There is No Standard Model of ZFC and ZFC₂

Jaykov Foukzon
jaykovfoukzon@list.ru
Israel Institute of Technology, Haifa, Israel

Abstract: In this article we proved so-called strong reflection principles corresponding to formal theories \(Th \) which has omega-models or nonstandard model with standard part. An possible generalization of Lob’s theorem is considered. Main results are:

(i) \(\lnot \text{Con}(\text{ZFC} + \exists M^ZFC) \),
(ii) \(\lnot \text{Con}(\text{NF} + \exists M^\text{NF}) \),
(iii) \(\lnot \text{Con}(\text{ZFC}_2) \), (iv) let \(k \) be an inaccessible cardinal then \(\lnot \text{Con}(\text{ZFC} + \exists k) \).

Keywords: Gödel encoding, Completion of ZFC, Russell’s paradox, \(\omega \)-model, Henkin semantics, full second-order semantic strongly inaccessible cardinal

Part I. There is no standard model of ZFC

1. Introduction.
1.1. Main results.
2. Derivation of the inconsistent definable set in set theory \(\text{ZFC}^H_2 \), \(\text{ZFC}^{st} \) and \(\text{ZFC}^{Nst} \).
2.1. Derivation of the inconsistent definable set in set theory \(\text{ZFC}^H_2 \).
2.2. Derivation of the inconsistent definable set in set theory \(\text{ZFC}^{st} \).
2.3. Derivation of the inconsistent definable set in set theory \(\text{ZFC}^{Nst} \).
3. Derivation of the inconsistent provably definable set in set theory \(\text{ZFC}^H_2 \), \(\text{ZFC}^{st} \) and \(\text{ZFC}^{Nst} \).
3.1. Derivation of the inconsistent provably definable set in \(\text{ZFC}^H_2 \).
3.2. Derivation of the inconsistent provably definable set in \(\text{ZFC}^{st} \).
3.3. Derivation of the inconsistent provably definable set in \(\text{ZFC}^{Nst} \).
3.4. Generalized Tarski’s undefinability lemma.
3.5. Generalized Tarski’s undefinability theorem.
3.6. Avoiding the contradictions from set theory \(\text{ZFC}^H_2 \), \(\text{ZFC}^{st} \) and set theory \(\text{ZFC}^{Nst} \) using Quinean approach.
3.6.1. Quinean set theory \(NF \).
3.6.2. Set theory \(\text{ZFC}^H_2 \), \(\text{ZFC}^{st} \) and set theory \(\text{ZFC}^{Nst} \) with stratified axiom schema of replacement.

Part II. Generalized Löbs Theorem.

1. Introduction.
2.2. Derivation inconsistent countable set in set theory \(\text{ZFC}^H_2 + \exists M^{\text{ZFC}^H_2} \) and in set theory \(\text{ZFC} + \exists M^{\text{ZFC}} \) using Generalized Tarski’s undefinability theorem.
2.3. Proof of the inconsistency of the set theory $\text{ZFC}^2 + \exists M^\text{ZFC}^2$ using Generalized Tarski's undefinability theorem.

I. Introduction.

1.1. Main results.

Let us remind that accordingly to naive set theory, any definable collection is a set. Let R be the set of all sets that are not members of themselves. If R qualifies as a member of itself, it would contradict its own definition as a set containing all sets that are not members of themselves. On the other hand, if such a set is not a member of itself, it would qualify as a member of itself by the same definition. This contradiction is Russell's paradox. In 1908, two ways of avoiding the paradox were proposed, Russell's type theory and Zermelo set theory, the first constructed axiomatic set theory. Zermelo's axioms went well beyond Frege's axioms of extensionality and unlimited set abstraction, and evolved into the now-canonical Zermelo–Fraenkel set theory ZFC. "But how do we know that ZFC is a consistent theory, free of contradictions? The short answer is that we don't; it is a matter of faith (or of skepticism)"—E. Nelson wrote in his paper [1]. However, it is deemed unlikely that even ZFC_2 which is significantly stronger than ZFC harbors an unsuspected contradiction; it is widely believed that if ZFC and ZFC_2 were inconsistent, that fact would have been uncovered by now. This much is certain—ZFC and ZFC_2 is immune to the classic paradoxes of naive set theory: Russell's paradox, the Burali-Forti paradox, and Cantor's paradox.

