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Abstract. Reviewing Laplace’s equation of gravitation from the perspec-
tive of D. Bernoulli, known as Poisson-equation, it will be shown that
Laplace’s equation tacitly assumes the temperature T of the mass sys-
tem to be approximately 0◦K. For temperatures greater zero, the grav-
itational field will have to be given an additive correctional field. Now,
temperature is intimately related to the heat, and heat is known to
be radiated as an electromagnetic field. It is shown to take two things
in order to get at the gravitational field in the low temperature limit:
the total square energy density of the source in space-time and a (mass-
less) field, which defines interaction as quadratic, Lorentz-invariant, and
U(4)-symmetric form, that restates the equivalence of inert and gravi-
tational energy/mass in terms of absolute squares. This field not only
necessarily must include electromagnetic interaction, it also will be seen
to behave like it.

1. Problem Statement
A system of N particles in spacetime in Newtonian mechanics is a system
that is to be defined by 3N location coordinates qk as well as a common time
coordinate and their associated 3N momentum coodinates pk as a function
of time. Mostly these systems are stably confined to a fixed region in space
over time like a drop of water or a stone. So, there will be many equations
of confinement, and to simplify the mathematical model, Bernoulli changed
that model by replacing the particles’ position with a spatial mass density
ρ(t) : R3 3 ~x 7→ ρ(~x(t)) ≥ 0. Laplace then took over that model and showed
that the gravitational force of a mass density ρ could be expressed as Poisson
equation ∆Φ = 4πGρ of a potential function Φ, the gravitational field and
the gravitational constant G, ∆ := ∂2

1 + ∂2
2 + ∂2

3 being the Laplace operator.
That marked the introduction of field as a concept into physics. What made
it both bold and dubious, was that it said that the field was to be the sheer
equivalent of the mass distribution. It was soon found out that the field was
to be an harmonic function of the space coordinates, which led to the famous
Laplace demon problem, and another problem then showed to be the lack
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of Lorentz covariance, giving evidence that the Laplace field of gravitation
cannot be correct.
However, there is much more to it:

Both, Bernoulli and Laplace took it as evident that a (smooth) mass dis-
tribution ρ(x) of N particles, which is confined to a bounded region K ∈ R3

(for all times t), could be resolved at each given time t intoN disjoint bounded
regions K1, . . . ,KN , containing a unique particle, if only the particles would
stay apart from eachother. With that, it should be possible to replace ρ with
the sum

∑
k ρk of smooth, non-negative functions ρk of disjoint support and

compact support, each (which means, they all vanish outside a bounded set,
e.g. K, and if one is greater zero at some point x, then all the others must
vanish at this point x). If so, the above Poisson equation could be rewritten
as a sum

∑
k ∆Φk =

∑
k 4πGρk of N independent gravitational equations

for each and every particle.
And indeed, mathematics proved this to be possible, now known as the par-
tion of unity (see e.g. [1, Ch.16]). That, on one side, means that even if all
particles are pointwise in nature, we can approximate these particles through
Bernoulli’s ingenious replacement of mass position by smooth mass densities.
On the downside, that shows that Laplace’s theory of gravitation must lack
generality, because in it, all the particles of a body are independent from
eachother: they just add up individually!
And this is incorrect, because it totally disregards the body’s kinetic energy:

The mass m of a body B at rest is to be defined to be equal to the total
energy of B. Now, if B was simply the sum of N individual oscillating particles,
then the total energy E is to be the square root of

∑
1≤k≤N m

2
kc

4 +(cmkvk)2,
where c is the speed of light, mk are the individual masses, and the vk are
the mean speeds of these masses, so that kinetic energy, a.k.a. ”temperature”,
always will add to the the total mass of B!

At the same time, this shows, that Bernoulli’s notion of expressing the
masses in terms of space-time densities j(t, ~x) = (ρ0(t, ~x), ρ0~v(t, ~x)) is inap-
propriate: Instead, j is to become necessarily the 4-vector of the square root
density of energy and momentum of the composed system, such that

< j, j >:= ‖j‖ :=
∫
R4

∣∣∣j2
0(x) + · · ·+ j2

3(x)
∣∣∣ d4x

equates (locally) to the square of energy, which then becomes the square
of the total energy of B, i.e. up to c2 is equal to the square of the inert mass m
of B. (So, j can be conceived as the macroscopically composed superposition
of local quantum states, which approximates the system’s particles.)

