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We have obtained new evidence for dynamical space by applying correlation analysis to

a year of data from a Random Event Generator (REG) device located in Perth, Australia

and from another in Muenster, Germany, recorded between July 1, 2012 and June 30,

2013. The results obtained are consistent with results obtained earlier by applying the

same analysis to data obtained from a REG located in Manchester UK and the REG in

Perth. Consequently evidence for dynamical space is mounting.

For each day we applied correlation analysis to determine travel times for putative

waves. Then wave speed and direction, over each 24 hour period, were determined

by fitting to the observed travel times, theoretical curves of how travel times would vary

with Earth rotation. We thereby derived an average incoming RA, declination and speed

for the waves of each day.

A probability density plot of the incoming directions exhibited a peak near RA = 4.5 h,

consistent with previous determinations by Reginald Cahill and Dayton Miller. More-

over, removing Earth orbital and gravitational inflow velocities from the observed veloc-

ities allowed a peak of higher density to be obtained, which is consistent with predictions

of Dynamical 3-Space theory. The peak indicated a most probable average galactic flow

direction of RA = 4.49 h, dec = −80.4 deg, and wave speed of 494 km/s.

1 Dynamical 3-space waves

In Cahill’s theory of Dynamical 3-Space [1, 2], gravity is caused by acceleration of 3-space into matter.

The equations governing this process are nonlinear and nonlocal, and predict fractal dynamical 3-space

waves.

Random Event Generator (REG) devices commonly generate random numbers by detecting the quantum

to classical transition of electrons tunnelling through a barrier in a Zener diode. In the standard interpreta-

tion of quantum theory such transitions were assumed to be completely random, however Cahill’s theory

and experiments [1] suggest that this is not the case and that the transitions are driven by passage of the

predicted 3-space waves. This implies that the numbers output by two spatially separated REG devices

may not be 100% independent and that correlation analysis of data from the devices could potentially

reveal the travel time of waves that influenced both devices.

To test this possibility we have been analysing data from Global Consciousness Project [7] REG de-

vices. Herein we describe results from a REG located in Perth, Australia and from another in Muenster,

Germany, as shown in Table 1 for all days for which data was available, from 1 July 2012 to 30 June

2013.

Of 365 potential days data was available for 198.

Table 1: Details of GCP REG Devices Used

Perth Muenster

ID Number 2232 3023

Latitude -31.921 52.267

Longitude 115.892 8.05

Device Type Orion Orion
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Fig. 1: Travel times from Perth to Muenster from REG-REG data for November 15, 2012. High correlation values

for each Muenster-Perth RA hour have been binned and the mean, SD (blue) and SEM (grey) shown. The red curve

shows a least square error best fit of a sinusoid to all points. (Horizontal spacing of points is non-uniform because

the RA of each point is the mean RA of values in the associated bin).

2 Travel times

For each of the 198 days for which data was available, Perth to Muenster travel time τ values were

determined by computing the correlation function,

C(τ, t) =

t′=t+T∑

t′=t−T

S 1[t′ − ⌊τ/2⌋ ] S 2[t′ + ⌈τ/2⌉ ] e−a(t′−t)2

(1)

for data sequences S 1[t] and S 2[t] containing values output once per second by the REG devices. Here

⌊ ⌋ and ⌈ ⌉ represent floor and ceiling functions that round τ/2 down or up to integer values to ensure

correct indexing when τ is an odd number. 2T = 300s is the time interval used about UTC time t, and the

Gaussian term applies a Gaussian window to suppress end effects. The width of this window is controlled

by parameter a chosen as described in the following section.

τ values were determined by calculating C(τ, t) for τ in the range 9 to 23 seconds and then finding which

value of τ in the range 10 to 22 corresponded to the maximum peak value of C(τ, t).

τ values with high correlations∗ were then binned and averaged per RA hour of the Muenster-Perth spatial

separation vector that rotates with the Earth. We thereby obtained a mean travel time, Standard Deviation

(SD) and Standard Error in the Mean (SEM) for 24 RA directions such as shown in Fig. 1.

3 Gaussian window parameter a

For Gaussian window parameter a we used a value of 0.0003795 which we had earlier determined as

optimum when determining travel times between the REG in Perth and a REG located in Manchester,

UK. [3]. As this value also worked well for the Perth-Muenster REG-REG combination, we did not try

to determine a better value for Perth-Muenster.