Remark 1.1.1. Note that in this paper we view (i) the first order set theory ZFC under the canonical first order semantics (ii) the second order set theory ZFC_2 under the Henkin semantics [2],[3] and (iii) the second order set theory ZFC_2 under the full second-order semantics [4],[5],[6].

Remark 1.1.2. Second-order logic essentially differs from the usual first-order predicate calculus in that it has variables and quantifiers not only for individuals but also for subsets of the universe and variables for n-ary relations as well [7],[8]. The deductive calculus DED_2 of second order logic is based on rules and axioms which guarantee that the quantifiers range at least over definable subsets [7]. As to the semantics, there are two types of models: (i) Suppose \mathcal{U} is an ordinary first-order structure and \mathcal{S} is a set of subsets of the domain \mathcal{A} of \mathcal{U}. The main idea is that the set-variables range over \mathcal{S}, i.e. $\langle \mathcal{U}, \mathcal{S} \rangle \models \exists X \Phi(X) \iff \exists S \in \mathcal{S} \langle \langle \mathcal{U}, \mathcal{S} \rangle \models \Phi(S) \rangle$.

We call $\langle \mathcal{U}, \mathcal{S} \rangle$ a Henkin model, if $\langle \mathcal{U}, \mathcal{S} \rangle$ satisfies the axioms of DED_2 and truth in $\langle \mathcal{U}, \mathcal{S} \rangle$ is preserved by the rules of DED_2. We call this semantics of second-order logic the Henkin semantics and second-order logic with the Henkin semantics the Henkin second-order logic. There is a special class of Henkin models, namely those $\langle \mathcal{U}, \mathcal{S} \rangle$ where \mathcal{S} is the set of all subsets of \mathcal{A}.

We call these full models. We call this semantics of second-order logic the full semantics and second-order logic with the full semantics the full second-order logic.

Remark 1.1.3. We emphasize that the following facts are the main features of
second-order logic:

1. **The Completeness Theorem**: A sentence is provable in \(\text{DED}_2 \) if and only if it holds in all Henkin models [7].

2. **The Löwenheim-Skolem Theorem**: A sentence with an infinite Henkin model has a countable Henkin model.

3. **The Compactness Theorem**: A set of sentences, every finite subset of which has a Henkin model, has itself a Henkin model.

4. **The Incompleteness Theorem**: Neither \(\text{DED}_2 \) nor any other effectively given deductive calculus is complete for full models, that is, there are always sentences which are true in all full models but which are unprovable.

5. **Failure of the Compactness Theorem** for full models.

6. **Failure of the Löwenheim-Skolem Theorem** for full models.

7. There is a finite second-order axiom system \(\mathbb{Z}_2 \) such that the semiring \(\mathbb{N} \) of natural numbers is the only full model (up to isomorphism) of \(\mathbb{Z}_2 \).

8. There is a finite second-order axiom system \(\text{RCF}_2 \) such that the field \(\mathbb{R} \) of real numbers is the only (up to isomorphism) full model of \(\text{RCF}_2 \).

Remark 1.1.4. For let second-order \(\text{ZFC} \) be, as usual, the theory that results obtained from \(\text{ZFC} \) when the axiom schema of replacement is replaced by its second-order universal closure, i.e.

\[
\forall X[\text{Func}(X) \Rightarrow \forall u \exists v \forall r[r \in v \Leftrightarrow \exists s(s \in u \land (s, r) \in X)]],
\]

(1.1.1) where \(X \) is a second-order variable, and where \(\text{Func}(X) \) abbreviates "\(X \) is a functional relation", see [7].

Thus we interpret the wff’s of \(\text{ZFC}_2 \) language with the full second-order semantics as required in [4],[5],[6],[7].

