0.15, 0.26], (0.7, 0.3, 0.6) > .

Then
©1 ∪ ©2 =< [0.56, 0.70], [0.27, 0.43], [0.15, 0.26], (0.7, 0.3, 0.4) > .

ii. Intersection of any two NC-numbers
Intersection of two NC-numbers denoted and defined as follows:

©1 ∩ ©2 =<G̃1(g) ∩ G̃1(g), R1(g) ∩ R2(g) ∀g ∈ G >,

where G̃1(g) ∩ G̃1(g) = {<g, [min {t−
G̃1

(g), t−
G̃2

(g)},min {t+
G̃1

(g), t+
G̃2

(g)}], [min {i−
G̃1

(g), i−
G̃2

(g)}, min {i+
G̃1

(g),

i+
G̃2

(g)}], [max {f−
G̃1

(g), f−
G̃2

(g)}, max {f+
G̃1

(g), f+
G̃2

(g)}]>: g∈G} and R1(g) ∩ R2(g)= {<g, min {tR1 (g), tR2 (g)},
min {iR1 (g),iR2 (g)}, max {fR1 (g), fR2 (g)}>:∀g∈U}.
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Example 5. Let ©1 and ©2 be any two NC-numbers in G presented as follows:

©1 =< [0.45, 0.57], [0.27, 0.33], [0.18, 0.46], (0.7, 0.3, 0.5) >

and
©2 =< [0.67, 0.75], [0.22, 0.44], [0.17, 0.21], (0.8, 0.4, 0.4) > .

Then
©1 ∩ ©2 =< [0.45, 0.57], [0.22, 0.33], [0.18, 0.46], (0.7, 0.3, 0.4) > .

iii. Compliment of a NC-number
Let ©1 =< G̃1, R1 > be a NCS in G. Then, the compliment of ©1 =< G̃1, R1 > denoted by

©c
1 = {<g, G̃

c
1(g), Rc

1(g)>: ∀g∈G}.
Here, G̃1

c = {<g, [t−
G̃1

c(g), t+
G̃1

c(g)], [i−
G̃1

c(g), i+
G̃1

c(g)], [f−
G̃1

c(g), f+
G̃1

c(g)]>: ∀g∈G}, where,

t−
G̃1

c (g) = f−
G̃1

(g), t+
G̃1

c(g) = f+
G̃1

(g), i−
G̃1

c(g) = {1} − i−
G̃1

(g), i+
G̃1

c(g) = {1} − i+
G̃1

(g), f−
G̃1

c(g) = t−
G̃1

(g),

f+
G̃1

c (g) = f+
G̃1

(g) and tRc
1
(g) = fR1(g), iR´

c
1(g) = {1+} − iR1 (g), fRc

1
(g) = tR1 (g).

Example 6. Assume that ©1 be any NC-number in G in the form:

©1 =< [0.45, 0.57], [0.27, 0.33], [0.18, 0.46], (0.7, 0.3, 0.5) >

Then compliment of ©1 is obtained as

©c
1 =< [0.18, 0.46], [0.73, 0.67], [0.45, 0.57], (0.5, 0.7, 0.7) > .

Definition 5. Score function. Let ©1 be a NC-number in a non-empty set G. Then, a score function of ©1,
denoted by Sc (© 1) is defined as:

Sc (© 1) =
1
2
[(

2 + a1 + a2 − 2b1 − 2b2 − c1 − c2

4
) + (

1 + a− 2b− c
2

)] (1)

where, ©1 = <[a1, a2], [b1, b2], [c1, c2], (a, b, c) > and Sc (© 1)∈[–1, 1].

Proposition 1. Score function of two NC-numbers lies between −1 to 1.

Proof. Using the definition of INS and NS, we have all a1, a2, b1, b2, c1, c2, a, b, and c [0, 1].
Since,

0 ≤ a1 ≤ 1, 0 ≤ a2 ≤ 1

0 ≤ a1 + a2 ≤ 2,

⇒ 2 ≤ 2 + a1 + a2 ≤ 4

(2)

0 ≤ b1 ≤ 1⇒ 0 ≤ 2b1 ≤ 2 and 0 ≤ b2 ≤ 1⇒ 0 ≤ 2b2 ≤ 2

⇒ − 2 ≤ −2b1 ≤ 0

⇒ − 2 ≤ −2b2 ≤ 0

⇒ − 4 ≤ −2b1 − 2b2 ≤ 0

(3)

0 ≤ c1 ≤ 1⇒ − 1 ≤ − c1 ≤ 0
0 ≤ c2 ≤ 1⇒ − 1 ≤ − c2 ≤ 0
⇒ − 2 ≤ − c1 − c2 ≤ 0

(4)
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Adding Equations (2)–(4), we obtain

