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Abstract

We prove that partial sums of ζ(n) − 1 = zn are not given by any

single decimal in a number base given by a denominator of their terms.
This result, applied to all partials, shows that partials are excluded

from an ever greater number of rational, possible convergence points.
The limit of the partials is zn and the limit of the exclusions leaves

only irrational numbers. Thus zn is proven to be irrational.

1 Introduction

Beuker gives a proof that ζ(2) is irrational [2]. It is calculus based, but
requires the prime number theorem, as well as subtle ε − δ reasoning. It
generalizes only to the ζ(3) case. Here we give a simpler proof that uses just
basic number theory (the easier chapters of Apostol and Hardy, [1, 3]) and
treats all cases at once.

We use the following notation: for integers n, n > 1,

zn = ζ(n) − 1 =
∞∑

j=2

1

jn
and sn

k =
k∑

j=2

1

jn
.

2 Decimals using denominators

Our aim in this section is to show that the reduced fractions that give the
partial sums of zn require a denominator greater than that of the last term
defining the partial sum. Restated this says that partial sums of zn can’t be
expressed as a finite decimal using for a base the denominators of any of the
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partial sum’s terms. Lemma 1 is similar to Apostol’s chapter 1, problem 30.
See [4] for a solution to this problem.

Lemma 1. If sn
k = r/s with r/s a reduced fraction, then 2n divides s.

Proof. The set {2, 3, . . . , k} will have a greatest power of 2 in it, a; the set
{2n, 3n, . . . , kn} will have a greatest power of 2, na. Also k! will have a
powers of 2 divisor with exponent b; and (k!)n will have a greatest power of
2 exponent of nb. Consider

(k!)n

(k!)n

k∑

j=2

1

jn
=

(k!)n/2n + (k!)n/3n + · · · + (k!)n/kn

(k!)n
. (1)

The term (k!)n/2na will pull out the most 2 powers of any term, leaving a
term with an exponent of nb−na for 2. As all other terms but this term will
have more than an exponent of 2nb−na in their prime factorization, we have
the numerator of (1) has the form

2nb−na(2A + B),

where 2 - B and A is some positive integer. This follows as all the terms in
the factored numerator have powers of 2 in them except the factored term
(k!)n/2na. The denominator, meanwhile, has the factored form

2nbC,

where 2 - C . This leaves 2na as a factor in the denominator with no powers
of 2 in the numerator, as needed.

Lemma 2. If sn
k = r/s with r/s a reduced fraction and p is a prime such

that k > p > k/2, then pn divides s.

Proof. First note that (k, p) = 1. If p|k then there would have to exist r such
that rp = k, but by k > p > k/2, 2p > k making the existence of a natural
number r > 1 impossible.

The reasoning is much the same as in Lemma 1. Consider

(k!)n

(k!)n

k∑

j=2

1

jn
=

(k!)n/2n + · · · + (k!)n/pn + · · · + (k!)n/kn

(k!)n
. (2)

As (k, p) = 1, only the term (k!)n/pn will not have p in it. The sum of all
such terms will not be divisible by p, otherwise p would divide (k!)n/pn. As
p < k, pn divides (k!)n, the denominator of r/s, as needed.
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Theorem 1. If sn
k = r

s
, with r/s reduced, then s > kn.

Proof. Bertrand’s postulate states that for any k ≥ 2, there exists a prime
p such that k < p < 2k [3]. For even k, we are assured that there exists a
prime p such that k > p > k/2. If k is odd, k − 1 is even and we are assured
of the existence of prime p such that k− 1 > p > (k− 1)/2. As k− 1 is even,
p 6= k − 1 and p > (k − 1)/2 assures us that 2p > k, as 2p = k implies k is
even, a contradiction.

For both odd and even k, using Bertrand’s postulate, we have assurance
of the existence of a p that satisfies Lemma 2. Using Lemmas 1 and 2, we
have 2npn divides the denominator of r/s and as 2npn > kn, the proof is
completed.

In light of this result we give the following definitions and corollary.

Definition 1.

Djn = {0, 1/jn, . . . , (jn − 1)/jn} = {0, .1, . . . , .(jn − 1)} base jn

Definition 2.
k⋃

j=2

Djn = Ξn
k

Corollary 1.

sn
k /∈ Ξn

k

Proof. Reduced fractions are unique. Suppose, to obtain a contradiction,
that there exists a/b ∈ Ξn

k such that a/b = r/s then b < s by Theorem
1. If a/b is not reduced, reduce it: a/b = a1/b1. A reduced fraction must
have a smaller denominator than the unreduced form so b1 ≤ b < s and this
contradicts the uniqueness of the denominator of a reduced fraction.

