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Abstract Textbook theory says that the Canonical Commutation Relation derives
from the homogeneity of space. This paper shows that the Canonical Commutation
Relation does not derive from homogeneity of space or the homogeneity symmetry
itself, but derives from a duality viewpoint of homogeneity, seen both from the
viewpoint of position space, and from the viewpoint of momentum space, com-
bined. Additionally, a specific particular fixed scale factor, relating position space
with momentum space is necessary. It is this additional scaling information which
enables complementarity between the system variables and makes the system uni-
tary. Without this particular scaling, the Canonical Commutation Relation is left
non-unitary and broken. Indeed, unitarity is separate information, unconnected and
logically independent of the quantum system’s underlying symmetry. This single
counter-example contradicts the current consencus that foundational symmetries,
underlying quantum systems, are ontologically, intrinsically and unavoidably uni-
tary. And thus removes ‘unitary ontology’, as reason, for axiomatically imposing
unitarity (or self-adjointness) — by Postulate — on quantum mechanical systems.

Keywords foundations of quantum theory, quantum mechanics, wave mechanics,
Canonical Commutation Relation, symmetry, homogeneity of space, unitary.

1 Homogeneity of Space and Wave Mechanics

The Canonical Commutation Relation:

px− xp = −i~

embodies core algebra at the heart of wave mechanics. With general acceptance
amongst quantum theorists, the professed significance of this relation is that it de-
rives from the homogeneity of space — and is unitary. In this paper, I re-examine
the Canonical Relation’s derivation and establish that the homogeneity symmetry
is of itself not unitary. And in consequence establish that the Canonical Commuta-
tion Relation does not, itself, faithfully represent homogeneity, but contains extra
unitary information also.

Imposing homogeneity on a system is identical to imposing a null physical
or geometrical effect under arbitrary translation of reference frame. To formulate
this arbitrary translation, resulting in null effect, the principle we invoke is Form
Invariance. This is the concept from relativity that symmetry transformations leave
formulae fixed in form, though values may alter [3]. In the case at hand, the relevant
formula whose form is held fixed is the eigenvalue equation for position:

x |fx (x)〉 = x |fx (x)〉 . (1)

In this, the san-serif x denotes the eigenvalue and labels its eigenvector fx; the
variable x (curly) is the function domain. The use of two different variables here,
may seem unusual and pointless. In fact, logically they are different; x is quantified
existentially but x is quantified universally.

With form held fixed as the reference system is displaced, variation in the po-
sition operator x determines a group relation, representing the homogeneity sym-
metry. Under arbitrarily small displacements, this group corresponds to a linear
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x |fx〉 = x |fx〉

��

Ox→Ox′

translation // x |fx−ε〉 = (x + ε) |fx−ε〉

|fx−ε〉→|ψx−ε〉→|ψx〉 similarity

��(
SxS−1 − ε1

)
|ψx〉 = x |ψx〉

(
SxS−1 − ε1

)
|ψx〉 = x |ψx〉oo

Figure 1 Scheme of transformations. The bottom left hand formula is the resulting group
relation.

algebra representing homogeneity locally. These are a Lie group and Lie algebra. To
maintain the form of (1) under translation, the basis |fx〉 is cleverly managed: whilst
the translation transforms the basis from |fx〉 to |fx−ε〉, a similarity transformation
is also applied, chosen to revert |fx−ε〉 back to |fx〉. In this way |fx〉 is held static.
Actually, similarity transforms can be found only for a certain class of functions:{
ψx ∈ L1} ⊂ {fx}. These are the functions in Banach space — having no inner

product. Hilbert space is not needed at this point.
The similarity transformations are the one-parameter subgroup of the general

linear group, S (ε) ⊂ S ∈ GL (F), with the transformation parameter ε coinciding
with the displacement parameter, and where F is any infinite field. The overall
scheme of transformations is depicted in Figure 1.

In standard theory, textbook understanding is that S (ε) is intrinsically and
necessarily unitary [1, p.109][2, p.34], and it is in that unitarity where the Canonical
Commutation Relation finds its unitary origins. And so, because its presence is
thought intrinsically necessary, unitarity is imposed axiomatically on the theory,
by Postulate. This imposed unitarity is added information, extra to the information
of homogeneity. In consequence, the underlying symmetry beneath wave mechanics
is not homogeneity of space, but instead, a unitary subgroup of it.

As an experiment, I proceed by treating unitarity as a purely separate issue from
homogeneity, allowing S (ε) it’s widest generality, so that the whole information of
homogeneity (upto the general linear similarity transformation) is faithfully and
genuinely conveyed through the theory.

The experiment begins with the position eigenvalue equation (1) being rewrit-
ten, in the form of a quantified proposition (2). From here on, all informal as-
sumptions are to be shed, with the Dirac notation dropped to avoid any inference
that vectors are intended as orthogonal, in Hilbert space, or equipped with a scalar
product; none of these is implied.

