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Abstrant.

A contemptuous attempt to understand the phenomenon of turbulence dated back to a theory of L.
F. RICHARDSON which later trecame enhanced by A. N. KOLMOGOROV. By the contents of this
theory turbulence is considered as a transfer of energy taking place in forms of cascades between
eddies of various orders of magnitude. The transfer becomes started by unspecified disturbance acting
on eddies in forms of fibres and is further evaluated on account of their stretching. This principally can
explain for eddies of various sizes being created in generations while energ"y is distributed along these
generations from the largest eddies down to the smallest. But it is impossible to determine a specific
structure of the cascade and its development in details.

In order to step forward this way, this paper will show, when spinning spheres with surface-
tension are models for the eddies and a specifically designed disturbance act on them, eddies of large
size will decay in a cascade of hierarchically structured generations into smaller ones. The dynamics of
this development is due to the tralance between the acting force of the disturbance and the reaction
due to sphere-tension on each eddy in a self-organisation mode. All eddies within one step of the
hierarchy will obtain same size, life-time and rotation-phase, for follower-generations these
quantities will be different in a definite way. Each predecessor-generation will double its number of
eddies relative to its follower-generation, while each eddy partitions its rotation-energy for its
followers and those will get increased their surface-energy by disturbance. Finalty the whole cascade
will form a structured route of energy from order into chaos similar to many other dynamical systems.

By addendum [12] the introduction of a sphere with surface-tension as ar appropriate model for
eddies has been justified. Addendum [13] demonstrates that for a quadratic-iterator permanent
phase- doubling will lead to a route from order into chaos; due to the topological equivalence between
iterator and eddy's decay-cascade in this respect the latter similarly shows a route frorn order into
chaos too.

l. Introducti,on.

L. F. RICHARDSON [1] and A. N. KOLMOGOROV 12 , ...,71 conceptually related dissipation with
other macroscopic quantities of a turbulent flow. They started from the idea that a turbulent flow is
fed with energy on large scales, which is transported by decay of eddies through an order of
magnitudes to the smallest eddies where finally it is totalty transformed into heat. This process is
called energy-cascade and starts with the following proportionality:

1.1 r: " r:,'I '' I :::::,r.:,: ,,.l,.,1;::.:.t -:t::!

:: ::--iii,:'il:i':ir :rl",,.r,f,;

For an appropriate REYNOLDS-number r''. . it can be written:

-.'.:r 1,.1,,'I : .., , ,:"i.:.:::;: :r.i ,,1. i a:|,::l:,tj a:...!,.,,,

Thus the value of ."::r r /' measures the range of various length-scales within the turbulence. The
KOLMOGOROV-length represents the extent of a smallest eddy in the turbulence.

According to L. F. RICHARDSON, turbulent flows show a hierarchy of edclies, where the larger
ones are built in a preliminary creation-process of the turbulence. Afterward they decay successively
in a sequence of instabilities down to a minimal magnitude ,' :',, of eddies. Here they finally are
disturbed and their energy is transformed into heat due to viscosity of the turbulent medium. Durlng
this hierarchical process, eddies submit most of their energy to their followers, only a small part each
time is lost through dissipation. The hierarchy ends as soon as /l/becomes comparable with , .:, which
results in ,', :: ,

1.:l :' ,' ,

L.4 II-u2/r=u3 l-e.
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Such an independence of transfer-rate , ,'1,,' from viscosity ,,., can be explained - due to
RICHARDSON - by the stretching of an eddy.

Turbulence in this sense starts with a pictrue about eddy-fibres in a shear-flow (H. tr. Fiedler[B]):

4.1.1

The smallest swelling-out of a fibre will stretch its length, strengthen its angular-speed ,' .,.' , and
shrink its cross-section , 1,' appropriately to HELMHOLTZ's law:

1.5 -. , .i :: ,':,ni.',,t'.

The stretching-mechanisrn by itself can be explained in a following \\ray:

4.1.2

Given a fibre in - direction with a rotation in the , ; .,. : plain. As soon as it becomes stretched in
direction, its cross-section in , ., ,' r plain and with it the appropriate rotation ";- : .: , and intensity

-, - will be enlarged. Such an increase of intensity - on its sicle - will cause further stretching of the
fibre in the other space-directions. Thus stepping forward this way, the initial swelling-out of the
fibre will finally have been resulted into an energy-cascade filling up the complete fluid-space. Such a
procedure can be visualized qualitatively by the following graph:

4.1.3

All this together will result in angular-speed /w/ andwith it /w2l to such an extent that the
energy-transfer-rate remains quasi constant. Therefore the energy*cascade is assumed to be quasi
independent from the viscosity /z/ of the turbulent merlium. For the energy-transfer-rat e f e f across
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the energy -cascade approximately the following proportionality can be obtained:

1.6 e - u(u^/\)2.