However, for Perth-Manchester we had proceeded as follows.

First, we binned τ values to obtain histograms such as shown in Fig. 2 and applied the following notion

of signal visibility.

∗For each day the high correlations were all those higher than a cutoff value which would allow each bin to contain at least one

sample. To the bin(s) which then contained only one sample, a second sample with the nearest slightly lower correlation was added

to allow calculation of standard deviation.
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Fig. 2: Histograms of Perth-Manchester τ values detected during different RA hours illustrating a range of signal

visibilities from low to high. The multiple peaks are consistent with passage of non-distinguishable waveforms,

wn, wn+1, wn+2... etc. three to five seconds apart. Then the correlation of wn at one detector with say wn+1 or wn+2 at

the other, may be as large as the correlation with wn. The single peak in the last histogram is consistent with passage

of distinguishable waveforms.

Let bar heights y1, y2 . . . yN be the frequencies of τ values in columns 1, 2 . . .N. Then we can define

signal visibility as mean deviation of bar height over mean bar height, ie.,

V(y) =

1
N

∑N
i=1 |yi − ȳ|

ȳ
(2)

Applying this formula to a histogram containing equal numbers of bars with heights equal to max and

min gives,

V =
max − min

max + min

which is the formula for signal visibility used in interferometry. However, whereas the latter has a max-

imum value of V = 1.0 when min = 0, Eqn. (2) gives higher values when the number of maxima is

reduced. Eg if a histogram contains one bar of height equal to max and (N − 1) with height of zero, then

for our histograms with 13 bars (2) gives,

V(y) = 2
N − 1

N
≈ 1.85

Using (2) we determined minimum visibility for each day and then the mean minimum for all days for

a range of a values. The blue curve in Fig. 3. shows results obtained from Perth-Manchester data from

seven days centered on each full moon during a year. This has a distinct peak at a = 0.0003795 so we

used this value of a for subsequent calculations.

The red curve shows the mean for all days of the median standard error per day in the hourly τ values.

This increases with a because increasing a reduces the width of the Gaussian window and reduces the

number of correlation products that are averaging together, however the rate of increase shows a slight

leveling off at peak visibility.
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Fig. 3: Plots earlier obtained [3] from Perth-Manchester data of mean minimum signal visibility and mean median

travel time standard error for 7 days per each full moon during a year versus Gaussian window parameter a. The

peak visibility occurred at a = 0.0003795.

4 Wave effects in histograms

The histograms of τ values shown in Fig. 2, earlier obtained for Perth-Manchester travel times, illustrate

a range of signal visibilities obtained during different RA hours. Histograms often had multiple peaks

consistent with passage of similar waveforms, wn, wn+1, wn+2... etc. three to five seconds apart and which

may have changed shape during passage from one REG to the other. Then the correlation of wn at one

detector with say wn+1 or wn+2 at the other, could be as large or larger than correlation with wn. The

presence of multiple peaks resulted in mean τ values with large standard deviations and also caused

variation of the mean values to be attenuated towards the center of the 10 to 22 second detection range.

To compensate for this we applied a disattenuation procedure to derived results as described later.

5 Fitting of sinusoids

Given travel time data for 24 RA directions, the incoming speed and the direction of plane waves can be

determined by fitting,

τ =
R � v

v2
(3)

where R is the REG-REG spatial separation vector and v is the velocity of the Earth relative to the waves.

As the daily rotation of R causes the right hand side of Eqn. (3) to be sinusoidal, the fit can be done by

fitting a sinusoid to the travel times such as shown in Fig. 1.

The RA of the peak will then indicate the incoming RA of the waves and the amplitude and mean will

allow determination of incoming declination and speed. However, the means and amplitudes need to be

adjusted to compensate for the above mentioned attenuation effect.

6 Amplitude disattenuation

When τ values obtained during a given RA hour are averaged together, the presence of multiple peaks in

histograms such as seen in Fig. 2 implies that wrong values caused by miscorrelation will be averaged

together with correct values and the resultant mean value is then likely to be attenuated towards the center

of the detection range. If we assume such wrong values have a random distribution within the observation

window, this phenomenon will cause the amplitudes of the sinusoids to be attenuated by an amount equal

to 1/(1 + n) where n is the average number of miscorrelation values per correct τ value.
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Fig. 4: Disattenuated amplitudes obtained from Perth-Muenster travel times by sorting the original values and then

multiplying by a suitable value m to allow the best fit exponential curve to match the range of the detection process.

