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Abstract: In this paper the author gives a simplest elementary mathematics method to solve the 
famous Fermat's Last Theorem (FLT), in which let this equation become a one unknown number 
equation, in order to solve this equation the author invented a method called “Order reducing 
method for equations” where the second order root compares to one order root and with some 
necessary techniques the author successfully proved Fermat's Last Theorem.  
 

1. Some Relevant Theorems 
There are some theorems for proving or need to be known. All symbols in this paper represent 
positive integers unless they are stated to be not. 
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Since 

nnn zyx =+ ,  

so we have 

 nnnn yzxz >> ,  

and get 
 yxz >>  

when  
yx > . 

 
Theorem 1.2. In the equation of (1-1), zyx ,,  meet  

 1),gcd(),gcd(),gcd( === zxzyyx . 

Proof: Since nnn zyx =+ , if ( ) 1,gcd >yx  then we have ( ) ( )[ ] nnnn zyxyx =×+ ,gcd11  

which causes ( ) 1,,gcd >zyx  since the left side contains the factor of ( )[ ]nyx,gcd  then the 

right side must also contains this factor but contradicts against (1-1) in which 1),,gcd( =zyx , 

so we have ( ) .1,gcd =yx  Using the same way we have 1),gcd(),gcd( == zyzx . 

 
Theorem 1.3. In the equation of (1-1), zyx ,,  meet  

 ininin zyx −−− >+ , 

 ininin zyx +++ >+ , 

where  
1≥> in . 

Proof: From equation (1-1), since 
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from Theorem 1.1, since yxz >> , we have 
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so we have 

 ininin zyx −−− >+ . 

 ininin zyx +++ <+ . 
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This theorem means given zyx ,,  if equation (1-1) has one positive integer solution then this 
solution is the only one. 
 
Theorem 1.4. There are no positive integer solutions for 

 333 zyx =+ . 

Proof:  
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Theorem 1.5. There are no positive integer solutions for 

 nnn zy =+1 . 

Proof: Since  

 ( )( )1221 ...1 −−−− ++++−=−= nnnnnn yzyyzzyzyz  

where 
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that causes z, y to be non positive integers, so there are no positive integer solutions for 

nnn zy =+1 . 

 
Theorem 1.6. There are no positive integer solutions for 

nnn zy =+2 . 

Proof: Since 

( )( )1221 ...2 −−−− ++++−=−= nnnnnnn yzyyzzyzyz , 

if 
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then taking the least value for 3,2 == zy , we have 

 nnnn 22...323 121 >++×+ −−−  

when 2>n  that is impossible. If  
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then 2>z  and taking the least value of 3,2 == zy , we get 

 jnnn 22...323 121 >++×+ −−−  

with 2>n  that is also impossible, so there are no positive integer solutions for 

nnn zy =+2 . 

 
Theorem 1.7. There are no positive integer solutions for equation (1-1) when ∞→n  and 
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Proof: Since  nnn zyx =+ , let yx > , we get 
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which means there are no positive integer solutions for equation (1-1) when ∞→n . And 

according to Theorem 1.1, 1.6 we have 3,1,2 >>> zyx . 

If 
2

n
n zy ≥  then since yx > , so we have 

 nnn zyx >+ , 

that is impossible so we have 

 zyn <2 . 

 

Theorem 1.8. There are no positive integer solutions for equation (1-1) when 10,, ≤zyx . 

Proof: There are below combinations of zyx ,,  when 10,, ≤zyx : 
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 nnn 543 =+ , 

 nnn 653 =+ , 

 nnn 763 =+ , 

 nnn 873 =+ , 

 nnn 983 =+ , 

 nnn 1093 =+ , 

 nnn 654 =+ , 

 nnn 764 =+ , 

 nnn 874 =+ , 

 nnn 984 =+ , 

 nnn 1094 =+ , 

 nnn 765 =+ , 

 nnn 875 =+ , 

 nnn 985 =+ , 

 nnn 1095 =+ , 

 nnn 876 =+ , 

 nnn 986 =+ , 

 nnn 1096 =+ , 

 nnn 987 =+ , 

 nnn 1097 =+ , 

 nnn 1098 =+ . 

Here we take nnn 1097 =+  for example to explain how to prove. We plot the graph for this 
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equation as showed in Figure 1-1.  

 

Figure 1-1  Graph of nnnnf 1097)( −+=  

 

Obviously for equation nnnnf 1097)( −+=  in Figure 1-1, we have 43 << n  is not an 

integer so there are no positive integer solutions for it, and so it is with other cases and we have 

the conclusion of there are positive integer solutions for equation (1-1) when 10,, ≤zyx . 

 

2. Proving Method 
In equation (1-1), let 
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Since we reduce the order of equation so the method is called “Order reducing method for 
equations”. 
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From (2-1) and (2-2) we have 
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the roots are 
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There are two cases for 22,cebf  when 22 cebf ≥  and 22 cebf < . There are also two cases 

for 222

111

−−−

−−−

−+
−+

nnn

nnn

zyx
zyx

 when 1222

111

≤
−+
−+

−−−

−−−

nnn

nnn

zyx
zyx

 and 1222

111

>
−+
−+

−−−

−−−

nnn

nnn

zyx
zyx

. 

 

Case A: If 22 cebf ≥ , from (2-3) when  
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that is impossible since from Theorem 1.7 we know 2≥y  and 3>z . So in order to have 

positive integer solutions, 222
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solutions when 3>n . In other words to say is that since n  is for all the positive integers bigger 
than 2, so if one of them does not have positive integer solutions then other numbers still do not 
have. For example, if 4=n  there have positive integer solutions for equation (1-1) then there 
must also have positive integer solutions when 3=n . 
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where possible values for x  are 1, 2 but according to Theorem 1.6, 1.7 we know there are no 
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is not possible since 0≤x . 
 
Now we have completely solved no positive integer solutions for equation (1-1) when 2>n  
using “Order reducing method for equations”. 
 

3. Conclusion 
Through the above contents we can see clearly that the proving of Fermat's Last Theorem is just a 
problem of elementary mathematics. “Order reducing method for equations” that the author 
invented is a very effective method in the proving of Fermat's Last Theorem and the author’s 
technique in which let y = x - f and z = x + e is a very important step for solving. 
 
Fermat's Last Theorem is a problem that has lasted for about 380 years. Proving methods are not 
important but the theorem’s correctness is very necessary because many useful inferences can be 
deduced that are obviously better than “conjectures”. 
 
The author has been working on proving of Fermat's Last Theorem for quite some times (251 days) 
without any reference and many methods have been thought about, for example “Method of prime 
factorization” but not work. So the author has already known that there are no ways to solve 
except “Solving high order equations” which is also an important aspect in solving other 
mathematic problems. 
 
Using the method in this paper we can prove there are still no positive integer solutions for 
equation 
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nn xxxx 121 ... +=+++ , 

when pn > , where p  is a prime number under the assumption of no positive integer solutions 

for p
i

p
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pp xxxx 121 ... +=+++ . For example nnnn xxxx 4321 =++ , if we can prove there are 

no positive integer solutions for 5
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1 xxxx =++  or 7

4
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1 xxxx =++  then there are 

still no positive integer solution for nnnn xxxx 4321 =++  when 5>n  or 7>n . 

 