Could we leave out an integration over time t? - Not at all: Because,
given such a 4-vector j = j(t, ~x) that extends over a compact space region
K ∈ R3 of radius r > 0, we loose control over the eigentime of the particles
within that region. All we know is that the particles’ eigentimes must be
within the interval of our observing eigentime t0, plus or minus the bounds
∆t = ±cr!
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In all, the appropriate model for discussing gravity of particle systems
is that of time curves Ω : R 3 t 7→ Ω(t) := jt := (j0,t, . . . , j3,t), where the
jµ,t are to be smooth functions with compact support in space-time R4 for
each µ and t, such that their absolute squares,

∣∣jµ,t∣∣2, are the intensities of
smooth, local energy-momentum packages of the particles in space and time,
as sketched below:

Having Ω : t 7→ jt ∈ L2(R4)4 in place, we can state:

Proposition 1.1. The total energy square of a system Ω : t 7→ jt at time t0,
which is at rest at t0 is given by E2 =< jt0 , jt0 >=

∑
µ

∫
R4

∣∣jµ,t0(x)
∣∣2 d4x.

2. Deriving gravity
It now shows up that there is nothing else than this notion of Ω needed to
discuss gravity:
If instead of inert masses mk, the system was made of electric charges, or
even hadronic baryons, or whatever could be idealistically thought of to re-
sult in massy particles, the energy-momentum distribution is already put as
a quadruple jt of complex-valued states, the absolute squares being their in-
tensities. (We’ll shortly see, why this is the case, but for the moment you
might look that up from any standard text on quantum field theory.)

So, whatever there might be in a bounded box B ⊂ R4 as observed from
an external system at some time t0 assumed to be at rest, E2 =< jt0 , jt0 >
turns out to be c4 times of the square of its (inert) rest mass!
With this, we then deduce by equivalence principle, that this inert square of
mass must be proportional to the square of gravitational mass, and to get
at the corresponding gravitational field, we just need to compare with the
covariant Maxwell equations, which readily rewrites into:

< jt0 ,�A >= Const < jt0 , jt0 >= Const E2, (2.1)

where � := ∂2
0−· · ·−∂2

3 is the wave operator, A the electromagnetic 4-vector
field, and Const a constant, which in Gaussian units is identically 1 along
with c.
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Let’s now choose that constant differently, to be Const = −4πG, where
G is the positive gravitational constant, such that∑

µ

< jµ(x),�Aµ(x) >= −4πGE2. (2.2)

Equation 2.2 then states nothing but the equivalence principle: It says
that Ω : t 7→ jt has included into the jt a gravitational interaction potential,
which, when squared and summed up, is to be proportional to E2 and is
contracting (due to negative sign of −4πG).

Theorem 2.1 (U(4)-Invariance). We now are in the position to explain, why
Ω : t 7→ jt suffices to describe gravitational interaction:
Because equation 2.2 becomes U(4)-invariant, with U(4) being the group of
unitary 4 × 4-matrices, just by letting the bra vector < jt| be the complex
adjoint of its ket vector |jt >. (This is also how we get at the non-negative
square E2 =< jt, jt >.) And, as is basic group theory knowledge, U(4) is
reducible and decomposes into a product of subgroups U(4) = U(2)× U(2)×
SU(3), where in turn U(2) = U(1) × SU(2) is the product of the phase
symmetry group U(1) and the spin group SU(2).

And the fact that the current standard model is a gauge theory based on
the symmetry group U(1)×SU(2)×SU(3), makes that theory embedded part
of the gravity equation 2.2, assigning a well-defined mass to all of the particles
of that standard model: The mass of the body is to be defined by squaring and
adding up the absolute values of square energy of all of its constituents!

Let’s harvest its direct consequences:

3. Gravitational Interaction
An immediate implication of the theorem is:

Corollary 3.1 (Phase Symmetry). The 4-vector streams Ω : t 7→ jt and the
4-vector potential are U(1)-invariant, i.e. phase invariant. In particular, any
space-like vector Ω : t 7→ jt is equivalent to its time-like counterpart iΩ : t 7→
ijt. Similarly, U(4)-symmetry allows to smoothly rotate elements contained
within the forward light cone into ones within the backward light cone, and
vice versa. In other words, it would to be an error to restrict consideration
of energy-momentum of the dynamic system to the positive-energetic time-
cone, only. Instead, we have to symetrically deal with the full set of space-time
elements of R4 outside the light cone Γ := {(t, ~x) ∈ R4 : t2 − ~x2 = 0}.