Here use of a logarithmic vertical axis results in a straight line plot.

To compensate for this effect we multiplied the sinusoid amplitudes so that a best fit of an exponential

curve to a sorted list of the multiplied values terminated at the amplitude of the largest sinusoid that could

be fit to a waveform clipped to the τ range of 10 to 22. This “largest distinguishable amplitude” is 7.66.

The exponential fit is shown in Fig. 4, where a logarithmic vertical axis makes it appear as a straight line

plot. This resulted in a multiplier of m = 3.88 ± 0.02.

It can be noted that this value corresponds to n = (m − 1) ≈ 2.9 miscorrelation values per correct value.

7 Incoming declination and speed

If we let τmean and τamp be the mean and amplitude of each sinusoid fit, τmid be the center of the detection

range and m be the disattenuation multiplier determined above, then the disattenuated mean value will

be,

Tmean = τmid + m(τmean − τmid)

and the disattenuated amplitude will be A = mτamp and we can define,

Tmax = Tmean + A

Tmin = Tmean − A

Then if δR and δv are respectively the declinations of R and v, then δv can be found by numerically

solving,
Tmin

Tmax

= −
cos(δv + δR)

cos(δv − δR)
(4)

And wave speed relative to Earth is then,

s =
|R| cos(δv − δR)

Tmax

(5)

8 Aberration of incoming wave velocity

Let vG be the velocity of the Sun relative to distant galactic space, vinS be velocity due to acceleration of

space towards the Sun, vorbit be the orbital velocity of the Earth and vinE be velocity due to acceleration
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of space towards the Earth. Then the velocity of Earth relative to incoming 3-space can be approximated

by,

v ≈ vG − vinS + vorbit − vinE (6)

Approximate vector addition of these components is possible because at the Earth’s orbital positions, vG,

vinS and vorbit are approximately orthogonal and vinE represents a relatively small Earth directed effect

that can be modeled as causing a speed increase. (Justification for vector addition of these components

can be found in [6].)

From (6) it follows that if 3-space waves have a constant velocity relative to space and if vWG is the

velocity of the Sun relative to distant waves, then the velocity of Earth relative to incoming waves is,

vW ≈ vWG − vinS + vorbit − vinE (7)

which expresses how wave velocities are aberrated by the orbital and inflow velocities. To remove the

aberrating velocities and obtain vWG from vW we can rearrange (7) as,

vWG ≈ vW + vinS − vorbit + vinE (8)

9 Probability density plots of wave direction

Using the methods described above we calculated an incoming RA, declination, speed and associated

standard deviations, for each of the 198 days for which data was available.

Fig. 5: Probability density of incoming wave direc-

tions for all days. (p/sr means probability per stera-

dian and h is the bandwidth of the Gaussian kernel.)

Fig. 6: Probability density after removing Earth orbital

velocity.

Fig. 5 shows a probability density plot of incoming directions for all days with a highest peak near

RA = 3.0 h and a lower peak near RA = 18 h.

However, if the velocities contributing to the main peak are of physically real waves per dynamical 3-

space theory, then they should have been aberrated by Earth orbital and by Earth and Sun inflow velocities

and so removing these velocities from the observed wave velocities should result in a higher and more

dominant peak.

This turns out to be the case.

Fig. 6 shows that removing Earth orbital velocity results in a more dominant highest peak and Fig. 7

shows that removing the Earth and Sun inflow velocities as well as the Earth orbital velocity results in an

even higher and more dominant peak near RA = 4.5 h.
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Fig. 7: Probability density after removing Earth orbital and Sun and Earth inflow velocities.

By applying a search procedure to find the peak of Fig. 7, the highest probability density was found to be

6.08 at RA = 4.49 h, dec = −80.40.

We take the above direction as our best estimate of the direction of vWG which we have defined as the

velocity of the sun relative to distant galactic waves. In the next section we will derive the speed.

10 Probablity density plots of wave speed

In the previous section we described removal of orbital and inflow velocities from incoming wave veloc-

ities so as to obtain galactic wave velocities, ie., the incoming velocities that the waves would have had

relative to the sun, when very distant from the solar system.