Consider the eigenformula for position operator x, eigenfunctions fx and eigenvalues
x, seen from the reference frame Ox:

∀x∃x∃x∃fx | xfx (x) = xfx (x) (2)

Translation: Applying the translation first. Under translation, homogeneity de-
mands existence of an equally relevant reference frame Ox′ displaced arbitrarily
through ε. See Figure 2. Form Invariance guarantees a formula for Ox′ of the same
form as that for Ox in (2), thus:

∀x′∃x∃x′∃f ′x | xf ′x (x′) = x′f ′x (x′) (3)

f          (x)

Figure 2 Passive translation of a function Two reference systems, Ox and Ox′ , arbitrar-
ily displaced by ε, individually act as reference systems for position of a function fx. If the
x-space is homogeneous, then regardless of the value of ε, physics concerning this function is
described by formulae whose form remains invariant, though values may change. Note: The
function and reference frames are not epistemic; fx is non-observable and Ox and Ox′ are not
observers.
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A relation for x is to be evaluated, so x is held static for all reference frames. The
translation transforms position, thus:

∀ε∀x′∃x | x 7→ x′ = x + ε (4)

and transforms the function, thus:

∀ε∀x′∀f ′x∃fx∃x | fx (x) 7→ f ′x (x′) = fx−ε (x− ε) (5)

Substituting (4) and (5) into (3) gives the translated formula: Substitution
involving quantified variables

∀β∀γ∃α | α = β + γ

∀β∃γ | γ = β + β

⇒ ∀β∃α | α = β + β + β

For logically dependent substitution, an ex-
istential quantifier of one proposition should
be matched with a universal quantifier of the
other. This is because, for this type of substitu-
tion coincidence is certain and not accidental.
Matching quantifiers are underlined.

∀x∀ε∃x∃x∃fx | xfx−ε (x− ε) = (x + ε) fx−ε (x− ε) . (6)

Similarity: Applying the similarity transformation. This involves the one-parameter
linear operator S(ε). Any such transformation would be invalid if it were to result
in an unbounded fx. Valid transformations S(ε) exist only if there exists a function
space {ψx}, which is complete, normalisable, not restricted to separable1 functions,
and of course, also be a subset of the translatable functions fx.

Such function spaces are well-known; they are the normed L1 spaces, known as
Banach spaces. See Figure 3. Hilbert space L2 is a particular class of Banach space
whose norm is determined by an inner product. For the purpose of our transforma-
tion, Hilbert space is extra unnecessary conditionality. Hilbert space materialises
incidentally and downstream of this point, arising through circumstances indepen-
dent of homogeneity. Significantly, the operator S(ε) and functions ψx can be real,
so the following proposition is valid for non-unitary, real operators S(ε) and real
functions ψx:

̀

Figure 3 The linear transformations S exist
only for bounded ψx, maximally, the Banach
space L1. These are the Lebesgue integrable
functions:

∫
|ψx| is finite.

∀x∀ε∀ψx−ε∃S∃ψx | S−1
(ε)ψx (x) = ψx−ε (x− ε) . (7)

In standard theory, S(ε) would be set unitary by the mathematician. Doing that
restricts the space of functions ψx to the Hilbert space L2 without homogeneity
demanding it.

The similarity transformation is formed, thus:

∀x∀ε∃x∃x∃ψx∃S | S(ε)xS−1
(ε)ψx (x) = (x + ε)ψx (x) .

Introducing the trivial eigenformula: ∀ψx∀x∀ε | ε1ψx (x) = εψx (x) and subtracting:

∀x∀ε∃x∃x∃ψx∃S |
(

S(ε)xS−1
(ε) − ε1

)
ψx (x) = xψx (x) . (8)

Now comparing the original position eigenformula (2) against the transformed one
(8), we deduce the group relation for similarity transformed homogeneity:

∀x∀ε∃x∃ψx∃S | xψx (x) =
(

S(ε)xS−1
(ε) − ε1

)
ψx (x) . (9)

From this group relation, the commutator for the Lie algebra is now computed.
Because S(ε) is a one-parameter subgroup of GL (F), there exists a unique linear
operator g for real parameters ε, such that:

∀S∃g | S(ε) = eεg (10)

Noting that homogeneity is totally independent of scale, an arbitrary scale factor
η is extracted, thus: ∀g∀η∃k : g = ηk, implying:

∀η∀S∃k | S(ε) = eηεk (11)
∀η∀S∃k | S−1

(ε) = S(−ε) = e−ηεk (12)

Substitution of (11) and (12) into (9) gives:

∀x∀η∃ψx∃x∃k | exp (+ηεk) x exp (−ηεk)ψx (x) = [x + ε1]ψx (x)

⇒ ∀x∀η∃ψx∃x∃k |
[
1 + ηεk +O

(
ε2
)]

x
[
1− ηεk +O

(
ε2
)]
ψx (x) = [x + ε1]ψx (x)

⇒ ∀x∀η∃ψx∃x∃k |
[
x + ηεkx +O

(
ε2
)] [

1− ηεk +O
(
ε2
)]
ψx (x) = [x + ε1]ψx (x)