Compared to equation /1.4/ this will resglt in:

1.7 u(u^/ \)2 * u' /t = u2 /r.
During the extension of the energy-cascade each eddy partitions its energy l-u'/ among the

followers, the energy of the followers therefore must be less than that of their predecessor. The value of
f u2 f decreases permanently in a propagating energy-cascade and in a similar way ltldoes it too.
Thus finaliy - in the case of smallest eddies - the product lu"t I wiLl become comparabi e witln /v / :

1.8 Re = u^.Alu x 1.

The values /A, u^, r^f of the smallest eddies in the turbulence are called KOLMOGOROV-scales,
they can be summarized in the following way:

1.9 X- {u3/e)'/a * Re4ru.l

u^- (u.e)1/4 - Re-t/4.ut

r^- (uf e)1/2 * Re-l/z"rt.

KOLMOGOROV completed the theory of the energy-cascade, which formally was initiated by
RICHARDSON, with three additional hypotheses.
For eddies of /A < r << t / statistical isotropy can be assumed. In addition lr,/ of large eddies will show
in comparison with proper values of medium-eddies /r,<<r,f ,the letter will decay rfiuch faster. The
smallest eddies are in a statistical equilibrium. Under these aspects he came to his hypothesis of the
local isotropy:

H.1 For large REYNOLDS-ruutnbers turbulent motions on srnallest, scales are stati,sti,callg
isotropic and zui,ll expire in stati,sti,cal equili.bri,um, (uwiuersat equilibrium).

By the next hypothesis KOLMOGOROVexpressed his opinion, that:

H.2 For large HEYNOI'DS-numbers and" length-scales lo << ll stati,sti.cal quanti,td,es udll onty
depend on three param,eters * thß.length,*scale /r I i,tself , the energy-transf er-rate /II /
and the u'iscosi,tE l"/ af theturbulentmedi,urn,.

Eddies of length-scales /l >> , / - from the so-called Inertial*range - will remain nearly untouched
by viscosity lv I . Those eddies will obtain their energy-influx neariy totally from their larger
predecessors and will deliver it nearly completely to their smaller followers of universal equilibrium.
Thus, for the statistics of these length-scales, energy-transfer is not decisive. In essence of this
KOLMOGOROV formulated his final hvpothesis:

H.3 For large REYNOLDS-nurnbers for scales ll >> , > ),/ statisti,cal quantiti.es usi,tl lmrse
un'i,uersal forms o,nlE d,epend,i,ng on /e / and /,r/.

2. An Ed,dlt's Decau d,ue to a Disturbo,nce acting on i,t.

The theory of RICIIARDSON enhanced by KOLMOGOROV apparently disclosed some
deficiencies for instance with respect to the number and sizes of followers coming into existence as
consequences of a predecessor's decay, the individual life-times of the various members in the cascade
and last but least a characteristic of the disturbance*signal. This information however is needed in
order to determine an appropriate cascade-structure, which then enables a statement about the roper
development of the turbulence. The following discussions should be understood to appropriately
enhance the former theory in this way (please initially pay attention on [12]).

Inside a fluid an eddy is now considered as sphere .'. ' , , . with a spin ,t:,r äs united
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momentum of its particle-set. The form of sphere is chosen because it possesses the smallest surface
for an enclosed volume. A time-clependent force ,i : i.,' as disturbance may act on the eddy from
outside trying to deform | , ", ' ' into another volume with increasecl surface. This will cause reaction
'', ,i. parallelto..,,.,.' . duetothesurface-tension(consequenceof thefluid-viscosity 'r r.

4.2.L

The competing forces will influence each other and thus shouici be considered coupled together in a
self-organizing system) appropriately in the following way:

z.OL dh/dt = -7.et-a.hz.et
2.02 dhz/dt = -ö.hz+b.(qr)'

--'
---+

dq1/d,t = -7.et-&.hz.gt <- l, ö = dampi,ng-parameters

dhe / dt, = -ö.hz*b. (qr)' a, b = coupli,ng-paro,m,eters.

With respect to /91{t) / arrd /fu2(t)/ one should make use of the so-called adiabatic approximation (see
H. HAKEN [10]):

2.03 ö >> 7 --) dhrf dt xO,

Due to relation /2"OZl this will result in:

2.O4 hz=ö-'"b'(q)2.