⇒ − 4 ≤ 2 + a1 + a2 − 2b1 − 2b2 − c1 − c2 ≤ 4,

⇒ − 1 ≤ 2+ a1 + a2 − 2b1 − 2b2 − c1 − c2
4 ≤ 1

(5)

Again,
0 ≤ a ≤ 1⇒ 1 ≤ 1 + a ≤ 2 , (6)

0 ≤ b ≤ 1⇒ 0 ≤ 2b ≤ 2,

0 ≤ c ≤ 1,

⇒ 0 ≤ 2b + c ≤ 3,

⇒ − 3 ≤ − 2b − c ≤ 0

(7)

Adding (6) and (7), we obtain

− 2 ≤ 1 + a− 2b − c ≤ 2,

⇒ − 1 ≤ 1+ a− 2b− c
2 ≤ 1

(8)

Adding (5) and (8) and dividing by 2, we obtain

− 1 ≤ 1
2
[(

2 + a1 + a2 − 2b1 − 2b2 − c1 − c2

4
) + (

1 + a− 2b− c
2

)] ≤ 1

Sc (© 1) ∈ [−1, 1].

Hence the proof is complete. �

Example 7. Let ©1 and ©2 be two NC-numbers in G, presented as follows:

©1 =< [0.39, 0.47], [0.17, 0.43], [0.18, 0.36], (0.6, 0.3, 0.4) >

and
©2 =< [0.56, 0.70], [0.27, 0.42], [0.15, 0.26], (0.7, 0.3, 0.6) > .

Then, by applying Definition 5, we obtain Sc (© 1) = −0.01 and Sc (© 2) = 0.07, In this case, we can say
that ©2 > ©1.

Definition 6. Accuracy function. Let ©1 be a NC-number in a non-empty set G, an accuracy function of ©1 is
defined as:

Ac(©1) = 1/2 [1/2(a1 + a2 − b2(1 − a2) − b1(1 − a1) − c2(1 − b1) − c1(1 − b2) + a − b(1 − a) − c(1 − b)] (9)

Here, Ac (© 1)∈[–1, 1].
When the value of Ac (© 1) increases, we say that the degree of accuracy of the NC-number ©1 increases.

Proposition 2. Accuracy function of two NC-numbers lies between −1 to 1.

Proof. The values of accuracy function depend upon

{1
2
(a1 + a2 − b2(1− a2)− b1(1− a1)− c2(1− b1)− c1(1− b2)) and { a− b(1− a)− c(1− b)}

The values of

{1
2
(a1 + a2 − b2(1− a2)− b1(1− a1)− c2(1− b1)− c1(1− b2))}
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and
{ a− b(1− a)− c(1− b)}

lie between −1 to 1 from [37].
Thus, −1 ≤ Ac (© 1) ≤ 1.
Hence the proof is completed. �

Example 8. Let ©1 and ©2 be two NC-numbers in G presented as follows:

©1 =< [0.41, 0.52], [0.10, 0.18], [0.06, 0.17], (0.48, 0.11, 0.11) >

and
©2 =< [0.40, 0.51], [0.10, 0.20], [0.10, 0.19], (0.50, 0.11, 0.11) > .

Then, by applying Definition 6, we obtain Ac (© 1) = 0.14 and Ac (© 2) = 0.30. In this case, we can say
that alternative ©2 is better than ©1.

With respect to the score function Sc and the accuracy function Ac, a strategy for comparing
NC-numbers can be defined as follows:

3. Comparison Strategy of Two NC-Numbers

Let ©1 and ©2 be any two NC-numbers. Then we define comparison strategy as follows:

i. If
Sc(©1) > Sc(©2), then ©1 > ©2. (10)

ii. If
Sc(©1) = Sc(©2) and Ac(©1) > Ac(©2), then ©1 > ©2. (11)

iii. If
Sc(©1) = Sc(©2) and Ac(©1) = Ac(©2), then ©1 = ©2. (12)

Example 9. Let ©1 and ©2 be two NC-numbers in G, presented as follows:

©1 =< [0.23, 0.29], [0.37, 0.46], [0.34, 0.42], (0.26, 0.26, 0.26) >

and
©2 =< [0.25, 0.31], [0.35, 0.44], [0.35, 0.44], (0.28, 0.28, 0.28) > .

Then, applying Definition 5, we obtain Sc (© 1) = 0.13 and Sc (© 2) = 0.13. Applying Definition 6,
we obtain Ac(© 1) =−0.20 and Ac (© 2) =−0.18. In this case, we say that alternative ©2 > ©1. (Score values
and Accuracy values taking correct up to two decimal places).

Definition 7. Let ©1 and ©2 be any two NC-numbers, then the distance between them is defined by

∂(©1, ©2) =
1
9 [|a1 − d1|+ |a2 − d2|+ |b1 − e1|+ |b2 − e2|+ |c1 − f1|+ |c2 − f2|+ |a− d|+ |b− e|+ |c− f|] (13)

where, ©1 = <[a1, a2], [b1, b2], [c1, c2], (a, b, c)> and ©2 = <[d1, d2], [e1, e2], [f1, f2], (d, e, f)>.

