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Abstract: In this paper the author gives a simplest elementary mathematics method to solve the
famous Fermat's Last Theorem (FLT), in which let this equation become a one unknown number
equation, in order to solve this equation the author invented a method called “Order reducing
method for equations” where the second order root compares to one order root and with some
necessary techniques the author successfully proved Fermat's Last Theorem.

1. Some Relevant Theorems

There are some theorems for proving or need to be known. All symbols in this paper represent
positive integers unless they are stated to be not.

Theorem 1.1. In the equation of

Xn + yn — Zn
ged(x,y,z) =1 (1-1)
n>2
X, Y,Z meet
X#£Y;
X+y>z;
if
X>Yy
then
Z>X>Y.
Proof: Let
X=Y,
we have
2x"=7"
and

2x =1
Where”\/E is not an integer and X, Z are all positive integers, so X # y . Since

(X+y) =x"+CX" 'y +..+CIxy" 4+ y" > 2",

so we get
X+Yy> 2z



Since

so we have
2">x",z2">y"

and get
Z>X>Y

when
X>Y.

Theorem 1.2. In the equation of (1-1), X,Y,Z meet

ged(x, y) =ged(y, z) =ged(x,z) =1.
Proof: Since X" +y"=z", if gcd(x,y)>1 then we have (X1” + ynl)X[ng(X, y)I =2"
which causes gcd(x, Y, Z)>1 since the left side contains the factor of [gcd(x, y)]n then the

right side must also contains this factor but contradicts against (1-1) in which gcd(X,y,z) =1,

so we have gcd(x, y) =1. Using the same way we have gcd(X,z)=gcd(y,z)=1.

Theorem 1.3. In the equation of (1-1), X,Y,Z meet

Xn—i + yn—i > Zn—i

Xn-f-i + yn+i > Zn+i

where
n>i>1.
Proof: From equation (1-1), since

Xn_i_yn:Zn,

from Theorem 1.1, since Z > X > Y, we have

ol o]

Xn-f-i + yn+i < (Zixn—i + Ziyn—i — Zn+i>,
so we have

Xn—i + yn—i > Zn—i

Xn+i + yn+i < Zn+i



This theorem means given X, Y,z if equation (1-1) has one positive integer solution then this

solution is the only one.

Theorem 1.4. There are no positive integer solutions for

3

3 3:Z.

X +y

Proof:
For the 3 orders equation ax’ +bx* +ex+d =0, the real root expression 1s

e b
a 3a’
d 26 be
q=— 3*-\ 2
a 3a
[ 2 /. 3 YRy e
. q+ | q {3] a4 ‘gj +(£J
2 \/2 3 2 \ 2 3
I
3a
Let
[x>_v
y=x—f
l::x+e
We get

X H(x—f) =(x+e).
When 7=3 we have:

FH(x—f) =(x+e).
After sorting we get

¥ =3(f +e)x’ +a( —e° ).\ (f +e )
So

p=—6e(e+ [)
q= —3e(2e2 + 3ef +f2)

(q)’+(p)3\/(38(2€’+3ef+f’)]2+(6e(e+f)j3ko-
2 3 2 3
4k,

eQ(e+f)2(4€2 +4ef+9f3):




We have
x=(e+ f)+

s\/e(e+f)(3(ze+f)+2\/4e3 +4ef+9f2)+3\/e(e+f)(3(2e+f)2\/462 +4ef+9f2)
2 2

If

3\/3(2e+f)+2\/4e2 tdef +91° L KT

2

3\/3(2e+f)2\/49j+4€f+9f2 2Ke e+ /)

2

then

i/e(e+f)(3(2e+f)+2\/4ez +def +9f7 )+i]e(e+f)(3(2e+f)—2\/4ez +4ef+9f2)

2 2
=K,

and

Ge(e+ f)(2e+ f)+

h%' 2 5
3€(e+f)3\/2092+2(]ef727f2 \/‘(29+f)+2\j4€ +def +9f7 +

3\/3(29+f)—2\/462+4ef+9f2
=2K;