Equation /2.O4/ can be interpreted as: f h,2f must follow f qr/ immediately, lh2l hasbecome enslaved
by /q,,/ (H. HAKEN [10]). On the other hand lhrl will react ot lql back again via equation /z.oL l
with the consequence:

2.A5 dq1/dt = -7.er- d'-'.o.b.(q1)3.

By equation 12.051 force f qrf is expressed by the dynamics of a so-called unharmonic oscillator -
which depending on the conditions -:
2.a6 [(z > o)] V [(r < 0) fi (6-1'a.b) > 0]

possesses two qualitatively distinct stability-modes:

2.07 lpo = 0] V lpr,r= *(|ry|. 6 l{a.b)}1t21.

In the first case stable oscillations are performs with respect to the fix-point lpo/ , inthe second case

f psf becomesinstableandbifurcatessymmetricallyintonewstable-points f prn2 f ,eachbecoming
the centre for subsequent oscillations. Therefore by the bifurcation of lpol is expressed, the sphere
/{5")t/ will be partitioned into smaller follower-spheres /{S''), A (S')*/, a process which can be
explained as follows.

For / q1(t) / from outside / (52)1/ * instead of f 7 = constant
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expected, presumably of the following kind:

2.08 [z(r') > 0] [z(tr) :0] --+ [r(tr) < 0].

Potential-curves tor /V{q1{tr) A y(qr(t3)/ then qualitatively may be visualized in a following way:

^.2.2

Deforming the potential-curve on the way : , ,r : will flatten the neighbourhood of ,

steadily. stability accordingly will be reached more slowly and finally will be exchanged by instability
at , ., . During this process, which takes a time .. ." force ,t ,, ,. ' , will deform to a shape of
surface with higher energy. As soon as the surface-energy has become high enough to build two times

Sphere / (S')rl wili become partitioned symmetrically at /pr A prl into sphere s I 6,), fl (S3)r/ each
volume of 11/2"{53)1/.

After the split spin /J, / will have been saved, thus for /(53)2 A (Su)r/ following condition must
hold:

2.1O Jt:Jz*Jz <- Jz:Jz.

Between the rotation-energies /€zrs/ of /(53)2V (S')r/ and /e1/ of /(53)1/the following relationship
will exist:

2.11 e r = r/2.0t(ut)z

0t: n.(rr)2

<-- 0t=tTLomentu,m
of i,nerti,a

-+ e = Tz.n.(rr)'.(ur)' +* ut= angular
aeloci,ty

+- n = r,onstant

L2v3 
-

1/2.02us.(ci,213)2

+- 9zrs=m,omenturn
of i,nertia

czv7 -

+- b)2v3= AngUlAr
ueloci,ty

(aft).rr.(ry)3

- | rruu=rr/(2)'
rzvs*O.79.11 * | (,S')rns=8.7r.(rzrs)

= 15.69.(r1)2

(S')r = 4'rr'(r)z
x 12.57.(r,\2

s3)2ns= (s3
(53)z,a=
4/3\.n.(r,.,\3

AO x3.L2.(r,
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1/2,rc-(r,*)'.(*ru*)'

(rrur)'= 0.62.(r1)2
€211 =t/2'6

This results in:

2.L2 Jzrz= ?zoz'U,zrz -+ Jzrs= n'(r26)2',.2',s, ---+ Jzwx n'A.62'{r)2'O.9"w, --+ Jzrzx 0.6.J1.

trnergy /e "r/ - 
which has to be transferred by /qr{t) /in order to enlarge /t9')rlup to an

equivalentof /(^92)rnu/-i*proportionalto /AO/or lQ1)2/.Thereforeasimilarrelationshipmusthold
for the proper life-time /f((St).)/ (time of (^93)r-existence):

2.L3 r((s')r) -{r,)'.

3. üisturbance _lVIctd,el actinq an S'rllzefes of Follouer-Generati.ary§.

In the preceding discussion a stochastic signal:

3.1 s!(t) = t{t).qr(t)
lasting for the time:

3.2 /-((s3),; :,r-,

trecame responsible for the split of sphere /{S')rlinto /(S3)2 A (St)rl. The same procedure is now
assumed to take place in a similar way on spheres of a second generation, where the stochastic signal:

3.3 s'r{t) : lz(t).qz$)

within action-time:

3.4 r((s,), v (sr)r) = r,
causes the follower-spheres of first generation to became partitioned into spheres of a third
generation. Generally speaking, any k*tltgeneration will get its specific resonance-term for the splits
of its actual spheres in the following way:

3.5 s'u(t) = ryx{t).qu!) --+ f k.