Example 10. Let ©1 and ©2 be two NC-numbers in G presented as follows:

©1 =< [0.66, 0.75], [0.25, 0.32], [0.17, 0.34], (0.53, 0.17, 0.22) >
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and
©2 =< [0.35, 0.55], [0.12, 0.25], [0.12, 0.20], (0.60, 0.23, 0.43) >

Then, applying Definition 7, we obtain ∂ (©1, ©2) = 0.12.

Definition 8. Let ©ij = {< [t−ij , t+ij ], [i−ij , i+ij ], [f−ij , f+ij ], (t, i, f) >} be any neutrosophic cubic value.
©ij used to evaluate i-th alternative with respect to j-th criterion. The normalized form of ©ij is defined as follows:

©⊗ij = {< [
t−ij

(
m
Σ

i=1
(t−ij )

2
+(t+ij )

2
)

1
2

,
t+ij

(
m
Σ

i=1
(t−ij )

2
+(t+ij )

2
)

1
2
],

[
i−ij

(
m
Σ

i=1
(i−ij )

2
+(i+ij )

2
)

1
2

,
i+ij

(
m
Σ

i=1
(i−ij )

2
+(i+ij )

2
)

1
2
],

[
f−ij

(
m
Σ

i=1
(f−ij )

2
+(f+ij )

2
)

1
2

,
f+ij

(
m
Σ

i=1
(f−ij )

2
+(f+ij )

2
)

1
2
]

[
tij

(
m
Σ

i=1
(tij)

2+(iij)
2+(fij)

2)
1
2

,
iij

(
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A conceptual model of the evolution of the neutrosophic cubic set is shown in Figure 1.
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4. NC-TODIM Based MAGDM under a NCS Environment

Assume that A = {A1, A2, . . . , Am} (m ≥ 2) and C = {C1, C2, . . . , Cn} (n ≥ 2) are the discrete set
of alternatives and attributes respectively. W = {W1, W2, . . . , Wn} is the weight vector of attributes

Cj (j = 1, 2, . . . , n), where Wj > 0 and
n
Σ

j=1
Wj = 1. Let E = {E1, E2, . . . , Er} be the set of decision makers

and γ = {γ1, γ2, . . . , γr} be the weight vector of decision makers, where γk > 0 and
r
Σ

k=1
γk = 1.

NC-TODIM Strategy

Now, we describe the NC-TODIM strategy to solve the MAGDM problems with NC-numbers.
The NC-TODIM strategy consists of the following steps:
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Step 1. Formulate the decision matrix

Assume that Mk = (©k
ij)m× n

be the decision matrix, where ©k
ij = <G̃

k
ij, Rk

ij> is the rating value
provided by the k-th (Ek) decision maker for alternative Ai, with respect to attribute Cj. The matrix
form of Mk is presented as:

Mk =


C1 C2 . . . Cn

A1 ©k
11 ©k

12 . . . ©k
1n

A2 ©k
21 ©k

22 ©k
2n

. . . . . .
Am ©k

m1 ©k
m2 . . . ©k

mnj

 (15)

Step 2. Normalize the decision matrix
The MAGDM problem generally consists of cost criteria and benefit criteria. So, the decision

matrix needs to be normalized. For cost criterion Cj, we use the Definition 8 to normalize the decision
matrix (Equation (15)) provided by the decision makers. For benefit criterion Cj we don’t need to
normalize the decision matrix. When Cj is a cost criterion, the normalized form of decision matrix
(see Equation (15)) is presented below.

M⊗k =


C1 C2 . . . Cn

A1 ©⊗k
11 ©⊗k

12 . . . ©⊗k
1n

A2 ©⊗k
21 ©⊗k

22 ©⊗k
2n

. . . . . .
Am ©⊗k

m1 ©⊗k
m2 . . . ©⊗k

mnj

 (16)

Here ©⊗k
ij is the normalized form of the NC-number.

Step 3. Determine the relative weight of each criterion
The relative weight Wch of each criterion is obtained by the following equation.

Wch =
WC

Wh
(17)

where, Wh = max {W1, W2, . . . , Wn}.

Step 4. Calculate score values
Using Equation (1), calculate the score value Sc (©⊗k

ij ) (i = 1, 2, . . . , m; j = 1, 2, . . . , n) of ©⊗k
ij if Cj

is a cost criterion. Using Equation (1), calculate the score value Sc ((c)k
ij) (i = 1, 2, . . . , m; j = 1, 2, . . . , n)

of ©k
ij if Cj is a benefit criterion.