Designation 1.1.1. We will denote (i) by \(\text{ZFC}^\text{Hs}_2 \) set theory \(\text{ZFC}_2 \) with the Henkin semantics, (ii) by \(\text{ZFC}^{\text{R}}_2 \) set theory \(\text{ZFC}_2 \) with the full second-order semantics, (iii) by \(\text{ZFC}^\text{fss}_2 \) set theory \(\text{ZFC}_2 + \exists \mathbb{M}_{\text{st}}^{\text{ZFC}} \) and (iv) by \(\text{ZFC}_{\text{st}} \) set theory \(\text{ZFC} + \exists \mathbb{M}_{\text{st}}^{\text{ZFC}} \), where \(\mathbb{M}_{\text{st}}^{\text{ZFC}} \) is a standard model of the theory \(\text{Th} \).

Remark 1.1.3. There is no completeness theorem for second-order logic with the full second-order semantics. Nor do the axioms of \(\text{ZFC}^{\text{R}}_2 \) imply a reflection principle which ensures that if a sentence \(Z \) of second-order set theory is true, then it is true in some model \(\mathbb{M}^{\text{ZFC}}_\kappa \) of \(\text{ZFC}^{\text{R}}_2 \) [5]. Let \(Z \) be the conjunction of all the axioms of \(\text{ZFC}^{\text{R}}_2 \). We assume now that: \(Z \) is true, i.e. \(\text{Con}(\text{ZFC}^{\text{R}}_2) \). It is known that the existence of a model for \(Z \) requires the existence of strongly inaccessible cardinals, i.e. under \(\text{ZFC} \) it can be shown that \(\kappa \) is a strongly inaccessible if and only if \((H_\kappa, \in) \) is a model of \(\text{ZFC}^{\text{R}}_2 \). Thus \(\neg \text{Con}(\text{ZFC}^{\text{R}}_2) \Rightarrow \neg \text{Con}(\text{ZFC} + \exists \kappa) \). In this paper we prove that:

(i) \(\text{ZFC}_{\text{st}} \triangleq \text{ZFC} + \exists \mathbb{M}_{\text{st}}^{\text{ZFC}} \)

(ii) \(\text{ZFC}^{\text{Hs}}_2 \triangleq \text{ZFC} + \exists \mathbb{M}_{\text{st}}^{\text{ZFC}} \) and (iii) \(\text{ZFC}^{\text{fss}}_2 \) is inconsistent, where \(\mathbb{M}_{\text{st}}^{\text{ZFC}} \) is a standard model of the theory \(\text{Th} \).

Axiom \(\exists \mathbb{M}^{\text{ZFC}} \). [8]. There is a set \(\mathbb{M}^{\text{ZFC}} \) and a binary relation \(\epsilon \subseteq \mathbb{M}^{\text{ZFC}} \times \mathbb{M}^{\text{ZFC}} \) which makes \(\mathbb{M}^{\text{ZFC}} \) a model for \(\text{ZFC} \).

Remark 1.1.3. (i) We emphasize that it is well known that axiom \(\exists \mathbb{M}^{\text{ZFC}} \) a single statement in \(\text{ZFC} \) see [7], Ch.II, section 7. We denote this statement through all this paper by symbol \(\text{Con}(\text{ZFC}; \mathbb{M}^{\text{ZFC}}) \). The completeness theorem says that \(\exists \mathbb{M}^{\text{ZFC}} \Leftrightarrow \text{Con}(\text{ZFC}) \).
(ii) Obviously there exists a single statement in $ZFC^{\mathbb{H}_2}$ such that
\[\exists M^ZFC^{\mathbb{H}_2} \iff \text{Con}(ZFC^{\mathbb{H}_2}). \]

We denote this statement throughout all this paper by symbol $\text{Con}(ZFC^{\mathbb{H}_2}; M^ZFC^{\mathbb{H}_2})$ and there
exists a single statement $\exists M^ZFC^{\mathbb{H}_2}$ in $ZFC^{\mathbb{H}_2}$. We denote this statement throughout all this
paper by
symbol $\text{Con}(ZFC^{\mathbb{H}_2}; M^ZFC^{\mathbb{H}_2})$.