Throughout generations of the splitting-process following conditions must hold:

(/ ett'i) / represent the energy of a signal I ,'i{t) l).The first condition is due to the fact that spheres of
any predecessor*generation have larger life-times as their followers in next generation. The second
condition takes into consideration that the proper signal for any &-th generation will have to invest
about 2SYomore extra-energy than (e-1)-th generationfor the increase in surface-sum of its
spheres.

Finally, in order to obtain a suitaLrle concept of the disturbance in total for appropriate actiorls on
eddies in the current sense, one may consider lS(t) I as a consecutive sequences of stochastic signals
ls'u{t) / whose layout will be obtained on base of the following considerations.

62vB §
rc.0.31.(r1)'.(rr,r)'

l/a.n. (r1)2.(w)2

rc.0.31.(r1)'.(wrur)

=
n.A.25.(rr)'.(rr)'
(rrur)'= 0.8-(ar1)2

@zvz x 0.9.r^,tt

Qz,tg x 1.8.t*11
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4. Lauout o.f Di,sturbance onCourse o.f the Route.

In order to obtain a suitable concept of a disturbance-signal appropriate for actions on eddies in the
current serise? one may start in a following way. At a specific point in the fluid the overall
disturbance- signal lS(t) / is derived from a series of successive auto- or time-comelations due the
probabilistic velocity la'(t) l:
4.O7 S(t) : ({o'(0).u'(ro)}t""1, {u'{f s).a'(Io+rr)}lri, {r'(:=oIrfr).t,(r.=ol'J-l , +rr)}t',], .............

{u' ( rr\" f 3}. a' Q -oL* t, + r,*, ) } 
tr"*'], . . . . . )

where /{...\n / expresses the mean of a quantity within time-peri od l:f l@n appropriate value from
thelistof life-times lful).Witheachof thepartialcorrelation-functions /{u'{t).u'(t+r)}E/is
associated a stochastic- signal /s'tt) / in form of a probabilistic process with strong periodic
components, and can also be expressed on base of proper correlation-coefficients lh{r) /:
4.4.1 q1

in the following way:

4.o2 {(tr')21tr.p1 r) = {u' {t).a' {t+r)}14.

Further discussion is based orl a generalization of FOURIER*analysis.

4.L FOU HI E R-E rpansion o.f a r eal f u,ncti,on.

A real function I f @ / with time-period ll lt
4.A3 oftf$)ffi:A

will be generally expanded into the FOURIER-series like the following:

4.a4 f{t):1*=-*1I(*=*)\au.erp{2rri'kt}) * (fao=0] A fou=o*-*],(*- konjugate*cornpter)).

From the amplitudes f a1,f via PARSEVAL*equation the square mean-value of lf (t) I can be found,
as follows:

4.o5 ofTf2(t)dt = e=lI-(2.lonl').

The various terms of the sum (modes) in equation l4"A4l are orthogonal to each other:

4.06 ,{'\o*i .a*.erp{2ri,(k-j)t}}dt = öix.

4.2 FOURIER-Esparßi,an af the stochasti,c Si,qnal.

Although in real turbulence specific frequencies cannot be found, it becomes possible to associate a
certain part of the total fluctuation-energy with a specific frequency in order to perform a harmonic
analysis of fluctuations.
The spectral decomposition of a time*dependent, stochastic signal /s'(t) I becomes a generaTization of
the FOURlER-decomposition of a deterministic, periodic time-functions //(t) /.If atanalogous

for a stochastic signal s'(t) with
strong periodic components

Udo E. Steinemann, Turbulence, as structured Route of Energy from Order into Chaos, 23i0212018.



expansion for a stochastic sigual /{s'(t;1tl : 0/ should be performed, a generalization is necessary
because lt'tt) / is not periodic, it contains the complete set of frequencies, not only the discrete ones. fn
addition /s'(t) I is a random function and repetitions of the same flow-experiment will deliver
different results.
Each real stationary process /{"'(t)}l') = 0/ can expand.ed approximately in a sum of harmonic
oscillations with random and un-correlated ampiitudes. Analogous to the equation /4.O41 one gets:

4.oT s'(t1= u:<_,rIu="([Z{f u*r)-Z(f *)).[""p{2zrif'ut}]J -* t-t} = f **1f _n+r1...<f*if,*,=frf.
For the decomposition of interval /l-tZ,fi1/ on frequency-axis following conditions must be fulfilled:

4.08 frlf'u4fonr.
The random quantities /Z{f e*)-Z(f ) / associated with the interval /{f * , f **r1/will approximately
comprehend a complex amplitude of all modes contained in /s'{t) / with frequencies between /f o / arrd
I f url .The random quantiti es I Z(f **r)-Z(f ) I contain all information about random phases and the
random amplitudes as well of all modes from ls'(t) / . They can be determined by the random function
/s'(t)/inasimilarwayastheFOURlER-coefficients f arf from lf@/.Therelationsin:

4.09 &*= &*-*

will find an analogy in:

4.10 (Z(f")-Z(f',) = Z *{-f ',)-Z *t-f ')l --+ fif ' < f '1J .

The random amplitudes are not correlated among each other:

4.LL l.-o .-* (j + k)
{W*(f ui-z*(f )l'lz{f ii-z(f )l}r'r = i

ll/zE(f'1)(f ,,*r-f *) --+ tj = k)

similar to equation l4.A6l . This way specifically it may be written:

4.12 YzE(f'){f s*,-/*) = {lZ*(lu*,)*z*(il1.12(f uu)-Ztf o)l}ra = {[Z(f **,)-Z(/*)]']t"r.

This is approximately the mean square of the amplitude-sum of all modes from /"'{t) / whose
frequencies are betweeL /f x I and /f n*rl; therefore it is a measure for energy of these modes. trquation
l4"AT I in the serse of quadratic deviation will Lrecome more accurate the closer the lf u/ will be:

4.L3 (f/---+oo) --+ (max{f r*r-f o} * 0) +- (n -+oo).

For this limiting case it can be written:

4.74 s'(t) = **f*\enplzrtftjldZ(f)

analogous to equation / 4.A4/ . Equation I 4.11 I will then result in:

4.15 i"o -* (fr+ f)
{dz*(f)dz(/r}L', : -{

I'nalyyay * (-fr =.f)

analogous to equation / 4.A5 I . From relation I 4.1O / one will obtain:

4.L6 d.Z(f) = dZ*t-f)

analogous to equation l4.Ogl. From:

4.17 I fo*(ft*f) I
l{az*$)az(/,}rn:J ln ld,z(f)=d"z*(-f)j
L L%E(f)df * ("f, ="f)j
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it can be written:

4.18 E{-f) = E(f).

Similar to the correlation function /4.A2 / one finds lE(f) I as an even function. It is the mean energy of
all modes frorn f s'(t)/ whose frequencies are from interval /[-f -d,f , -f]l and llf , f +df]/:

4.1e v,E(-lldf+!zÜ{f)df =E(f)df ---+ [/> 0].

According to equations /a.n I and /a"17 / it obviously can be verified that:

4.2a E(/) > o.

Thus /E(f) I becomes the mean energy-density (energy per frequency, spectral-density) at lf / on
thefrequency-axis when ltu')'lismeasuredastheenergyof aprocess /s'/.Fromequations /4.141
arÄ. 14.L7 I can be deduced that the correlation*function /4.821 and the spectral-density /E{f) / are
FOURIER-transforms of each other. FouRlER-transformations for f s'f usually are reduced to
cosine-transformations and in this case the WIENER-CHINTSCHIN-equations hold:

4.21 {(u')'}HE(r) = g,f*[.tr (f)cos{2trfr\]df
4.22 E {f) : Ao"f* l{{a')'} H-R(r)cos {2n f r\ld,r.

If itbecomesfr= 0/inequation/ .22ldueto /R(O):1/ arepresentationcanbeobtainedforthe
total energy as the sum (integral) of all spectral parts /E(f)d,f / in the form:

4.23 {('u')21w = af*Etfldf *
analogous to the expression in equation l4"A5l . Correlations and spectral*densities combined via
FOuRltrR-transformations are representations of the same phenomena.

5. The Rzute frorn Orrler i.nto Chaos i,n an drfut's Split-{}asc{},{le.

As soon as appropriate resonance-terms /*.(qt(t)lif fuomdisturbance-signal lu{t) lwill act on
the followers f (S3)rur/and the followers of the followers ..., equivalent conditions are provided for
every split of the cascade. These splits wiil equivalently be performed as the one for l$\r/ . Thus the
life-time of a sphere inl/_th generation of the cascade will be diminished by:

and the phase-speed will tre nearly doubled:

5.2 Tt=2.r/utr

Tzns= 4.n f w2ns

Tznsx A.n/(O.9.u)

--+ Tru, /Trx2.22 ---+ T**r/T*x,2.22.