Now, for µ = 0, . . . , 3 and jµ,t, which I recall is a smooth function of
compact support in space-time R4, let Fjµ,t(χ) =

∫
R4

1
(2π)2 e

−iχ·xjµ,t(x)d4x

be the Fourier transform of jµ,t, which exists as a well-defined analytic func-
tion, and is inverible by its inverse F−1 to jµ,t again, so from equation 2.2
we deduce

FA(χ) = (−4πG) 1
χ2

0 − · · · − χ3
3
Fjt(χ),
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that is: jt 7→ A is the linear mapping S2jt with S2 being the Fourier trans-
formation of the multiplication operator Ŝ2 := 1

χ2
0−···χ3

3
.

So, S2jt := (−4πG)A is well-defined for each Ω :7→ jt, and therefore S :=
(
∑
µ γµ∂µ)(−4πG) 1

2S2 is well-defined for each Ω : t 7→ jt, where the γµ are
the 4× 4-Dirac matrices, plus we get that S2 becomes the square of S.

For the purpose of simplicity, let’s drop the external time index from jt.
Again, for each µ, the mapping Θµ : jµ 7→ Aµ defines a linear mapping from
jµ ∈ C∞c (R4) to a functional which is defined ”outside the support supp(jµ)
of jµ”:
For x, y ∈ R4 let d(x− y) := (x− y)µ(x− y)µ ∈ R be the Minkowksi distance
of x and y, and with jµ ∈ C∞c (R4) and x ∈ R4 let

p(x, supp(j)) := min
0≤µ≤3

inf
y∈supp(jµ)

∣∣d(x− y)
∣∣ ∈ [0,∞),

which defines a seminorm on R4. With it, given j = (j0, . . . , j3) as above,
let Ξ(j) := {x ∈ R4 | p(x, supp(j)) > 0}, which is open in R4. Then Θ =
(Θ0, . . . ,Θ3) maps j to a quadrupel of functionals on C∞c (Ξ(j)) (as shown
subsequently).

Let’s define the functional spaces above and see what the seemingly un-
defined term < j,A >=< j, S2j > gives in terms of distributions:

Let K ⊂ R4 be the (compact) closure of a non-empty, open, and
bounded subset Ko ⊂ R4, and let Ξ(K) as above be the set of all x ∈ R4

with p(x,K) > 0, which is an open, non-empty subset of R4. Ξ(K) itself is
the union of a sequence X1, X2, . . . of compact regions of R4, which as K are
the closures of nontrivial, open sets Xo

l ⊂ R4. Given such a compact region
X, the set of all infinitely differentiable (complex-valued) functions with sup-
port in X is a vector space C∞c (X), which becomes a complete locally convex,
separable space, when equipping it with the sequence of supremum norms for
all its n-th order partial derivatives (where n ≥ 0 is understood), see e.g. [1].
Then the space C∞c (X)4 = C∞c (X)⊕· · ·⊕C∞c (X) of quadruples (j1, . . . , j4) is
a (separable, complete) locally convex space, and so is its dual, C′∞c (X)4, the
space of continuous linear functionals on C∞c (X)4 (see again: [1]). This then
defines C′∞c (Ξ(K))4 as the union

⋃
l∈N C′∞c (Xl)4, giving it the finest locally

convex topology, for which the embeddings ι : C′∞c (Xl)4 → C′∞c (Ξ(K))4 are
continuous, which is called LF-space (see again: [1, Ch.13]).

Proposition 3.2. S and S2 are well-defined as linear mappings on C∞c (K)4

into C′∞c (Ξ(K))4, and < j, Sj >=< j, S2j >= 0 holds for each j ∈ C∞c (K)4.

Proof. Without loss of generality, let’s assume −4πG ≡ 1. Let δ : C(R4) 3
f 7→ f(0) ∈ C be the Dirac-distribution (in 4 dimensions). Then �f = δ
is solved by f(x) = 1

(2π)4

∫
R4 e

ix·ξ −1
ξ2

0−ξ2
1−ξ2

2−ξ2
3
d4ξ, so for x ∈ Ξ(K) and j ∈

C∞c (K)4,

S2j(x) = 1
(2π)4

∫
R4×R4

e(ix−y)·ξ −1
(x0 − y0)2 − · · · − (x3 − y3)2 j(y)d4yd4ξ
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is a well-defined complex functional on C∞c (Ξ(K))4, since for g ∈ C∞c (Ξ(K))4

g(x) ·
∫
f(x− y)j(y)d4y is integrable in x, due to inf

x∈supp(g)
p(x,K) > 0. And,

since j is infinitely differentiable, S2j is infinitely differentable on Ω(K).
(Because the 4 components jk of j satisfy

∫
|jk| d4y ≤ V ol(K) supy∈K

∣∣jk(y)
∣∣,

S2 even defines a continuous mapping from C∞c (K)4 into C′∞c (Ξ(K))4.)
Along with S2, all its partial derivatives are well-defined too.
Hence, S = (

∑
0≤µ≤3 γµ∂µ)S2 is a well-defined mapping from C∞c (K)4 to

C′∞c (Ξ(K))4.
Lastly, < j, S2j >=< j, Sj >= 0 follows from the fact that every jµ ∈ C∞c (K)
is equal to zero outside of K, so in particular vanishes on Ξ(K). �

Remark 3.3. Physically, what the proposition tells, is that the field does not
interact with its own source.