So

U3Q2e+ £)+2)4e +4ef +917 +33(2e+ £)—2\/4e* + def +91°
_ 2K —Ge(e+ f)2e+ )
3e(e+ 13208 + 20ef —27 f>

and

Ge(e+ f)(2e+ )+

e 2
3e(e+f)3\/2092+20ef27f2{\f-(29+f)+2\/4e +def +9f7 +

132+ f)—24/4¢” +4ef +9f°

(2K} —6e(et N2e+ )] 1
- 3e(e+ f) 20e* +20ef —271°

Repeat this step we can do it forever, the value of



KEE 246> +def +917
6e(2e+f)+3e(e+f){/20e’+2ogf27f~[\/~( e+ f)+2y4e +def +917 +

32e+ ) —2,4¢* +def +91°

is decreasing, but the positive integer value can not be smaller than 1 that means only finite
repeating steps can we do and at last we must find that only non integers can exist which means

there are no positive integer solutions at the situation of (1-2) . So we have

k/i"(zﬂfnz\mewwfwfﬁ Ny

2
i/_a(ze+f)—2\/421e-+4ef+9f- K AFEi T
And
3(2e+ f) +2\4¢ +4ef +917 K (et f)
2 1
32 —2./4¢” +4ef +9 1> ,
lj( er/) ‘/; /| =K, (e+ )
So we get

[32e+ 1=K +K, ket f)
[2J4e3 +def +9f7 = (Kf - Kf)ez (e+ /)

but impossible because if not we get
9(2e+f4)- :(Kf +K23T
| (e+f)
Aas? 1 s 2 -
e e 1917) (12 gy
(e+/) i
And we have
9Q2e+ ) 44" +4ef +917)
(e+ /) (e+ /)

in which

(kK - (K- 4Kk

208% +20ef — 2717 = KK, (4e* +16¢° f + 24¢* f* +16ef* +4*)
that is impossible since the absolute value of left side is smaller than the absolute value of right

side. If K, =0 then we have

32e+ f) =244 +4ef +977 =0



in which
208’ +20ef —27f* =0

and

40

e_(—20+«/2560 ]f

that means € is not an integer. So when 7 =3 there are no positive infeger solutions for equation
(1-1).
Theorem 1.5. There are no positive integer solutions for
1"+y"=2".
Proof: Since
1=2"—y" = (z-y)\2" + 2" 2y +.t 2y" 2 4y ?)

where

z-y=1
(2" + 2" 2y ok 2y 2y ) =1
that causes z, Y to be non positive integers, so there are no positive integer solutions for

1"+y"=2".

Theorem 1.6. There are no positive integer solutions for
2"+y"=2".
Proof: Since

2n — Zn _ yn — (Z _ y)(zn—l + Zn_2y+...+ Zyn—2 + yn—l),

z-y=1
"y by Pyt =20
then taking the least value for y =2,z =3, we have

M 2x3 24 42" 20

when N> 2 thatisimpossible. If
7—y=2'

Zn—l

+ 2"yt zy" Ry =2
i+j=n

i>1



then z>2 and taking the least value of y =2,z =3, we get

I 42x3 442" > 2]
with n>2 that is also impossible, so there are no positive integer solutions for
2"+y"=2".

Theorem 1.7. There are no positive integer solutions for equation (1-1) when n — oo and
X,Y,Z inequation (1-1) meet

2y <z <¥2x,
X> 2,
y>1,
z>3.

Proof: Since X"+y"=2z",let x>V, we get

Rt

Z>X>Y,
so we have

Z<Q/§X,

Iim(iJ —(lj —oo>1
n—o X X

which means there are no positive integer solutions for equation (1-1) when n—oo. And

and

according to Theorem 1.1, 1.6 we have x>2,y>12>3.

z" _
If y”z? then since X >y, so we have

X"+y">z",
that is impossible so we have

V2y<z.

Theorem 1.8. There are no positive integer solutions for equation (1-1) when X,Yy,z <10.

