A note on a problem involving a square in a curvilinear triangle

Hiroshi Okumura

Abstract. A problem involving a square in the curvilinear triangle made by two touching congruent circles and their common tangent is generalized.

Keywords. square in a curvilinear triangle

Mathematics Subject Classification (2010). 01A27, 51M04

Let \(\alpha_1 \) and \(\alpha_2 \) be touching circles of radius \(a \) with external common tangent \(t \). In this note we consider the following problem [1, 4, 5] (see Figure 1).

Problem 1. \(ABCD \) is a square such that the side \(DA \) lies on \(t \) and the points \(C \) and \(B \) lie on \(\alpha_1 \) and \(\alpha_2 \), respectively. Show that \(2a = 5|AB| \).

![Figure 1](image1)

If \(\gamma_1, \gamma_2, \ldots, \gamma_n \) are congruent circles touching a line \(s \) from the same side such that \(\gamma_1 \) and \(\gamma_2 \) touch and \(\gamma_i \) (\(i = 3, 4, \ldots, n \)) touches \(\gamma_{i-1} \) from the side opposite to \(\gamma_1 \), then \(\gamma_1, \gamma_2, \ldots, \gamma_n \) are called congruent circles on \(s \). The curvilinear triangle made by \(\alpha_1, \alpha_2 \) and \(t \) is denoted by \(\Delta \). The incircle of \(\Delta \) touches \(\alpha_1 \) and \(\alpha_2 \) at \(C \) and \(B \), respectively as in Figure 1. Indeed the problem is generalized as follows (see Figure 2):

Theorem 1. If \(\beta_1, \beta_2, \ldots, \beta_n \) are congruent circles on \(t \) lying in \(\Delta \) such that \(\beta_1 \) touches \(\alpha_1 \) at a point \(C \) and \(\beta_n \) touches \(\alpha_2 \) at a point \(B \) and \(A \) is the foot of perpendicular from \(B \) to \(t \), then the following relations hold.

(i) \(n|AB| = |BC| \).
(ii) \(2a = \left((\sqrt{n} + 1)^2 + 1 \right) |AB| \).

Proof. Let \(b \) be the radius of \(\beta_1 \). By Theorem 5.1 in [2] we have

(1) \(a = (\sqrt{n} + 1)^2 b \).

Let \(d = |AB| \). Since \(C \) divides the segment joining the centers of \(\alpha_1 \) and \(\beta_1 \) in the ratio \(a : b \) internally, we have

(2) \(\frac{d - b}{b} = \frac{a - b}{a + b} \).
Eliminating b from (1) and (2), and solving the resulting equation for d, we get
$$d = 2a/(1 + (1 + \sqrt{n})^2).$$
But in the minus sign case we get
$$2b - d = 2a(1 - 4\sqrt{n})(n^2 - n + 2\sqrt{n} + 2) < 0$$
by (1). Hence $d = 2a/(1 + (1 + \sqrt{n})^2)$. This proves (ii). Let $|BC| = 2h$. Then from the right triangle formed by the line BC, the segment joining the centers of α_1 and β_1, and the perpendicular from the center of α_1 to BC, we get
$$(a - h)^2 + (a - d)^2 = a^2.$$ Solving the equation for h, we have
$$h = a - \sqrt{(2a - d)d} = an/(1 + (1 + \sqrt{n})^2).$$ This proves (i).

The figure consisting of α_1, α_2, β_1, β_2, \cdots, β_n and t is denoted by $\mathcal{B}(n)$ and considered in [2]. The next theorem also shows that the points B and C lies on the incircle of Δ in Figure 1 (see Figure 3).

Theorem 2. Let β_1, β_2, \cdots, β_n be congruent circles on a line s. If a circle α touches s and β_1 and β_n externally at points C and B, respectively, A is the foot of perpendicular from B to s, then the following relations hold.
(i) $(n - 1)|AB| = |BC|.$
(ii) $2a = ((n - 1)^2 + 4)|AB|/4.$

Theorem 2 is proved in a similar way as Theorem 1 using the fact that the ratio of the radii of α and β_1 equals $(n - 1)^2 : 4$ [3]. The figure consisting of α, β_1, β_2, \cdots, β_n and s is denoted by $\mathcal{A}(n)$ and considered in [2].
REFERENCES

Tohoku Univ. WDB is short for Tohoku University Wasan Material Database.