Fig. 8 shows plots of probability density versus speed for the subset of these velocities that are approxi-

mately parallel to our estimate of the direction of vWG . These plots were obtained by applying 3D kernels

with angular bandwidths of 15 0 that give greater weight to directions close to vWG.

Fig. 8: Probability density plots of galactic wave speed for waves with galactic directions approximately parallel to

our best estimate of the direction of vWG . The angular bandwidth is centered on vWG and gives greater weight to

speeds of waves with directions closer to vWG .

The plots show results for two different speed bandwidths. The blue curve is for a bandwidth of 40 km/s.

This is wide enough to give a simple to interpret, smooth curve, with a single peak at 494 km/s. We can

take this as our best estimate∗ for wave speed |vWG |.

∗In versions 1&2 of this paper we reported a speed of 508 km/s which was obtained using an angular bandwidth of 30. We
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But the red curve with a bandwidth of 5 km/s reveals that |vWG | does not correspond to a true peak

of probability density, but rather to a deep minimum between two peaks, which is suggestive of the

following scenario. Suppose space is like an ocean which supports waves travelling in different directions

at different locations and times and which typically have speeds of sW < |vG |. Then as the solar system

travels through space at speed |vG | it will sometimes be heading into oncoming waves and sometimes be

overtaking receding waves. This would cause the galactic wave velocities parallel to vG to have speeds

that are equal to |vG | + sW on days when the former case dominates and to |vG | − sW when the latter, thus

resulting in the two main peaks either side of |vG | .

Assuming this is the case, |vG | will be mid way between the two peaks and sW will be equal to half the

difference of the speeds.

Applying a search procedure to the peaks revealed the maxima to be at 479 and 505 km/s giving,

|vG | = 492 km/s

and,

sW = 13 km/s

We note that the above result for |vG | differs from our result |vWG | = 494 km/s by only 2 km/s.

11 Confidence interval estimation

To estimate confidence intervals for the RA and declination of the peak density shown in Fig. 7, we

applied bootstrap resampling [8] to the 198 wave directions. To do this we repeatedly made a random

selection of 198 directions from the original 198 and then found the peak density for this random set.

Fig. 9: Example of 2000 iterations of bootstrap resampling. Each point shows a peak of probability density calculated

from a different set of 198 wave directions randomly selected from the 198 available directions.

Repeatedly applying this procedure gave multiple estimates of RA and declination from which we cal-

culated 68.3% confidence intervals. Fig. 9 shows an example of results obtained from two thousand

iterations.

have since realized that the wider bandwidth of 150 has been able to give a more representative result due to evaluating speeds from

a larger number of velocities.
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This allowed us to calculate RA = 4.49+0.33
−0.19

h and dec = −80.4+0.9
−1.4

deg.

Applying a similar procedure to wave speed for this direction gave 494+6
−7

km/s.

For |vG | and sW the sharpness of the peaks obtained using a speed bandwidth of 5 km/s, allowed bootstrap

procedures to give smaller CIs of 492+2
−2

and 13+3
−2

km/s .

12 RA probability calculation

Having obtained an estimate of vWG , we can use Eqn. (7) to predict the most probable values of incoming

wave direction and speed vW that would be observed by Earth based detectors as Earth orbital and Sun

inflow velocities vary during a year. The red curve in Fig. 10 shows predicted RA while the points show

the RAs of the 198 incoming wave velocities.

Fig. 10: Points show the RAs of the 198 incoming wave directions. The red curve shows RA values obtained from

Eqn. (7) using our estimate of vWG with RA = 4.49 h, dec = −80.40 and speed = 494 km/s. Of 198 points, 25 lie

within ±0.8 RA hours of this curve. The probability of this degree of closeness arising from chance is PRA = 0.0017.

Inspection of Fig. 10 reveals that 25 of the 198 points lie within ±0.8 RA hours of predicted RA. However

if the RAs were random, axial symmetry would imply a uniform distribution and we would expect only

198 × 1.6
24
= 13.2 points to lie this close to the curve.

We then checked the probability of the observed distribution being due to chance using the formula,

P =

n∑

k=r

(n
k)pk(1 − p)n−k (9)

where r = 25 is the number of points within ±0.8 RA hours of the curve, n = 198 is the total number

of points and p = 1.6/24 is the probability of a point lying within ±0.8 RA hours of the curve if the

distribution of RAs was random and uniform.