Proof: There are below combinations of X,Yy,z when X,y,z<10:



3'+4"=5",

3" 4+5"=6",
3+6"=7",
3"+7"=8",
3"+8"=9",
3"+9"=10",
4" +5"=6",
4" 46" =7",
4" +7"=8",
4" +8"=9",
4" +9" =10",
5"+6"=7",
5" +7"=8",
5'+8"=9",
5"+9"=10",
6" +7"=8",
6"+8"=9",
6"+9"=10",
7"+8"=9",
7" +9"=10",
8"+9"=10".

Here we take 7" +9" =10" for example to explain how to prove. We plot the graph for this



equation as showed in Figure 1-1.

f(n)

) =T"+9" -10"

Figure 1-1 Graphof f(n)=7"+9"-10"

Obviously for equation f(n)=7"+9" —10" in Figure 1-1, we have 3<n<4 isnotan
integer so there are no positive integer solutions for it, and so it is with other cases and we have

the conclusion of there are positive integer solutions for equation (1-1) when X, Y,z <10.

2. Proving Method

In equation (1-1), let

a= Xn—2

b — yn72

C= Zn—2
we have

ax® +by?* =cz*
n-1 n-1 o (1)
a"?x+bn?y=c"?z

Since we reduce the order of equation so the method is called “Order reducing method for
equations”.

Let X>Vy and

{yzx_f. 2-2)

Z=X+¢

From (2-1) and (2-2) we have



[N =
am2x+b"2(x—f)=c

ax’ +b(x— f F =c(x+ef
n-1
=c"2(x+e)

and

(a+b—c)x® —2(bf +ce)x+(bf 2 —ce?)=0
n-1 n-1 n-1 ’
am2x+bm2(x— f)-c2(x+e)=0

the roots are

(bf +ce)x/(bf +ce)f —(a+b—c)bf* —ce?)
X= Xn—Z + yn—2 _ Zn—Z ! (2_3)

and

n-1 n-1

ch-2e+hn2 f bfy + cez
X= n-1 n-1 n-1 = n-1 n-1 n-1" (2_4)
X +Yy A

an? 4z _ g2

There are two cases for bf?, ce® when bf?>ce® and bf?<ce?. There are also two cases

n-1 1 n-1

N yn—l _7
anz + yn—z _ zn—

N yn—l _7

Xn—l + n-1 _ Zn—
— — y <1 and
X"yt -z

Xn—2 + yn—2 _ Zn—2 - >1'

for when

n-2 2

Case A: If bf %> ce?, from (2-3) when

(bf +ce)++/(bf +ce)f —(a+b—c)bf? —ce?)
Xn—Z + yn—2 _ Zn—Z !

From Theorem 1.3 we knowa+b—c=x"?+y"?—-2"%>0, so we have

2(bf +ce)
anz + yn*2 _ Zn*

2

and also from Theorem 1.3 we have X"+ y" ™" —z"" >0, compare to (2-4) we get

bfy+cez  _  2(bf +ce)
anl + yn—l _ anl - anz + yn72 _ Zn*

7

n-1 n-1

+y"t -z

When — —
X"y -2

<1, we have
n-2

bfy + cez < 2(bf +ce),

10



that is impossible since from Theorem 1.7 we know y>2 and z>3. So in order to have

n-1 -1 n-1

X"yt
y — >1. But from

X2 4 y“ _7

+ yn—l _ Zn
"2 4 y“*Z _ g2

positive integer solutions, must satisfy

Theorem 1.4 we know there are no positive integer solutions for equation (1-1) when n=3, no

n-1

n yn—l _ gt

n-2

matter how many times we increase ————— —
X"yt -2

. So there are still no positive integer

solutions when n > 3. In other words to say is that since n is for all the positive integers bigger
than 2, so if one of them does not have positive integer solutions then other numbers still do not
have. For example, if N=4 there have positive integer solutions for equation (1-1) then there
must also have positive integer solutions when n=3.

