Theorem of not independence of any technological innovation - Philosophical and theoretical foundations of the evolution of technology

Mario COCCIA
ARIZONA STATE UNIVERSITY
CocciaLAB at Center for Social Dynamics and Complexity
Interdisciplinary Science and Technology Building 1 (ISBT1)
550 E. Orange Street, Tempe- AZ 85287-4804 USA

and

CNR -- NATIONAL RESEARCH COUNCIL OF ITALY
Via Real Collegio, 30-10024, Moncalieri (TO), Italy

E-mail: mario.coccia@cnr.it
The theorem of not independence of any technological innovation states that in the long run, the behavior and evolution of any technological innovation is not independent from the behavior and evolution of the other technological innovations. The philosophical foundations of this theory are concepts from systems science and architecture of complexity. The theoretical implications of this theorem is that technological innovations form systems of inter-related technologies with fundamental interactions of physical and social factors. In particular, any technological innovation does not function as an independent system per se, but each innovation depends on the other technological innovations to form a complex system of parts that interact and coevolve in a non-simple way. The theorem of not independence of any technological innovation can explain and generalize, whenever possible, one of the characteristics of the evolution of technology that generates technological and economic change in human society.

JEL CODES: C00; O30; O33.

Suggested citation:
DOI: 10.13140/RG.2.2.26647.57766

I gratefully acknowledge financial support from the CNR - National Research Council of Italy for my visiting at Arizona State University (Grant CNR - NEH Memorandum Grant 0072373-2014 and 0003005-2016) where this research started in 2016. This study is a part of an international research project to develop a theory of the evolution of technology. I thank Bryan Daniels (ASU & SFI) for fruitful conversation and suggestions on this study. The premise of this study is the systems concepts and architecture of complexity. I am claiming no credit for any of the elements in what follows, only for the resulting theorem into which some systems concepts have been organized. I have the responsibility for deficiencies in the paper.

ASSUMPTIONS

In analogy with some concepts from systems science (Ackoff, 1971, p. 661ff; cf., Churchman and Ackoff, 1950; Oppenheimer, 1958; Rosenblueth et al., 1943), suppose that:

Technological innovation is defined an entity (system) that is composed of at least two components and a relation that holds between each of its components and at least one other element in the set. Each of a technological innovation's components is connected to every other component, directly or indirectly. No subset of components in a technology is unrelated to any other subset.

Remark: a component of technology is an element of its system that can be abstract or concrete. Abstract components of technology are concepts, such as in computer programming, a string. Concrete (tangible) components of technology are objects, such as electronic and/or mechanical parts of artifacts (cf., Ackoff, 1971).

In this context, the technology has fundamental interactions between components (sub-systems) and other associated systems (technological innovations) in a complex system; these fundamental interactions are reciprocal movement of information/resources/energy and other physical phenomena directed to satisfy needs, achieve goals and/or solve problems of human society. The fundamental interaction in technological domains is strong between intra-component linkages (sub-systems) and weak between inter-component linkages of one or more technological innovations (cf., Simon, 1962). The environment of a technological innovation is a set of elements and factors that can affect its state. The state of a technological innovation “at a moment of time is the set of relevant properties which that system has at that time” (cf., Ackoff, 1971, p. 663). For instance, environments of technology are the markets (competition, oligopoly, monopolistic competition, contestable, etc.) that can drive technological advances with a reciprocal influence between innovations in order to achieve and/or support goals and competitive advantage of subjects (competition-driven innovation).

Some characteristics of technological innovations are:

- A technological innovation can be a state-maintaining system: “is one that (1) can react in only one way to any one external or internal event but (2) it reacts differently to different external or internal events, and (3) these
different reactions produce the same external or internal state (outcome). Such a system must be able to discriminate between different internal or external states to changes in which it reacts”. These technological innovations: “are not capable of learning because they cannot choose their behavior. They cannot improve with experience.” (e.g., compass; Ackoff, 1971, p. 665, original italics).

A goal-seeking technological innovation is a system: “that can respond differently to one or more different external or internal events in one or more different external or internal states and that can respond differently to a particular event in an unchanging environment until it produces a particular state (outcome).... Thus such a system has a choice of behavior Under constant conditions a goal-seeking system may be able to accomplish the same thing in different ways and it may be able to do so under different conditions. If it has memory, it can increase its efficiency over time in producing the outcome that is its goal ... for example, an electronic maze-solving rat Systems with automatic 'pilots' are goal-seeking.” (Ackoff, 1971, pp. 665-666, original emphasis).

A multi-goal-seeking technological innovation is a system: “that is goal-seeking in each of two or more different (initial) external or internal states, and which seeks different goals in at least two different states, the goal being determined by the initial state” (Ackoff, 1971, pp. 666).