Inserting these figures gives PRA = 0.0017.

13 Declination probability calculation

Since the derivations of the declinations and RAs are mutually independent, we can validly make an

independent check of the probability of the derived declinations. The points in Fig. 11 show the 25

incoming wave directions whose RAs in Fig. 10 were within ±0.8 h of predicted RA. The blue orbital

aberration ellipse shows predicted RA and declination over the course of a year calculated using Eqn. (7)

with our estimate of vWG .

Of 25 points, the 21 shown as solid have declinations that lie within ±7.270of the predicted values.
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Fig. 11: Points show the 25 incoming wave directions whose RAs in Fig. 10 are within ±0.8 h of predicted RA. The

blue orbital aberration ellipse shows variation of predicted RA and declination during a year due to the combined

effect of Earth orbital and Earth and Sun inflow velocities. Of the 25 points, 21 shown as solid have declinations that

lie within ±7.270of predicted values. The probability of this closeness being a result of chance is Pdec = 5.21× 10−5.

This prompts the question, ”If the declinations of the points were selected at random from the distribution

of declinations that we would have obtained if our data was random, what is the probability that 21 out of

25 would lie this close to their predicted declination?”

To answer this we first calculated a declination empirical cumulative distribution function (ECDF) by

repeatedly applying our code to randomized travel time values and recording the simulated declinations

obtained. Fig. 12 shows the results for 30 × 365 such declinations.

Fig. 12: Blue curve shows empirical cumulative distribution function for declinations derived from randomized travel

times. That is, for each RA of each day to be simulated, a travel time was selected at random from the set of 24× 198

travel times that had been determined for the 198 days that had complete data. Gray curve shows the corresponding

empirical probability distribution function.

Then for each of the 21 points, we used the empirical cumulative distribution function to calculate the

probability that a declination drawn at random from the distribution would be as close as observed to the

predicted value. We then took the maximum probability as a conservative probability for all 21 points.

This maximum probability turned out to be 0.4426 and was for a maximum deviation of ±7.270

We could then reapply Eqn. 9 where this time r = 21 is the number of points with declinations within

±7.270 of their predicted value, n = 25 is the total number of points and p = 0.4426 is the maximum

probability of a point having a declination within ±7.27 of its predicted value if its declination was drawn
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at random from the above distribution.

Inserting these figures gives Pdec = 5.21 × 10−5.

14 Joint probability

Since the RAs and declinations were independently derived, the joint probability that the closeness of

their observed values to their predicted values could have arisen by chance is P = PRA × Pdec = 0.0017×

5.21 × 10−5,

which gives,

P = 8.66 × 10−8

15 Comparison with related results

Table 2 shows a comparison between values of galactic wave velocity vWG reported in this and earlier

papers [3, 4] by this author and a value of galactic space flow velocity vG reported by Cahill in [5].

Table 2: Comparison of related results

Ref. REG separation RA (hrs) dec (deg) speed (km/s)

This paper Perth-Muenster vWG 4.49+0.33
−0.19

−80.4+0.9
−1.4

494+6
−7

Morris [3] Perth-Manchester vWG 4.14+0.83
−0.81

−77.8+2.7
−2.1

500+20
−10

Morris [4] Perth-Manchester vWG 4.00 ± 0.51 −79.8 ± 1.0 500 ± 113

Cahill [5] n/a vG 4.29 −75 486

16 Conclusions

In this paper we have presented results that illustrate correlations between widely separated Random

Event Generator devices in Perth, Australia and Muenster, Germany that appear to be caused by waves

of cosmic origin that are aberrated by Earth orbital and Sun inflow effects, while approaching Earth at

some 500 km/s. Our analysis and probability calculations show that it is very unlikely (P < 8.7 × 10−8)

that the observed correlations could have occurred as a result of chance alone. In an earlier paper [3] we

reported similar results with P < 5.9× 10−5 after applying identical correlation analysis to data obtained

from a REG located in Manchester UK and the REG in Perth.

Consequently evidence for the wave phenomenon seems strong. To interpret and analyse our data we

applied Cahill’s theory of dynamical 3-space. This allowed us to obtain intelligible results consistent

with the theory and currently seems the best available explanation for what we have observed.
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