When

(bf +ce)—+/(of +ce) —(a+b—c)bf > —ce?)
Xn—Z + yn—Z _ Zn—Z !

we have

bf +ce
Xn—2 + yn—2 _ an

2

compare to (2-4) we get

bfy + cez < bf +ce
anl + ynfl _ anl - Xn—2 + yn—2 _ an

7

n-1 n-1

+y"t -z

When — —
X"y -2

<1, we have
n-2

bfy + cez <bf +ce,

that is impossible since from Theorem 1.7 we know y>2 and z>3. So in order to have

n-1 n-1

n yn—l _ g0t N yn—l _7

X"Z 4y 2 g2 must satisfy X"y 7 >1. But from

positive integer solutions,

n-2

Theorem 1.4 we know there are no positive integer solutions for equation (1-1) when n=3,
n-1 n-1

+y"t-z . L .
y — >1, so there still no positive integer solutions when n > 3.

"2 4 y“ _7

even though -

Case B: If bf % <ce?, from (2-3) when

11



(bf +ce)++/(bf +cef +(a+b—c)ce’—bf?)
Xn—2 + yn—Z _ Zn—2 !

we can prove (bf +ce)’ >(a+b— C)(Ce2 —bf 2) since if not we have

(bf +ce)’ <(a+b—c)(ce’ —bf?)
and
[(2b+a)—c]bf 2 + 2bfce + [2c — (a + b)|ce? < 0

that is impossible since a+b—-c>0 and c¢>a,c>b,2c— (a + b)> 0. So we have

(bf + ce)(1+ V2 )

X2 4 yn—z _ g2

X<

compare to (2-4) we get

bfy +cez_ (bf +ce)1+2)

Xn—l + yn—l _ Zn—l Xn—2 + yn—2 _ Zn—2 '

n-1 n-1 n-1

+y" -z
— yH — <1, we have
X"yt -z

When

bfy +cez < (bf + ce)(1+ \/E)< 2.5(bf +ce)

and
bf (x— f) +ce(x +e) < 2.5(bf +ce)

that leads to

2.5(bf +ce)+ bf 2 — ce? ce? —bf 2
<| 250f +ce) Pyl LA PPY>
bf +ce bf +ce
where possible values for X are 1, 2 but according to Theorem 1.6, 1.7 we know there are no
1, yn—l _ gt

positive integer solutions. So in order to have positive integer solutions,

X2 4 y“ _ g2

n-1

"1y yn—l —z
— >1. But from Theorem 1.4 we know there are no positive

must satisfy
x"2 4 yH )

n

n-1, . n-1_ _n-1

+
y - >1, so there

integer solutions for equation (1-1) when n =3, even though — —
X"yt -2

n

still no positive integer solutions when n > 3.

When

12



(bf +ce)—/(of +cef +(a+b—c)ce’—bf?)
Xn—Z + yn—2 _ Zn—Z

is not possible since X <0.

Now we have completely solved no positive integer solutions for equation (1-1) when n> 2
using “Order reducing method for equations”.

3. Conclusion

Through the above contents we can see clearly that the proving of Fermat's Last Theorem is just a
problem of elementary mathematics. “Order reducing method for equations” that the author
invented is a very effective method in the proving of Fermat's Last Theorem and the author’s
technique in which lety = x - fand z = x + e is a very important step for solving.

Fermat's Last Theorem is a problem that has lasted for about 380 years. Proving methods are not
important but the theorem’s correctness is very necessary because many useful inferences can be
deduced that are obviously better than “conjectures”.

The author has been working on proving of Fermat's Last Theorem for quite some times (251 days)
without any reference and many methods have been thought about, for example “Method of prime
factorization” but not work. So the author has already known that there are no ways to solve

except “Solving high order equations” which is also an important aspect in solving other
mathematic problems.

Using the method in this paper we can prove there are still no positive integer solutions for
equation

n
i+l 1

X+ X, .+ X" =X
when n> p,where p isaprime number under the assumption of no positive integer solutions

for X" +X,"+..+%" =x.,". Forexample X" +X," +X," =X,", if we can prove there are
- . . 5 5 5 5 7 7 7 7
no positive integer solutions for X"+ X,” + X;” =X, or X +X, +X; =X, thenthere are

still no positive integer solution for X" +X," +X;" =X," when n>5 or n>7.
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