Axiom $\exists M^ZFC$. [8] There is a set M^ZFC such that if R is
\[\{(x,y)|x \in y \land x \in M^ZFC \land y \in M^ZFC\} \]
then M^ZFC is a model for ZFC under the relation R.

Definition 1.1.1. [8] The model M^ZFC is called a standard model since the relation \in used
is merely the standard \in-relation.

Remark 1.1.4. [8] Note that axiom $\exists M^ZFC$ doesn’t imply axiom $\exists M^ZFC$.

Remark 1.1.5. We remind that in Henkin semantics, each sort of second-order variable
has a particular domain of its own to range over, which may be a proper subset of all
sets or functions of that sort. Leon Henkin (1950) defined these semantics and proved
that Gödel’s completeness theorem and compactness theorem, which hold for first-order
logic, carry over to second-order logic with Henkin semantics. This is because Henkin
semantics are almost identical to many-sorted first-order semantics, where additional
sorts of variables are added to simulate the new variables of second-order logic.
Second-order logic with Henkin semantics is not more expressive than first-order logic.
Henkin semantics are commonly used in the study of second-order arithmetic. Väänänen
[6] argued that the choice between Henkin models and full models for second-order logic
is analogous to the choice between ZFC and V (V is von Neumann universe), as a basis
for set theory: "As with second-order logic, we cannot really choose whether we
axiomatize mathematics using V or ZFC. The result is the same in both cases, as ZFC
is the best attempt so far to use V as an axiomatization of mathematics."

Remark 1.1.6. Note that in order to deduce: (i) $\neg \text{Con}(ZFC^{\mathbb{H}_2})$ from $\text{Con}(ZFC^{\mathbb{H}_2})$,
(ii) $\neg \text{Con}(ZFC)$ from $\text{Con}(ZFC)$, by using Gödel encoding, one needs something more than
the consistency of $ZFC^{\mathbb{H}_2}$, e.g., that $ZFC^{\mathbb{H}_2}$ has an omega-model $M^ZFC^{\mathbb{H}_2}$ or an standard
model $M^ZFC^{\mathbb{H}_2}$; i.e., a model in which the integers are the standard integers. To put it
another way, why should we believe a statement just because there’s a $ZFC^{\mathbb{H}_2}$-proof of
it? It’s clear that if $ZFC^{\mathbb{H}_2}$ is inconsistent, then we won’t believe $ZFC^{\mathbb{H}_2}$-proofs. What’s
slightly more subtle is that the mere consistency of $ZFC^{\mathbb{H}_2}$ isn’t quite enough to get us to
believe arithmetical theorems of $ZFC^{\mathbb{H}_2}$; we must also believe that these arithmetical
theorems are asserting something about the standard naturals. It is "conceivable" that
$ZFC^{\mathbb{H}_2}$ might be consistent but that the only nonstandard models $M^ZFC^{\mathbb{H}_2}$ have are those
in which the integers are nonstandard, in which case we might not "believe" an
arithmetical statement such as "$ZFC^{\mathbb{H}_2}$ is inconsistent" even if there is a $ZFC^{\mathbb{H}_2}$-proof of it.

Remark 1.1.7. However assumption $\exists M^ZFC^{\mathbb{H}_2}$ is not necessary. Note that in any
nonstandard model $M^ZFC^{\mathbb{H}_2}$ of the second-order arithmetic $Z^{\mathbb{H}_2}$ the terms $\bar{0},$ $\bar{S}\bar{0}=\bar{S},\bar{S}\bar{S}\bar{0}=\bar{SS}\ldots$ comprise the initial segment isomorphic to $M^ZFC^{\mathbb{H}_2} \subset M^ZFC^{\mathbb{H}_2}$. This initial
segment is called the standard cut of the $M^ZFC^{\mathbb{H}_2}$. The order type of any nonstandard
model of \(M^{Z_2}_{st} \) is equal to \(\mathbb{N} + A \times \mathbb{Z} \) for some linear order \(A \) [9]. Thus one can to choose Gödel encoding inside \(M^{Z_2}_{st} \).

