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Abstract

We prove that partial sums of ((n) — 1 = z,, are not given by any
single decimal in a number base given by a denominator of their terms.
This result, applied to all partials, shows that partials are excluded
from an ever greater number of rational, possible convergence points.
The limit of the partials is z, and the limit of the exclusions leaves
only irrational numbers. Thus z, is proven to be irrational.

1 Introduction

Beuker gives a proof that ((2) is irrational [3]. It is calculus based, but
requires the prime number theorem, as well as subtle € — ¢ reasoning. It
generalizes only to the ((3) case. Here we give a simpler proof that uses just
basic number theory (the easier chapters of Apostol and Hardy, [2, 4]) and
treats all cases at once.

We use the following notation: for integers n, n > 1,
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2 Decimals using denominators

Our aim in this section is to show that the reduced fractions that give the
partial sums of z, require a denominator greater than that of the last term
defining the partial sum. Restated this says that partial sums of 2, can’t be
expressed as a finite decimal using for a base the denominators of any of the



partial sum’s terms. Lemma 1 is similar to Apostol’s chapter 1, problem 30.
See [5] for a solution to this problem.

Lemma 1. If s} =r/s with r/s a reduced fraction, then 2™ divides s.

Proof. The set {2,3,...,k} will have a greatest power of 2 in it, a; the set
{2",3",... k"} will have a greatest power of 2, na. Also k! will have a
powers of 2 divisor with exponent b; and (k!)" will have a greatest power of
2 exponent of nb. Consider
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The term (k!)"/2"* will pull out the most 2 powers of any term, leaving a
term with an exponent of nb— na for 2. As all other terms but this term will
have more than an exponent of 2"°~"¢ in their prime factorization, we have
the numerator of (1) has the form

2" (9 A 4+ B),

(1)
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where 21 B and A is some positive integer. This follows as all the terms in
the factored numerator have powers of 2 in them except the factored term
(k)™ /2™, The denominator, meanwhile, has the factored form

2nb0’
where 2 4 C. This leaves 2" as a factor in the denominator with no powers

of 2 in the numerator, as needed. O

Lemma 2. If s} = r/s with r/s a reduced fraction and p is a prime such
that k > p > k/2, then p" divides s.

Proof. First note that (k,p) = 1. If p|k then there would have to exist r such
that rp = k, but by k > p > k/2, 2p > k making the existence of a natural
number r > 1 impossible.

The reasoning is much the same as in Lemma 1. Consider
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As (k,p) = 1, only the term (k!)"/p™ will not have p in it. The sum of all
such terms will not be divisible by p, otherwise p would divide (k!)"/p™. As

p < k, p™ divides (k!)", the denominator of r/s, as needed. O
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Theorem 1. If s} = %, with r/s reduced, then s > k".

Proof. Bertrand’s postulate states that for any k > 2, there exists a prime
p such that k& < p < 2k [4]. For even k, we are assured that there exists a
prime p such that & > p > k/2. If k is odd, k — 1 is even and we are assured
of the existence of prime p such that k—1 >p > (k—1)/2. As k— 1 is even,
p#k—1and p> (k—1)/2 assures us that 2p > k, as 2p = k implies k is
even, a contradiction.

For both odd and even k, using Bertrand’s postulate, we have assurance
of the existence of a p that satisfies Lemma 2. Using Lemmas 1 and 2, we
have 2"p™ divides the denominator of r/s and as 2"p™ > k™, the proof is
completed. O

In light of this result we give the following definitions and corollary.

Definition 1.