A purposive technological innovation: “is a multi-goal-seeking system the different goals of which have a common property. These types of system can pursue different goals but they do not select the goal to be pursued.... A computer which is programmed to play more than one game ... is multi-goal-seeking. What game it plays is not a matter of its choice, however; it is usually determined by an instruction from an external source. Such a system is also purposive because 'game winning' is a common property of the different goals which it seeks” (Ackoff, 1971, pp. 666). In short, by combining two or more goal-seeking components, it is possible to construct a multi-goal-seeking (and hence a purposive) system.

A purposeful system, instead, is: “one which can produce the same outcome in different ways in the same (internal or external) state and can produce different outcomes in the same and different states. Thus a purposeful system is one which can change its goals under constant conditions; it selects ends as well as means
and thus displays will. Human beings are the most familiar examples of such systems The goal of a purposeful system in a particular situation is a preferred outcome that can be obtained within a specified time period. The objective of a purposeful system in a particular situation is a preferred outcome that … can be obtained over a longer time period.” (Ackoff, 1971, pp. 666-667, original italics).

A technological innovation can be state-maintaining, goal-seeking, multi-goal-seeking, or purposive; but not a purposeful system.

Theorem of not independence of any technological innovation

In the long run, the behavior and evolution of any technological innovation φ_i is not independent from the behavior and evolution of the other technological innovations $\varphi_j \forall i = 1, ..., n$ and $j = 1, ..., m$

Proof

Assume the statement of the theorem above (called P) to be false.

Suppose that $\neg P$ (the negation of the theorem) is true: \exists a technological innovation φ_i such that (s.t.) φ_i is independent from the other technological innovations φ_j

\Rightarrow \exists a technological innovation φ_i s.t. it is a purposeful system that can change its goals, select ends as well as means and displays will.

However, any technological innovation cannot be a purposeful system per definition.

The statement $\neg P$ implies a contradictory assertion (an *argumentum ad absurdum*: reduction to absurdity).

Therefore, \therefore the statement P (theorem) is true (QED).

Corollary

- $\not\exists$ any technological innovation φ_i that has a long-run behavior and evolution independent from the other technological innovations φ_j.

- The theoretical implications of this theorem are fundamental interactions between systems of technologies that generate dependence and interdependence between two or more associated technologies in human society.
The concept system, applied here, plays a critical role in science and technology (Ackoff, 1971). The systems approach focuses on systems taken as a whole, not on their parts taken separately and is an appropriate theoretical framework to analyze the patterns and evolution of technological innovation (Coccia, 2017). The theoretical implication of this theorem is that:

- in the long run, the behavior and evolution of any one of the technological innovations interact and depend on the behavior and evolution of the other technological innovations;

- in the short-run, the behavior and evolution of technological innovations may be approximately independent of the short-run behavior and evolution of the other technological innovations (cf., Simon, 1962).

The theorem here can explain and generalize, whenever possible the existence of fundamental interactions, between any technological innovations and at least one other technological innovations in complex and inter-related systems. The not independence of any technology is an important property of the evolution of technology in human societies.

Overall, then, this theory here suggests that in the long run, any technological innovation does not function as independent system per se, but technological innovations depend on the other technological innovations to form elements of complex systems that interact and coevolve in a non-simple way. Technology has an intrinsic nature to progress with fundamental interactions with the other technological innovations and human societies (human-technology interactions) to satisfy needs, achieve goals and/or solve problems. Future technological and scientific progress may generate, with the artificial intelligence (AI), new technology similar to purposeful systems, but the similarity will not be an identity and a completely independence of AI technology is hard to be conceived.

To conclude, the proposed theorem here may form a groundwork for development of more sophisticated theoretical frameworks to explain the evolution of technology in the long run. However, we know that other things are often not equal over time and space in the domain of technology. There is need for much more detailed
research to shed further theoretical and empirical light on patterns of technological innovation to explain evolution of technology, technological and economic change in human society.

References

Further papers of the author related to the topics of the study here.

Coccia M. 2006a. Economic and social studies of scientific research: nature and origins. Working Paper Ceris del Consiglio Nazionale delle Ricerche, 8(7), pp. 1-17, ISSN: 1591-0709

Coccia M. 2010e. Democratization is the driving force for technological and economic change, Technological Forecasting & Social Change, 77 (2), pp. 248-264.

Coccia M. 2012. Political economy of R&D to support the modern competitiveness of nations and determinants of economic optimization and inertia. Technovation, 32(6), pp. 370–379.

Coccia M. 2015d. Technological paradigms and trajectories as determinants of the R&D corporate change in drug discovery industry. Int. J. Knowledge and Learning, 10(1), pp. 29–43. DOI: 10.1504/IJKL.2015.071052

Coccia M. (2017) Theorem of not independence of any technological innovation - Philosophical and theoretical foundations of the evolution of technology

Coccia M. 2017a. Optimization in R&D intensity and tax on corporate profits for supporting labor productivity of nations. The Journal of Technology Transfer, DOI: 10.1007/s10961-017-9572-1

Coccia M., Rolfo S. 1999. The technology transfer in the Italian national research council: the case of the Piedmont region. 3rd International Conference on Technology Policy and Innovation, 28 August–2 September, University of Texas at Austin, USA.