Remark 1.1.8. However there is no any problem as mentioned above in second order set theory \(ZFC_2 \) with the full second-order semantics because corresponding second order arithmetic \(Z_2^{fs} \) is categorical.

Remark 1.1.9. Note if we view second-order arithmetic \(Z_2 \) as a theory in first-order predicate calculus. Thus a model \(M^{Z_2} \) of the language of second-order arithmetic \(Z_2 \) consists of a set \(M \) (which forms the range of individual variables) together with a constant 0 (an element of \(M \)), a function \(S \) from \(M \) to \(M \), two binary operations + and \(\times \) on \(M \), a binary relation \(< \) on \(M \), and a collection \(D \) of subsets of \(M \), which is the range of the set variables. When \(D \) is the full powerset of \(M \), the model \(M^{Z_2} \) is called a full model. The use of full second-order semantics is equivalent to limiting the models of second-order arithmetic to the full models. In fact, the axioms of second-order arithmetic have only one full model. This follows from the fact that the axioms of Peano arithmetic with the second-order induction axiom have only one model under second-order semantics, i.e. \(Z_2 \), with the full semantics, is categorical by Dedekind’s argument, so has only one model up to isomorphism. When \(M \) is the usual set of natural numbers with its usual operations, \(M^{Z_2} \) is called an \(\omega \)-model. In this case we may identify the model with \(D \), its collection of sets of naturals, because this set is enough to completely determine an \(\omega \)-model. The unique full omega-model \(M^{Z_2}_{st} \), which is the usual set of natural numbers with its usual structure and all its subsets, is called the intended or standard model of second-order arithmetic.

2. Derivation of the inconsistent definable set in set theory \(\overline{ZFC}^{Hs}_2 \) and in set theory \(ZFC_{st} \).

2.1. Derivation of the inconsistent definable set in set theory \(\overline{ZFC}^{Hs}_2 \).

Designation 2.1.1. Let \(\Gamma^{Hs}_X \) be the collection of the all 1-place open wff of the set theory \(\overline{ZFC}^{Hs}_2 \).

Definition 2.1.1. Let \(\Psi_1(X), \Psi_2(X) \) be 1-place open wff’s of the set theory \(\overline{ZFC}^{Hs}_2 \).

(i) We define now the equivalence relation \((\cdot \sim_X \cdot) \subset \Gamma^{Hs}_X \times \Gamma^{Hs}_X \) by

\[
\Psi_1(X) \sim_X \Psi_2(X) \iff \forall X [\Psi_1(X) \iff \Psi_2(X)]
\]

(ii) A subset \(\Lambda^{Hs}_X \) of \(\Gamma^{Hs}_X \) such that \(\Psi_1(X) \sim_X \Psi_2(X) \) holds for all \(\Psi_1(X) \) and \(\Psi_2(X) \) in \(\Lambda^{Hs}_X \), and never for \(\Psi_1(X) \) in \(\Lambda^{Hs}_X \) and \(\Psi_2(X) \) outside \(\Lambda^{Hs}_X \), is called an equivalence class of \(\Gamma^{Hs}_X \) by \(\sim_X \).

(iii) The collection of all possible equivalence classes of \(\Gamma^{Hs}_X \) by \(\sim_X \), denoted \(\Gamma^{Hs}_X / \sim_X \),

\[
\Gamma^{Hs}_X / \sim_X \triangleq \{[\Psi(X)]_{Hs} | \Psi(X) \in \Gamma^{Hs}_X \},
\]

is the quotient set of \(\Gamma^{Hs}_X \) by \(\sim_X \).

