Proof that $P \neq NP$

Author
Robert DiGregorio
0x51B4908DdCD986A41e2f8522BB5B68E563A358De

Abstract
Using a new tool called a “sorting key” it's possible to imply that $P \neq NP$.

Part 1

- Let $PS(x)$ be the unsorted power list (list of all subsets) of unsorted list of naturals x, with each subset folded over the sum operation, such that, given some natural n, $PS(x)[n]$ is the nth element of $PS(x)$
 - To clarify what "folded over the sum operation" means, here is the set $\{1, 2, 3\}$ folded over the sum operation in pseudocode: "$\{1, 2, 3\}.fold(sum) = 1 + 2 + 3 = 6$"
 - To clarify, $PS(x)$ is the unsorted list of all subset sums of x
 - To clarify, "sorted" means smaller naturals are always before larger naturals

- Let a "valid sorting key" be a natural such that, for some list x, for all natural n, $PS(x)[n \oplus (a valid sorting key of PS(x))]$ is $(sort \ PS(x))[n]$
 - Calculating a valid sorting key that sorts for all elements of $PS(x)$ is identical to sorting $PS(x)$. This is because $PS(x)[n]$ is the nth element of $PS(x)$, unsorted, and $PS(x)[n \oplus (a valid sorting key of PS(x))]$ is the nth element of $PS(x)$, sorted, so having a valid sorting key that sorts for all elements of $PS(x)$ means you have a sorted $PS(x)$
 - \oplus is the bitwise exclusive or operation. If you apply \oplus against some natural x to every natural from 0 (inclusive) to 2^n (exclusive), those naturals are reordered such that every unique x gives a unique order. As such, every power list has at least 1 “sorting key” that sorts it
 - If KEY is the sorting key of some list x, reordering x causes KEY to become “invalid” and no longer sort x
 - If all elements of $PS(x)$ are unique, there is only 1 valid sorting key for $PS(x)$. Again, 1 valid sorting key sorts all elements of $PS(x)$

- Let A be an unsorted list of naturals, given as input

- Let KEY be a natural, given as input

- Let the decision problem be "given unsorted list A as input and natural KEY as input, is KEY not a valid sorting key of $PS(A)$?"

- A deterministic polynomial time verifier can verify a YES solution to the decision problem if list A, natural KEY, natural x, and natural y are given, such that $(x < y) \neq (PS(A)[x \oplus KEY] < PS(A)[y \oplus KEY])$
If a deterministic polynomial time verifier exists for a YES solution to a decision problem such that all deterministic Turing machines calculate it must run in superpolynomial time, \(P \neq NP \)

- If the decision problem can't be solved in polynomial time, \(P \neq NP \)
- If the decision problem can be solved in polynomial time, see part 2

Part 2

- It's implied that ALGORITHM exists such that ALGORITHM can determine if a sorting key is valid in polynomial time

- Let \(HIDE(x) \) be natural \(x \) transformed such that, for every natural \(n \), \(HIDE(x)[n] = x[2n \oplus (2n - 1)] \)
 - For example, \(HIDE(0011011_2) = 0110_2 \)

- Let \(M \) be some deterministic Turing machine such that \(M \) decides "given list \(A \) as input, given natural \(HIDE(KEY) \) as input, does a permutation \(A_p \) of \(A \) exist such that a possible value for KEY is a valid sorting key for \(PS(A_p) \)?"
 - There are \(O(2^{|A|}) \) possible values for \(KEY \)
 - There are \(O(|A|!) \) possible values for \(PS(A_p) \)
 - It is possible that only 1 possible KEY and is a valid sorting key for any possible \(PS(A_p) \)
 - It is possible that no possible KEY are a valid sorting key for any possible \(PS(A_p) \)

- Given \(A \) as input, \(A_p \) as input, and \(KEY \) as input, a verifier can verify \(A_p \) is a permutation of \(A \), then, using ALGORITHM, in polynomial time, verify \(KEY \) is a valid sorting key for \(PS(A_p) \)

- The search space is \(2^{|A|/2} \) possible values for \(KEY \) and \(|A|! \) possible values for \(PS(A_p) \)

- Presume checking if a possible value for \(KEY \) is the valid sorting key for a possible value of \(PS(A_p) \) requires \(O(1) \) time
 - All possible values for \(KEY \) must be checked, because the only information contained in \(HIDE(KEY) \) is that \(KEY \) could be one of \(2^{|A|/2} \) possible values
 - This forces the time complexity to be \(\geq O(2^{|A|}) \)
 - Even if you could binary search the search space, the time complexity would still be superpolynomial
 - This implies \(M \)'s decision problem, which can be verified in polynomial time, requires superpolynomial time to decide
 - This implies \(P \neq NP \)