⇒ ∀x∀η∃ψx∃x∃k |
[
x + ηεkx− ηεxk +O

(
ε2
)]
ψx (x) = [x + ε1]ψx (x)

⇒ ∀x∀η∃ψx∃x∃k | [kx− xk]ψx (x) =
[
η−11−O (ε)

]
ψx (x)

At the limit, as ε→ 0, we have:

∀x∀η∃ψx∃x∃k | [k,x]ψx (x) = η−11ψx (x) (13)
1 Separable means countable, as are the integers, as opposed to continuous, like the reals.
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And by an analogous proof, similar to all that above, but conditional upon the
existence of eigenfunctions χk (k) of k:

∀k∀ζ∃χk∃x∃k | [x,k]χk (k) = ζ−11χk (k) . (14)

Individually, each of the formulae (13) and (14) are separate consequences of the
homogeneity symmetry, and yet they are not the Canonical Commutation Relation;
and there is no assurance they offer complementarity.

2 New logically independent information

If homogeneity is to imply the Canonical Commutation Relation, new information is
needed, in addition to (13) and (14). For one thing, quantifiers ∀η in (13) and ∀ζ in
(14) contradict the Canonical Commutation Relation. Hence, some extra condition
that restricts these is necessary information. It should be noted that this extra
condition will be new information that is logically independent of homogeneity.

I proceed by making the assumption that the extra information needed is for
both these formulae to be valid — simultaneously. As they appear, there is no
guarantee of that. Note that (13) is quantified ∃ψx, and (14) quantified ∃χk. And
so their combined quantification is ∃ψx∃χk; it is not ∀ψx∃χk or ∀χk∃ψx. Hence,
non-contradictory values for ψx and χk are not guaranteed; any happy coincidence
between them would be accidental.

In precise terms, to uncover the extra information that guarantees simultaneity,
I pose the assumed simultaneity formally as an hypothesis, then proceed to deduce
conditionality implied by it. Essentially, the hypothesis is an experiment needing
guesswork, and it seems likely that, vectors ψx and χk must be particular parallel
scalings of one another.
Hypothesised coincidence:

∀χk∀ζ∀η∃ψx ∧ ∀x∃k | χk (k) = ζηψx (x) (15)

Taking (13) and the negative of (14) gives us the pair:

∀x∀η∃ψx∃x∃k | [k,x]ψx (x) = +η−11ψx (x) (16)
∀k∀ζ∃χk∃x∃k | [k,x]χk (k) = −ζ−11χk (k) (17)

Substuting the Hypothesised coincidence (15) into (17) gives the pair:

∀x∀η∃ψx∃x∃k | [k,x]ψx (x) = +η−11ψx (x) (18)
∀x∀ζ∀η∃ψx∃x∃k | ζη [k,x]ψx (x) = −η+11ψx (x) (19)

Subtracting (18) and (19):

∀x∀ζ∀η∃ψx∃x∃k |
{

(ζη − 1) [k,x] +
(
η + η−1) 1

}
ψx (x) = 0 (20)

The formula (20) is self-contradictory, because it cannot be true for all values of ζ
and η. In truth, (20) is valid only for values:

ζ = ±i η = ∓i (21)

This confirms there is something invalid about the Hypothesis (15). Nonetheless,
an Adjusted Hypothesis (22), in which quantifiers ∀ζ∀η are replaced by ∃ζ∃η,
thus:

∀χk∃ζ∃η∃ψx ∧ ∀x∃k | χk (k) = ζηψx (x) (22)

eliminates the self-contradiction, thus:

∀x∃ζ∃η∃ψx∃x∃k |
{

(ζη − 1) [k,x] +
(
η + η−1) 1

}
ψx (x) = 0 (23)

Summarising

On top of homogeneity, logically independent, extra new information is needed in
constructing the Canonical Commutation Relation:

[k,x] = −i1 or [p,x] = −i~1 (24)

That information is represented in the steps taken in going from the non-unitary
(13) and (14) to the unitary (24). Precisely, the Canonical Commutation Relation
does not represent the homogeneity of space; it represents homogeneity for a par-
ticular scaling between position space and wave-number space (momentum space).
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Conclusion

The above establishes that the homogeneity of space, or indeed, the homogeneity
symmetry is not the source of unitary information in wave mechanics. That is to
say, the foundational symmetry we suppose to be the fundamental ontology of this
quantum system is not unitary. Rather, unitarity is separate, logically independent
of the underlying ontology, and a condition implied within complementarity.

And therefore, if the reason given for postulating that quantum theory should be
unitary or self-adjoint, is that symmetries in Nature are intrinsically, unavoidably
and ontologically unitary, then this one counter-example requires that a different
reason be found, or otherwise, the Postulate be withdrawn.

This does not mean Quantum Theories are not unitary, because certainly they
are; it means that unitarity may not be imposed by the mathematician, for the
reason she believes unitarity to be a Fundamental Physical Principle.
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