(iv) For any \(\Psi(X) \in \Gamma^{Hs}_X \) let \([\Psi(X)]_{Hs} \triangleq \{\Phi(X) \in \Gamma^{Hs}_X | \Psi(X) \sim_X \Phi(X)\} \) denote the equivalence class to which \(\Psi(X) \) belongs. All elements of \(\Gamma^{Hs}_X \) equivalent to each other are also elements of the same equivalence class.
Definition 2.1.2.[9] Let Th be any theory in the recursive language $\mathcal{L}_Th \supset \mathcal{L}_{PA}$, where \mathcal{L}_{PA} is a language of Peano arithmetic. We say that a number-theoretic relation $R(x_1,\ldots,x_n)$ of n arguments is expressible in Th if and only if there is a wff $\hat{R}(x_1,\ldots,x_n)$ of Th with the free variables x_1,\ldots,x_n such that, for any natural numbers k_1,\ldots,k_n, the following hold:

(i) If $R(k_1,\ldots,k_n)$ is true, then $\vdash_{Th} \hat{R}(k_1,\ldots,k_n)$.
(ii) If $R(k_1,\ldots,k_n)$ is false, then $\vdash_{Th} \neg \hat{R}(k_1,\ldots,k_n)$.

Designation 2.1.2.(i) Let $g_{ZFC_2^{H_2}}(u)$ be a Gödel number of given an expression u of the set theory $ZFC_2^{H_2} \equiv ZFC_2^{H_2} + \exists M^{ZFC_2^{H_2}}$.
(ii) Let $Fr_2^{H_2}(y,v)$ be the relation y is the Gödel number of a wff of the set theory $ZFC_2^{H_2}$ that contains free occurrences of the variable X with Gödel number v [8]-[9].
(iii) Note that the relation $Fr_2^{H_2}(y,v)$ is expressible in $ZFC_2^{H_2}$ by a wff $\tilde{Fr}_2^{H_2}(y,v)$
(iv) Note that for any $y,v \in \mathbb{N}$ by definition of the relation $Fr_2^{H_2}(y,v)$ follows that

$$\tilde{Fr}_2^{H_2}(y,v) \iff \exists! \Psi(X)[(g_{ZFC_2^{H_2}}(\Psi(X)) = y) \land (g_{ZFC_2^{H_2}}(X) = v)].$$

(2.1.3)

where $\Psi(X)$ is a unique wff of $ZFC_2^{H_2}$ which contains free occurrences of the variable X with Gödel number v. We denote a unique wff $\Psi(X)$ defined by using equivalence (1.2.3) by symbol $\Psi_{y,v}(X)$, i.e.

$$\tilde{Fr}_2^{H_2}(y,v) \iff \exists! \Psi_{y,v}(X)[(g_{ZFC_2^{H_2}}(\Psi_{y,v}(X)) = y) \land (g_{ZFC_2^{H_2}}(X) = v)].$$

(2.1.4)

(v) Let $\psi_2^{H_2}(y,v,v_1)$ be a Gödel number of the following wff: $\exists! X[\Psi(X) \land X = Y]$, where $\psi_{ZFC_2^{H_2}}(\Psi(X)) = y, \psi_{ZFC_2^{H_2}}(X) = v, \psi_{ZFC_2^{H_2}}(Y) = v_1$.

(vi) Let $Pr_{ZFC_2^{H_2}}(z)$ be a predicate asserting provability in $ZFC_2^{H_2}$, which defined by formula

(2.6) in section 2, see Remark 2.2 and Designation 2.3,(see also [9]-[10]).

Remark 2.1.0. Note that this function $g_{ZFC_2^{H_2}}(\Psi_{y,v}(X)) = y$ is expressible in set theory $ZFC_2^{H_2}$ by a wff of the set theory $ZFC_2^{H_2}$ that contains free occurrences of the variable $y \in \mathbb{N}$. Note that formula $\Psi_{y,v}(X)$ is given by an expression $u_0 u_1 \ldots u_j \ldots u_r$, i.e.

$\Psi_{y,v}(X) := u_0 u_1 \ldots u_j \ldots u_r$, where each u_i is a symbol of $ZFC_2^{H_2}$. We introduce now a functions $[\Psi_{y,v}(X);j]$: $\Psi_{y,v}(X) \rightarrow u_j, j = 0, 1, \ldots$, i.e. $[\Psi_{y,v}(X);j] := u_j$ and revite expression $u_0 u_1 \ldots u_j \ldots u_r$ in the following equivalent form

$$[\Psi_{y,v}(X);0][\Psi_{y,v}(X);1] \ldots [\Psi_{y,v}(X);j] \ldots [\Psi_{y,v}(X);r].$$