Step 5. Calculate accuracy values
Using Equation (9), calculate the accuracy value Ac (©⊗k

ij ) (I = 1, 2, . . . , m; j= 1, 2, . . . , n) of

©⊗k
ij if Cj is a cost criterion. Using Equation (9), calculate the accuracy value Ac (©k

ij) (I = 1, 2, . . . , m;

j = 1, 2, . . . , n) of ©k
ij if Cj is a benefit criterion.

Step 6. Formulate the dominance matrix
Calculate the dominance of each alternative Ai over each alternative Aj with respect to the criteria

C (C1, C2, . . . , Cn), of the k-th decision maker Ek by the following Equations (18) and (19).
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(For cost criteria)

Ψk
c (Ai, Aj) =

√
( WCh

n
Σ

c=1
Wch

∂(©⊗k
ic , ©⊗k

jc ) , if ©⊗k
ic > ©⊗k

jc

= 0, if ©⊗k
ic = ©⊗k

jc

= − 1
α

√
(

n
Σ

c=1
Wch

WCh
∂(©⊗k

ic , ©⊗k
jc ) , if ©⊗k

ic < ©⊗k
jc


(18)

(For benefit criteria)

Ψk
c (Ai, Aj) =

√
( WCh

n
Σ

c=1
Wch

∂(©k
ic, ©k

jc ) , if ©k
ic > ©k

jc

= 0, if ©k
ic = ©k

jc

= − 1
α

√
(

n
Σ

c=1
Wch

WCh
∂(©k

ic, , ©k
jc ) , if ©k

ic < ©k
jc


(19)

where, parameter α represents the attenuation factor of losses and αmust be positive.

Step 7. Formulate the individual overall dominance matrix
Using Equation (20), calculate the individual total dominance matrix of each alternative Ai over

each alternative Aj under the criterion Cj.

φk = (Ai, Aj) =
n
Σ

c=1
Ψk

c (Ai, Aj) (20)

Step 8. Aggregate the dominance matrix
Using Equation (21), calculate the collective overall dominance of alternative Ai over each

alternative Aj.

φ(Ai, Aj ) =
m
Σ

k=1
γk λ

k(Ai, Aj) (21)

Step 9. Calculate global values
We present the global value of each alternative as follows:

Ωi =

n
Σ

j=1
φ (Ai, Aj )− min

1≤ i≤m
(

n
Σ

j=1
φ (Ai, Aj ))

max
1≤ i≤m

(
n
Σ

j=1
φ (Ai, Aj ))− min

1≤ i≤m
(

n
Σ

j=1
φ (Ai, Aj ))

(22)

Step 10. Rank the priority
Sorting the values of Ωi provides the rank of each alternative. A set of alternatives can be

preference-ranked according to the descending order of Ωi. The highest global value corresponds to
the best alternative.

A conceptual model of the NC-TODIM strategy is shown in Figure 2.
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5. Illustrative Example

In this section, a MAGDM problem is adapted from the study [18] under the NCS environment.
An investment company wants to select the best alternative among the set of feasible alternatives.
The feasible alternatives are

1. Car company (A1)
2. Food company (A2)
3. Computer company (A3)
4. Arms company (A4).

The best alternative is selected based on the following criteria:

1. Risk analysis (C1)
2. Growth analysis (C2)
3. Environmental impact analysis (C3).

An investment company forms a panel of three decision makers {E1, E2, E3} who evaluate four
alternatives in decision making process. The weight vector of attributes and decision makers are
considered as W = (0.4, 0.35, 0.25)T γ = (0.32, 0.33, 0.35)T respectively.

The proposed strategy is presented using the following steps:

Step 1. Formulate the decision matrix
Formulate the decision matrices Mk (k = 1, 2, 3) using the rating values of alternatives with

respect to three criteria provided by the three decision makers in terms of NC-numbers. Assume

that the NC-numbers ©k
ij = <G̃

k
ij, Rk

ij> present the rating value provided by the decision maker Ek for

alternative Ai with respect to attribute Cj. Using these rating values ©k
ij (k = 1, 2, 3; i = 1, 2, 3, 4; j = 1,