All this together will draw a picture about an eddy's decay as controlled route from order into chaos
simiiar to many other clynamical systems described for instance by O-H. PLtrITGEN, H. JÜRGtrNS,
D. SAUPtr [11].

Due to the theory of L. F. RICHARDSON - successively enhanced by A. NI. KOLMOGOROV -
turbulence is characterized as production of eddies in a hierarchical order. Only the la,rgest of them are
created during initialization of the process, but all will successively decay by series of instabilities into
followers on decreasing orders of magnitude. This process transports energy along a cascade nearly
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without dissipation. Only eddies on lowest hierarchical level will distinctively be influenced by viscous
dissipation and finally be destroyed by transformation of their energy into heat.

According to this theory the energy-cascade will be started by disturbances on eddies of highest
level which cause them to stretch in all directions. The initial stretching will continually create series
of followers on lower hierarchal levels with decreasing portions of energy. This is the concept of
cascading so far, but this picture lacks on details about decays, Iike numbers and sizes of followers
coming into existence and inclividual life-times in any specific case, and on characteristics of
appropriate disturbance-signals as well. This information however is needed in order to determine an
appropriate cascade-structure, which then enables a statement about the proper development of the
turbulence.

In order to enhance the former process with respect to these deficiencies, the model of an eddy in a
fluid will be changed. The existing picture of an eddy is replaced by a spinning sphere whose surface is
exposed to a seif-organizing balance between an outer disturbance-signal and a reaction-force of the
sphere due to its surface-tension (on account to the fluid's viscosity). An adiabatic approximation on
the forces damping-parameters makes the disturbance to become the leading-force of the system
while the reaction-force is enslaved and must follow the disturbance immediately. Due to these facts
the behaviour of the self-organizing system at variations of the disturbance could be best described by
the dynamics of an un*harmonic oscillator, which is characterized by two different stability- modes.
Depending on the value of the disturbance damping-parameter oscillations with respect to a stable
fix-point bifurcate into a mode where the former fix-point loses its stability and becomes replaced by
two other symmetrically positioned stable fix- points. The bifurcation of the initial stability mode
with one fix-point into another one with two fix-points has to be interpreted by a split of the initial
sphere into two follower-spheres.

During this splitting-process disturbance transfers energy to the surface of the initial sphere -
and thereby deforms it - up to an energy-leveis equal to the surface-energies of two follower-spheres
each with a half of the predecessor's volume. Thereby the split will save the irritial spin and the
follower-spins of equal lengths will sum-up for the predecessor's spin. The rotation-energy of the
initial sphere will be equally partitioned among the followers which results in individrial spin-lengths
of about 60% and phase-velocities of about 111% relative to the proper values of the predecessor.
Additionally the proper stochastic signal also will invest atrout 25%o more tension-energv into the
surfaces of the followers and rotation gets nearly doubled its phase*speed. Split-energy of a sphere
(due to enlargement of its surface) and its life-time are supposed to be proportional to the square of
sphere- radii.

A disturbance signal within the model's frame is appropriately be assumed as a list of resonance-
terms (stochastic-signals), each suitable for a split of a proper sphere. Each term is product of a
stochastic function with strong periodic components and an associated time-dependent damping-
parameter; it vanishes by integration over an appropriate time-period (life-time of a proper sphere).
Due to the letter quality it can be decomposecl into a FOURIER-series with complex coefflcients.
Each coefficient will be derived on base of an individual set of frequency-modes. If the coefficients -
rn'hich now-principally contain all information about amplitudes and phases of their proper modes -
are formulated in a suitable way, the FOURItrR-series - which they belong to - will result in a
function with an associated damping-parameter suitable as split-resonance for spheres of a actual
cascade- generation.

Because each follower-generation on the course of the route will find its proper resonance-term
for the splits, it can and will go through the same split-procedure with equivalent conditions as its
predecessor did. This means, starting from an initial sphere, a series of subsequent follower-splits will
occur. Each of them haves rotation-energy, nearly doutrles phase-speed, shortens life-time by about
a third and increases the tension-energy of surfaces by about a quarter for any follower relative to its
predecessor. This way a picture about an eddy's decay can be drawn as a well structured route of
energy from order into chaos, similar to those of many other dynamical systems too (please firrally pay
attention on [13]).

i' l r.,: j'<, 1"r, lt'r'..
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