3 A Suggestive Table

The result of applying Corollary 1 to all partial sums of z2 is given in Table
1.1 The table shows that adding the numbers above each Dk2 , for all k ≥ 2
gives results not in Dk2 or any previous rows’ such sets. So, for example,
1/4 + 1/9 is not in D4, 1/4 + 1/9 is not in D4 or D9, 1/4 + 1/9 + 1/16 is not
in D4, D9, or D16, etc.. That’s what Corollary 1 says.

1Table 1 might remind readers of Cantor’s diagonal method. We don’t pursue this idea

in this article.
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+1/4
+1/9 +1/4 +1/4 +1/4 +1/4 . . . +1/4
/∈ D4 +1/9 +1/9 +1/9 +1/9 . . . +1/9

/∈ D9 +1/16 +1/16 +1/16
...

/∈ D16 +1/25 +1/25
...

/∈ D25 +1/36
...

/∈ D36

+1/(k − 1)2

+1/k2

/∈ Dk2

. . .

Table 1: A list of all rational numbers between 0 and 1 is given by the number
sets along the diagonal. Partials of z2 are excluded from sets below and to
the upper left of the partial.

Lemma 3.

lim
k→∞

Ξn
k =

∞⋃

j=2

Djn = Q(0, 1)

Proof. Every rational a/b ∈ (0, 1) is included in at least one Djn . This
follows as abn−1/bn = a/b and as a < b, per a/b ∈ (0, 1), abn−1 < bn and so
a/b ∈ Dbn.

Loosely speaking, Lemma 3 says that for all the series zn the denominators
of their terms cover the possible rational convergence points and Corollary
1 says the partial sums of zn escape their terms.

4 Proof

We will designate the set of rational numbers in (0, 1) with Q(0, 1), the set
of irrationals in (0, 1) with H(0, 1), and the set of real numbers in (0, 1) with
R(0, 1). We use R(0, 1) = Q(0, 1) ∪ H(0, 1) and Q(0, 1) ∩ H(0, 1) = ∅ in the
following.

Theorem 2. zn is irrational.
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Proof. Idea: Corollary 1 implies sn
k ∈ R(0, 1) \Ξn

k . As limk→∞ sn
k = zn, using

Lemma 3, we have

zn ∈ R(0, 1) \ Q(0, 1) = H(0, 1). (3)

That is zn is irrational.
Details: R(0, 1) \ Ξn

k consists of a union of open intervals with rational
endpoints given by elements of Ξn

k . So for example, considering z2, we have

I1 = R(0, 1) \ D4. (4)

This gives I1 = (0, 1/4)∪ (1/4, 2/4)∪ (2/4, 3/4)∪ (3/4, 1). This is (0, 1) with
rational points of the form x/4 with x = 1, 2, and 3 removed. Now let

I2 = R(0, 1) \ D4 ∪ D9.

When the fractions are sorted in ascending order they are

1

9
,
2

9
,
1

4
,
3

9
,
4

9
,
1

2
,
5

9
,
6

9
,
3

4
,
7

9
,
8

9
,

so

I2 = (0, 1/9) ∪ (1/9, 2/9) ∪ (2/9, 1/4) ∪ (1/4, 3/9) ∪ (3/9, 4/9) and so on.

Clearly the diameter of each of these open intervals is going to 0 (the maxi-
mum such diameters of In is 1

n2 ) and any rational number in (0, 1) eventually
occurs as an endpoint in these intervals.

Consider Jn
k = (sn

k , 1) ∩ Γn
k where

Γn
k = R(0, 1) \ Ξn

k .

Then Jn
k is a set of open intervals. The first interval is of the form (sn

k ,
pn

1

qn

1

) and

the last interval is of the form (pn

m

qn

m

, 1), where pn

m

qn

m

∈ Ξn
k . All other intervals have

endpoints in Ξn
k . This implies that for all sn

r , r > k, there is an open interval
containing sn

r . In turn, this implies that there is an interval containing a ball
that contains both sn

r and zn. This implies that zn /∈ Ξn
k for all k, so zn must

be irrational.
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