2, 3), three decision matrices Mk = (©k
ij)4×3

(k = 1, 2, 3) are constructed (see Equations (23)–(25)).
Decision matrix for E1

M1 =


C1 C2 C3

A1 < [0.41, 0.52], [0.10, 0.18], [0.06, 0.17], (0.48, 0.11, 0.11) > < [0.40, 0.51], [0.10, 0.20], [0.10, 0.19], (0.50, 0.11, 0.11) > < [0.22, 0.27], [0.41, 0.52], [0.41, 0.52], (0.31, 0.31, 0.31) >
A2 < [0.35, 0.46], [0.18, 0.27], [0.17, 0.34], (0.43, 0.16, 0.21) > < [0.22, 0.28], [0.40, 0.50], [0.39, 0.48], (0.28, 0.28, 0.28) > < [0.38, 0.49], [0.10, 0.21], [0.10, 0.21], (0.57, 0.12, 0.12) >
A3 < [0.23, 0.29], [0.36, 0.45], [0.34, 0.42], (0.26, 0.26, 0.26) > < [0.34, 0.45], [0.20, 0.30], [0.19, 0.39], (0.44, 0.16, 0.22) > < [0.22, 0.27], [0.41, 0.52], [0.41, 0.52], (0.31, 0.31, 0.31) >
A4 < [0.17, 0.23], [0.45, 0.55], [0.42, 0.59], (0.21, 0.32, 0.37) > < [0.22, 0.28], [0.40, 0.50], [0.39, 0.48], (0.28, 0.28, 0.28) > < [0.38, 0.49], [0.10, 0.21], [0.10, 0.21], (0.57, 0.12, 0.12) >

 (23)

Decision matrix for E2

M2 =


C1 C2 C3

A1 < [0.17, 0.23], [0.46, 0.55], [0.42, 0.59], (0.21, 0.32, 0.37) > < [0.25, 0.31], [0.35, 0.44], [0.35, 0.44], (0.28, 0.28, 0.28) > < [0.34, 0.43], [0.13, 0.27], [0.13, 0.27], (0.49, 0.11, 0.11) >
A2 < [0.23, 0.29], [0.37, 0.46], [0.34, 0.42], (0.26, 0.26, 0.26) > < [0.25, 0.31], [0.35, 0.44], [0.35, 0.44], (0.28, 0.28, 0.28) > < [0.34, 0.43], [0.13, 0.27], [0.13, 0.27], (0.49, 0.11, 0.11) >
A3 < [0.41, 0.52], [0.10, 0.18], [0.10, 0.17], (0.48, 0.11, 0.11) > < [0.44, 0.57], [0.10, 0.17], [0.10, 0.17], (0.51, 0.11, 0.11) > < [0.19, 0.24], [0.53, 0.67], [0.53, 0.67], (0.27, 0.27, 0.27) >
A4 < [0.35, 0.46], [0.20, 0.28], [0.17, 0.34], (0.42, 0.16, 0.21) > < [0.25, 0.31], [0.35, 0.44], [0.35, 0.44], (0.28, 0.28, 0.28) > < [0.34, 0.43], [0.13, 0.27], [0.13, 0.27], (0.49, 0.11, 0.11) >

 (24)
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Decision matrix for E3

M3 =


C1 C2 C3

A1 < [0.22, 0.27], [0.42, 0.52], [0.42, 0.52], (0.28, 0.28, 0.28) > < [0.22, 0.28], [0.40, 0.50], [0.39, 0.48], (0.28, 0.28, 0.28) > < [0.41, 0.52], [0.10, 0.18], [0.10, 0.17], (0.48, 0.11, 0.11) >
A2 < [0.22, 0.27], [0.42, 0.52], [0.42, 0.52], (0.28, 0.28, 0.28) > < [0.40, 0.51], [0.10, 0.20], [0.10, 0.19], (0.50, 0.11, 0.11) > < [0.23, 0.29], [0.36, 0.45], [0.34, 0.42], (0.26, 0.26, 0.26) >
A3 < [0.38, 0.49], [0.10, 0.21], [0.10, 0.21], (0.50, 0.11, 0.11) > < [0.34, 0.45], [0.20, 0.30], [0.19, 0.39], (0.44, 0.16, 0.22) > < [0.38, 0.49], [0.10, 0.21], [0.10, 0.21], (0.50, 0.11, 0.11) >
A4 < [0.38, 0.49], [0.10, 0.21], [0.10, 0.21], (0.50, 0.11, 0.11) > < [0.22, 0.28], [0.40, 0.50], [0.39, 0.48], (0.28, 0.28, 0.28) > < [0.17, 0.23], [0.45, 0.54], [0.42, 0.59], (0.21, 0.32, 0.37) >

 (25)

Step 2. Normalize the decision matrix
Since all the criteria are benefit type, we do not need to normalize the decision matrix.

Step 3. Determine the relative weight of each criterion
Using Equation (17), we obtain the relative weight vector Wch of criteria as follows:

Wch = (1, 0.875, 0.625)T.

Step 4. Calculate score values
The score values of each alternative relative to each criterion obtained by Equation (1) are

presented in the Tables 1–3.

Table 1. Score values for M1.

C1 C2 C2

A1 0.56 0.54 0.06
A2 0.40 0.09 0.54
A3 0.50 0.38 0.06
A4 −0.03 0.09 0.54

Table 2. Score values for M2.

C1 C2 C2

A1 −0.03 0.13 0.49
A2 0.13 0.13 0.49
A3 0.56 0.60 −0.04
A4 0.39 0.13 0.49

Table 3. Score values for M3.