Dy» ={0,1/",...,(j"-1)/j"}={0,.1,...,.(" — 1)} base j"
Definition 2.

k
— =n
Dy ==
j=2

Corollary 1.

sk & Zk
Proof. Reduced fractions are unique. Suppose, to obtain a contradiction,
that there exists a/b € Z} such that a/b = r/s then b < s by Theorem
1. If a/b is not reduced, reduce it: a/b = a;/b;. A reduced fraction must
have a smaller denominator than the unreduced form so b; < b < s and this
contradicts the uniqueness of the denominator of a reduced fraction. O

3 A Suggestive Table

The result of applying Corollary 1 to all partial sums of 25 is given in Table
1.1 The table shows that adding the numbers above each D2, for all k > 2
gives results not in D,z or any previous rows’ such sets. So, for example,
1/441/9 is not in D4, 1/441/9 is not in Dy or Dg, 1/4+1/9+ 1/16 is not
in Dy, Dg, or Dyg, etc.. That’s what Corollary 1 says.

!Table 1 might remind readers of Cantor’s diagonal method. We don’t pursue this idea
in this article. See [7].



1/4
F1/9 | 1/ | +1/4 | +1/4 | +1/4 | ... | +1/4
¢D, | +1/9 | +1/9 | +1/9 | +1/9 | ... | +1/9

¢ Dy | +1/16 | +1/16 | +1/16
¢ Dig | +1/25 | +1/25

¢ Dy | +1/36
¢ Dsg
+1/(k —1)*
+1/k?
¢ DkQ

Table 1: A list of all rational numbers between 0 and 1 is given by the number
sets along the diagonal. Partials of 2z, are excluded from sets below and to
the upper left of the partial.

4 Proof

Designate the set of rational numbers in (0,1) with Q(0,1), the set of ir-
rationals in (0,1) with H(0,1), and the set of real numbers in (0,1) with
R(0,1). We use R(0,1) = Q(0,1) UH(0,1) and Q(0,1) NH(0,1) = @ in the
following.

Lemma 3.

k—o00

lim 2 = | J Dj» = Q(0,1)
j=2

Proof. Every rational a/b € (0,1) is included in at least one Djn. This
follows as ab"™'/b" = a/b and as a < b, per a/b € (0,1), ab"' < b™ and so
a/b € Dbn. ]

Lemma 4. There are lower and upper bounds for all sy in every D7, j < k.

Proof. Using Theorem 1 (or Table 1), s € (0,1) and s & D7, j < k, there
must exist mj and M 7 in D} such that

n n n
my < sp < M.
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Lemma 5. There is a greatest lower bound, m3* and least upper bound, M}
Jor all si in every D7.

Proof. As k increases the lower and upper bounds can be updated. They
exist by Lemma 4. But the number of updates must be finite as there are
only j elements in D7. O

Lemma 6. m}l + 1\/IJn

Proof. There is always an interval from Z7 in any given D7. This interval

separates m;' and Mj'. O
Theorem 2. z,, is irrational.

Proof. Let m be the set of all mj* and M be the set of all M. Sort each set
to give
my <my <mg < - <z < -e- <M< My < M.

Let I} = [m}, M}]. Then the diameters of such sets goes to zero with
increasing 7 and

N1 = {au). )

Using Lemma 3, a,, is irrational. 0

Conclusion

The proof given here is close to the squeeze action proof by Sondow for e’s
irrationality; see [6]. We note that R(0,1) \ =} consists of a union of open
intervals with rational endpoints given by elements of =7 and this is similar
to the situation of e as developed in Sondow’s paper. The intervals are
much more complex than those for e; eventually the intervals settle down,
however and give nested intervals with shrinking diameters with a single
element intersection: (3). The key strategy here is the same as Sondow. It
is an eliminate possible plausible rational convergence points as you build (or
define) the series.

Epsilon-delta proofs like Apery’s for ((3) seem hopeless [8, 11] for the
general case. Perhaps this is so because the combinatorial possibilities sky-
rocket with increasing n in ((n). One can decipher reminders of Apery’s idea
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in the very difficult results of Rivoal and Zudilin [8, 11]; their results, that
there are an infinite number of n such that {(n) is irrational and at least one
of the cases 5, 7, 9, or 11 are irrational, are less than encouraging for this
approach.
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