With it, let Ω : t 7→ jt =
∑

1≤k≤N jk(t) be the sum of N time-curves of
smooth vector functions t 7→ j1(t), . . . , jN (t) ∈ C∞c (R4)4 of disjoint support
and of compact support at each instance of time as illustrated below:

That’s what an external observer would e.g. see, as he looks at our solar
system: at each time t = x0, he sees planets and sun as chunks of energy-
momentum distributions spatially staying apart of eachother. Dropping the
external parameter t t again, equation 2.2 holds for the sum of energy mo-
mentum distributions j =

∑
k jk, and as such it includes the interaction

between all the N chunks jk (at ”retarded” times: note however, that the
composed system is distributed over space-time and the observer has no in-
formation on what particle point comes first). If instead the N chunks were
independently moving from eachother, we would see different distributions of
energy-momentum jfree,1, . . . , jfree,n, each moving in a straight line. What
we want is an interaction defining field V (jfree,1, . . . , jfree,N ), which captures
that interaction, i.e. such that:

<
∑

1≤k≤N
jk,

∑
1≤k≤N

jk >=<
∑
k

jfree,k,
∑
k

jfree,k > +V (jfree,1, . . . , jfree,N ).
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This in mind, let’s put jk = jfree,k + iSjfree,k. Then, letting S∗ be the
adjoint of S,

<
∑
k

jk,
∑
k

jk >=<
∑
k

jfree,k,
∑
k

jfree,k > +
∑
k

< S∗jfree,k, Sjfree,k >

+
∑

1≤k,l≤N
< S∗jfree,k, Sjfree,l >

=<
∑
k

jfree,k,
∑
k

jfree,k > +
∑
k

< jfree,k, S
2jfree,k >

+ 2
∑

1≤k<l≤N
Re < jfree,k, S

2jfree,l >,

where the mixed, imaginary products of jfree,k and iSjfree,l cancel out due to
complex conjugation. By the proposition above,

∑
k < jfree,k, S

2jfree,k >=
0, so we get that the square E2 of the total energy of the interacting N-part
system equals the square E2

free of the total energy of the N non-interacting
systems plus a sum V of mixed, real-valued terms Re < jfree,k, S

2jfree,l >,
(k < l), so for

∣∣Efree∣∣�|V |:
|E| = +

∣∣Efree∣∣
√

1 + V

Efree
≈
∣∣Efree∣∣+ V

2
∣∣Efree∣∣ =

=
∣∣Efree∣∣+ 1∣∣Efree∣∣ ∑

1≤k<l≤N
Re < jfree,k, S

2jfree,l > .

For N = 2 and restricting to real-valued j1, j2, we have

1∣∣Efree∣∣Re < jfree,1, S
2jfree,2 >

= 1∣∣Efree∣∣
∫
j1(x) · (S2j2)(x)d4x =

∫
j1(x)Φ(x)d4x

with Φ(x) := 1
|Efree|S

2jfree,2(x), which then is the vector field of gravita-
tional interaction, of which the first component converges to the classical
gravitational field as c→∞, and the other components converge to zero.

Remark 3.4. Note the slight, but important shift of dimensioning of the po-
tential field Φ: Φ is no longer the field of an external source, which is taken
by unit mass (or charge) through division by the source mass/charge, but
the division is by the total energy of the (free) composed system instead, and
this factor is retrieved not by definition, but by calculating the square root.
Also note that the gravitational potential Φ now is the additive correction to
the sum of free rest masses of its two interacting parts, these free rest masses
are the dominating energetic contents of the overall interacting system. Fi-
nally, although we extracted Φ from that system, it is still integral part of
Ω : t 7→ jt for temperature limit T → 0.
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Doing the same for N > 2, would lead to a vector field Φ which depends
on N space-time quadruples x1, . . . , xN ∈ R4, however. And by refining the
partitioning, letting the number N steadily increase, one ends up with Feyn-
man path integration.
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