C1 C2 C2

A1 0.07 0.09 0.56
A2 0.07 0.52 0.13
A3 0.51 0.37 0.39
A4 0.51 0.09 −0.03

Step 5. Calculate accuracy values
The accuracy values of each alternative relative to each criterion obtained by Equation (9) are

presented in Tables 4–6.

Table 4. Accuracy values for M1.

C1 C2 C2

A1 0.14 0.30 −0.24
A2 0.12 −0.23 0.32
A3 −0.20 0.09 −0.24
A4 −0.38 −0.23 0.32
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Table 5. Accuracy values for M2.

C1 C2 C2

A1 −0.38 −0.18 0.21
A2 −0.20 −0.18 0.21
A3 0.14 0.36 −0.21
A4 0.12 −0.18 0.21

Table 6. Accuracy values for M3.

C1 C2 C2

A1 −0.24 −0.23 0.41
A2 −0.24 0.30 −0.20
A3 0.26 0.09 0.12
A4 0.26 −0.23 −0.38

Step 6. Formulate the dominance matrix
Using Equation (19), we construct dominance matrix for α = 1. The dominance matrices are

represented in matrix form (See Equations (26)–(34)).
The dominance matrix Ψ1

1 , the dominance matrix Ψ1
2

Ψ1
1 =


A1 A2 A3 A4

A1 0 0.18 0.30 0.35
A2 −0.46 0 −0.58 0.30
A3 −0.74 0.23 0 0.19
A4 −0.88 −0.74 −0.47 0

 (26)

Ψ1
2 =


A1 A2 A3 A4

A1 0 0.29 0.18 0.28
A2 −0.82 0 −0.69 0
A3 −0.51 0.24 0 0.29
A4 −0.81 0 −0.65 0

 (27)

The dominance matrix Ψ1
3 , the dominance matrix Ψ2

1

Ψ1
3 =


A1 A2 A3 A4

A1 0 −1 0 −1
A2 0.25 0 0.26 0
A3 0 −1 0 −1
A4 0.25 0 0.26 0

 (28)

Ψ2
1 =


A1 A2 A3 A4

A1 0 −0.46 −0.88 −0.74
A2 0.18 0 −0.75 −0.58
A3 0.35 0.09 0 0.04
A4 0.30 0.23 0.19 0

 (29)
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The dominance matrix Ψ2
2 , the dominance matrix Ψ2

3

Ψ2
2 =


A1 A2 A3 A4

A1 0 0 −0.84 0
A2 0 0 0.84 0
A3 0.29 0.29 0 0.29
A4 0 0 −0.84 0

 (30)

Ψ2
3 =


A1 A2 A3 A4

A1 0 0 0.26 0
A2 0 0 0.26 0
A3 −1 −1 0 −1
A4 0 0 0.26 0

 (31)

The dominance matrix Ψ3
1, the dominance matrix Ψ3

2

Ψ3
1 =


A1 A2 A3 A4

A1 0 0 0.78 0.78
A2 0 0 0.78 0.78
A3 0.31 0.31 0 0
A4 0.31 0.31 0 0

 (32)

Ψ3
2 =


A1 A2 A3 A4

A1 0 −0.83 0.65 0
A2 0.29 0 0.18 0.29

A30.23 −0.51 0 0.23
A4 0 −0.83 −0.65 0

 (33)

The dominance matrix Ψ3
3

Ψ3
3 =


A1 A2 A3 A4

A1 0 −0.94 0.59 −1.1
A2 0.23 0 −0.73 0.15
A3 0.59 0.18 0 0.23
A4 −1.1 0.58 −0.94 0

 (34)

Step 7. Formulate the individual overall dominance matrix
The individual overall dominance matrix is calculated by the Equation (20) and the dominance

matrices are represented in matrix form (see Equations (35)–(37)).
First decision maker’s overall dominance matrix φ1

φ1=


A1 A2 A3 A4

A1 0 −0.53 0.47 −0.37
A2 −1 0 −1 0.30
A3 −1.3 0.53 0 0.52
A4 −1.5 0.74 −0.86 0

 (35)
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Second decision maker’s overall dominance matrix φ2

φ2=


A1 A2 A3 A4

A1 0 −0.46 −1.5 −0.74
A2 0.18 0 −1.3 −0.58
A3 −0.36 −0.62 0 0.67
A4 0.30 0.23 −0.39 0

 (36)

Third decision maker’s overall dominance matrix φ3

φ3 =


A1 A2 A3 A4

A1 0 −1.8 −2 1.9
A2 0.52 0 −1.3 −0.34
A3 −0.05 −0.02 0 0.46
A4 −0.79 −1.1 −1.6 0

 (37)

Step 8. Aggregate the dominance matrix
Using Equation (21), the aggregate dominance matrix φ is constructed (see Equation (38))

as follows:

φ =


A1 A2 A3 A4

A1 0 −0.94 −1.1 −0.53
A2 −0.10 0 −1.23 −0.22
A3 −0.54 −0.38 0 −0.23
A4 −0.64 −0.55 −0.96 0

 (38)

Step 9. Calculate global values
Using Equation (22), we calculate the values of Ωi (i = 1, 2, 3, 4) and represented in Table 7.

