P ≠ NP using the power key, a proof by logical contradiction

Author

Robert DiGregorio
774-417-7589
0x51B4908DdCD986A41e2f8522BB5B68E563A358De

Abstract

Using a new technique called the power key, it's possible to imply \(P \neq NP \) using a proof by logical contradiction.

Part 1

- Let \(PS(x) \) be the list of all sublists of natural list \(x \), with each sublist folded over the sum operation, such that, given some natural \(n \), \(PS(x)[n] \) is the \(n \)th element of \(PS(x) \), well ordered as if the \(n \)th element of \(x \) was the \(n \)th power of 2 before each sublist was folded over the sum operation.

- **NOTE:** To clarify what "folded over the sum operation" means, here is the list \([1, 2, 3]\) folded over the sum operation in pseudocode: "\([1, 2, 3].fold(sum) = 1 + 2 + 3 = 6""

- **NOTE:** To clarify, \(PS(x) \) is the list of all sublist sums of \(x \), well ordered as if each element of \(x \) was a unique power of 2.

- **NOTE:** To clarify, "well ordered" means smaller naturals are always before larger naturals. This does not well order \(PS(x) \), unless each element of \(x \) was well ordered and much larger than the previous element. However, in this proof, \(x \) is always unordered, therefore \(PS(x) \) is always unordered.

- Let a "valid power key" be a natural such that, for some list \(x \), for all natural \(n \), \(PS(x)[n \oplus (the valid power key of PS(x)))] \) is the \(n \)th largest element of \(PS(x) \).

- **NOTE:** \(\oplus \) is the Boolean exclusive or operation. If you apply \(\oplus \) against some natural \(x \) to every natural from 0 (inclusive) to \(2^n \) (exclusive), those naturals are reordered such that every unique \(x \) gives a unique order.

- **NOTE:** Deciding the valid power key that works for all elements of \(PS(x) \) is the same as well ordering \(PS(x) \). This is because \(PS(x)[n] \) is the \(n \)th element of \(PS(x) \), unordered, and \(PS(x)[n \oplus (the valid power key of PS(x))] \) is the \(n \)th element of \(PS(x) \), well ordered.
so having the valid power key that works for all elements of PS(x) means you effectively have a well ordered PS(x)

• NOTE: If all elements of PS(x) are unique, there is only 1 valid power key for PS(x). Again, 1 valid power key works for all elements of PS(x)

• Let A be an unordered natural list, given as input

• Let KEY be a natural, given as input

• Let the decision problem be "Given unordered list A as input and natural KEY as input, is KEY not the valid power key of PS(A)?"

• A deterministic polynomial time verifier can verify a YES solution to the decision problem if list A, natural KEY, natural x, and natural y are given, such that \((x < y) \neq (PS(A)[x \oplus KEY] < PS(A)[y \oplus KEY])\)

• If a deterministic polynomial time verifier exists for a YES solution to a decision problem such that all deterministic Turing machines deciding it must run in superpolynomial time, \(P \neq NP\)

 • If the decision problem can't be solved in polynomial time, \(P \neq NP\)

 • If the decision problem can be solved in polynomial time, see part 2

Part 2

• It's implied that algorithm ALGORITHM exists such that ALGORITHM can determine if a power key is invalid or not in polynomial time

• NOTE: If ALGORITHM is polynomial time for a YES solution to a decision problem, ALGORITHM polynomial time for a NO solution to a decision problem, and vice versa

• If ALGORITHM exists, deterministic polynomial time verifier V exists such that V can verify if a power key is valid for any set of subsets and also determine if that power key is even (YES) or odd (NO)

• Let M be some deterministic time Turing machine such that M, given only A, decides the power key of A, then determines if it's even (YES) or odd (NO)

 • Any such deterministic Turing machine runs in superpolynomial time. Otherwise, it could sort a set of subsets without looking at every subset, which is a logical contradiction

• It is implied that V can verify M's superpolynomial decision problem in polynomial time, given A and the power key of A, using ALGORITHM, therefore, \(P \neq NP\)