Table 7. Global values of alternatives.

Ai A1 A2 A3 A4

Ωi 0.49 0.61 1 0

Step 10. Rank the priority
Since Ω3 > Ω2 > Ω1 > Ω4, alternatives are then preference ranked as follows: A3 > A2 > A1 > A4.
Hence A3 is the best alternative.
From the illustrative example, we see that the proposed NC-TODIM strategy is more suitable for

real scientific and engineering applications because it can handle hybrid information consisting of INS
and SVNS information simultaneously to cope with indeterminate and inconsistent information. Thus,
NC-TODIM extends the existing decision-making strategies and provides a sophisticated mathematical
tool for decision makers.

6. Rank of Alternatives with Different Values of α

Table 8 shows that the ranking order of alternatives depends on the values of the attenuation
factor, which reflects the importance of the attenuation factor in the NC-TODIM strategy.
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Table 8. Global values and ranking of alternatives for different values of α.

Values of α Global Values of Alternative (Ωi) Rank Order of Ai

0.5 Ω1 = 0, Ω2 = 0.89, Ω3 = 1, Ω4 = 0.46
Ω3 > Ω2 > Ω4 > Ω1

A3 > A2 > A4 > A1

1 Ω1 = 0.49, Ω2 = 0.61, Ω3 = 1, Ω4 = 0
Ω3 > Ω2 > Ω1 > Ω4

A3 > A2 > A1 > A4

1.5 Ω1 = 0, Ω2 = 0.72, Ω3 = 1, Ω4 = 0.44
Ω3 > Ω2 > Ω4 > Ω1

A3 > A2 > A4 > A1

2 Ω1 = 0, Ω2 = 1, Ω3 = 0.81, Ω4 = 0.38
Ω2 > Ω3 >Ω4 > Ω1

A2 > A3 > A4 > A1

3 Ω1 = 0, Ω2 = 0.56, Ω3 = 1, Ω4 = 0.45
Ω3 > Ω2 > Ω4 > Ω1

A3 > A2 > A4 > A1

Analysis on Influence of the Parameter α to Ranking Order

The impact of parameter α on ranking order is examined by comparing the ranking orders taken
with varying the different values of α. When α = 0.5, 1, 1.5, 2, 3, ranking order are presented in
Table 8. We draw Figures 3 and 4 to compare the ranking order for different values of α. When α = 0.5,
α = 1.5 and α = 3, the ranking order is unchanged and A3 is the best alternative, while A1 is the worst
alternative. When α = 1, the ranking order is changed and A3 is the best alternative and A4 is the worst
alternative. For α = 2, the ranking order is changed and A2 is the best alternative and A1 is the worst
alternative. From Table 8, we see that A3 is the best alternative in four cases and A1 is the worst for
four cases. We can say that ranking order depends on parameter α.
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7. Comparative Analysis and Discussion

On comparing with the existing neutrosophic decision making strategies [26–29,33–35,64–69],
we see that the decision information used in the proposed NC-TODIM strategy is NC numbers,
which comprises of interval neutrosophic information and single-valued neutrosophic information
simultaneously; whereas the decision information in the existing literature is either SVNSs or INSs.
Since NC numbers comprises of much more information, the NC numbers based on the TODIM
strategy proposed in this paper is more elegant, typical and more general in applications, while the
existing neutrosophic decision-making strategies cannot deal with the NC number decision-making
problem developed in this paper.

The first decision making paper in NCS environment was studied by Banerjee et al. [44].
On comparison with existing GRA-based NCS decision making strategies [44], we observe that
the proposed NC-TODIM strategy uses the score, and accuracy functions, while the decision
making-strategy in [44] uses Hamming distances for weighted grey relational coefficients and standard
(ideal) grey relational coefficients, and ranks the alternatives based on the relative closeness coefficients.
Hence, the proposed NC-TODIM strategy is relatively simple in the decision making process.

On comparing with cosine measures of NCSs [49], we observe that the proposed NC-TODIM
involves multiple decision makers, while in [49] only a single decision maker is involved. This shows
that [49] cannot deal with group decision making, while the proposed NC-TODIM strategy is more
sophisticated as it can deal with single as well as group decision making in the NCS environment.

On comparison with extended TOPSIS [50] with neutrosophic cubic information, we observe
that nine components are present in NCSs. Therefore, by calculation of a weighted decision matrix,
a neutrosophic cubic positive ideal solution (NCPIS), and a neutrosophic cubic negative ideal solution,
the distance measures of alternatives from NCPIS and NCNIS (NCNIS,) and entropy weight, and use of
an aggregation operator are lengthy, time consuming, and hence expensive. The proposed NC-TODIM
strategy is free from different kinds of typical aggregation operators. The calculations required for
the proposed strategy are relatively straightforward and time-saving. Therefore, the final ranking
obtained by the proposed strategy is more conclusive than those produced by the other strategies,
and it is evident that the proposed strategy is accurate and reliable.

On comparison with the strategy proposed by Zhan et al. [51], we see that they employ score,
accuracy, and certainty functions, and a weighted average operator and weighted geometric operator
of NCSs for decision making problem involving only a single decision maker. This reflects that the
strategy introduced by Zhan et al. [51] is only applicable for decision making problems involving
single decision maker. However, our proposed NC-TODIM strategy is more general as it is capable of
dealing with group decision-making problems.
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A comparative study is conducted with the existing strategy [48] for group decision making under
a NCS environment (See Table 9). Since the philosophy of two strategies are different, the obtained
results (ranking order) are different. At a glance, it cannot be said which strategy is superior
to the other. However, on comparison with similarity measure-based strategies studied in [48],
we observed that ideal solutions are needed for ranking of alternatives but in a real world ideal
solution, this is an imaginary case, which means that an indeterminacy arises automatically, whereas in
our proposed NC-TODIM strategy we can calculate the rank of the alternatives based on global values
of alternatives. So, the proposed NC-TODIM strategy is relatively easy to implement and apply for
solving MAGDM problems.

Table 9. Ranking order of alternatives using three different decision making strategies in the
neutrosophic cubic set (NCS) environment.

Proposed NC-TODIM Strategy Similarity Measure [48]

Ω1 = 0, Ω2 = 0.89, Ω3 = 1, Ω4 = 0.46 ρ1 = 0.20, ρ2 = 0.80, ρ3 = 0.22, ρ4 = 0.19
Ranking order: A3 > A2 > A4 > A1 Ranking order: A2 > A3 > A1 > A4

8. Conclusions

NCSs can better describe hybrid information comprising of INSs and NSs. In this study,
we proposed a score function and an accuracy function, and established their properties. We developed
a NC-TODIM strategy, which is capable for tackling MAGDM problems affected by uncertainty and
indeterminacy represented by NC numbers. The standard TODIM, in its original formulation, is only
applicable to a crisp environment. Existing neutrosophic TODIM strategies deal with single valued
neutrosophic information or interval neutrosophic information. Therefore, proposed NC-TODIM
strategy demonstrates the advantages of presenting and manipulating MAGDM problems with
NCSs comprising of the hybrid information of INSs and NSs. Furthermore, NC-TODIM strategy
that considers the risk preferences of decision makers, is significant to solve MAGDM problems.
The proposed NC-TODIM strategy was verified to be applicable, feasible, and effective by solving
an illustrative example regarding the selection problem of investment alternatives. In addition,
we investigated the influence of attenuation factor of losses α on ranking the order of alternatives.

The contribution of this study can be concluded as follows. First, this study utilized NCSs
to present the interval neutrosophic information and neutrosophic information in the MAGDM
process. Second, the NC-TODIM strategy established in this paper is simpler and easier than the
existing strategy proposed by Pramanik et al. [48] for group decision making with neutrosophic cubic
information based on similarity measure and demonstrates the main advantage of its simple and
easy group decision making process. Third, TODIM strategy was extended to the NCS environment.
Fourth, we defined the NC number. Fifth, we defined the score and accuracy functions and proved
their basic properties. Sixth, we developed the ranking of NC numbers using score and accuracy
functions. Therefore, two functions namely, score function, accuracy function, and proofs of their basic
properties, ranking of NC numbers, and NC-TODIM strategy for MAGDM are the main contributions
of the paper.

Several directions for future research are generated from this study. First, this study employs
the NC-TODIM strategy to deal with MAGDM. In addition to MAGDM, MAGDM problems in a
variety of other fields can be solved using the NC-TODIM strategy, including logistics center selection,
personnel selection, teacher selection, renewable energy selection, medical diagnosis, image processing,
fault diagnosis, etc. Second, this study considers the risk preferences of decision makers i.e., the essence
of TODIM, while the interrelationship between criteria are ignored. In future research, the NC-TODIM
strategy will be improved to address this deficiency. Third, the proposed strategy can only deal
with crisp weights of attributes and decision makers, rather than NCS, which reflects its main
limitation. This limitation will be effectively addressed in our future research. Fourth, in our illustrative
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example, three criteria are considered as an example. However, in real world group decision making
problems, many other criteria should be included. A comprehensive framework for MAGDM problem
comprising of all relevant criteria should be designed based on prior studies and the proposed
NC-TODIM strategy in future research. Finally, we conclude that the developed NC-TODIM strategy
offers a novel and effective strategy for decision makers under the NCS environment, and will open
up a new avenue of research into the neutrosophic hybrid environment.
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