By definitions we obtain that

$$g_{ZFC_2^{H_2}}(\Psi_{y,v}(X)) = y \iff y = 2^g([\Psi_{y,v}(X);0]) 3^g([\Psi_{y,v}(X);1]) \ldots p_j^g([\Psi_{y,v}(X);j]) \ldots p_r^g([\Psi_{y,v}(X);r]).$$

Let us denote by $(y)_j$ the exponent $g([\Psi_{y,v}(X);j])$ in this factorization

$$y = 2^g([\Psi_{y,v}(X);0]) 3^g([\Psi_{y,v}(X);1]) \ldots p_j^g([\Psi_{y,v}(X);j]) \ldots p_r^g([\Psi_{y,v}(X);r]).$$

If $y = 1, (y)_j = 1$ for all j. If $y = 0$, we arbitrarily let $(y)_j = 0$ for all j. Then the functions $(y)_j, j = 0, 1, \ldots$ is primitive recursive, since $(y)_j = \mu_{z \leq y}(p_j^z y \land \neg p_j^{z+1} y), [8]$. Thus the
function
\(y \), is expressible in set theory \(\text{ZFC} \) by formula denoted below by
\[\lambda_j(y, g(\Psi_{y,v}(X); j))). \]

For \(y > 0 \), let \(lh(y) \) be the number of non-zero exponents in the factorization of \(y \) into
powers of primes, or, equivalently, the number of distinct primes that divide \(y \). Let
\(lh(0) = 0 \), then \(lh(y) \) is primitive recursive. Thus function \(g_{\text{ZFC}}(\Psi_{y,v}(X)) = y \) is
expressible
in set theory \(\text{ZFC} \) by formula \(\exists(\Psi_{y,v}(X), y)
\[\exists(\Psi_{y,v}(X), y) \iff \bigwedge_{j \leq lh(y)} \lambda_j(y, g(\Psi_{y,v}(X); j))). \]

Remark 2.

Definition 2.1.3. Let \(\Gamma^{Hs}_x \) be the countable collection of the all 1-place open wff’s of the
set theory \(\text{ZFC}^{Hs}_2 \) that contains free occurrences of the variable \(X \).

Definition 2.1.4. Let \(g_{\text{ZFC}}(X) = v \). Let \(\Gamma^{Hs}_v \) be a set of the all Gödel numbers of the
1-place open wff’s of the set theory \(\text{ZFC}^{Hs}_2 \) that contains free occurrences of the
variable \(X \)
with Gödel number \(v \), i.e.
\[\Gamma^{Hs}_v = \{ y \in \Bbb N \mid (y, v) \in \text{Fr}^{Hs}_2(y, v) \} \],
or in the following equivalent form:
\[\forall y (y \in \Bbb N \implies (y \in \Gamma^{Hs}_v \iff (y \in \Bbb N) \land \text{Fr}^{Hs}_2(y, v)) \} \].

Remark 2.1. Note that from the axiom of separation it follows directly that \(\Gamma^{Hs}_v \) is a set
in the sense of the set theory \(\text{ZFC}^{Hs}_2 \).

Definition 2.1.5. (i) We define now the equivalence relation
\[(\sim_v \cdot) \subset \Gamma^{Hs}_v \times \Gamma^{Hs}_v \]
in the sense of the set theory \(\text{ZFC}^{Hs}_2 \) by
\[y_1 \sim_v y_2 \iff (\forall X[\Psi_{y_1,v}(X) \iff \Psi_{y_2,v}(X)]) \]

Note that from the axiom of separation it follows directly that the equivalence relation
\((\sim_v \cdot) \) is a relation in the sense of the set theory \(\text{ZFC}^{Hs}_2 \).
(ii) A subset \(\Lambda^{Hs}_v \) of \(\Gamma^{Hs}_v \) such that \(y_1 \sim_v y_2 \) holds for all \(y_1 \) and \(y_1 \) in \(\Lambda^{Hs}_v \), and never for \(y_1 \)
in
\(\Lambda^{Hs}_v \) and \(y_2 \) outside \(\Lambda^{Hs}_v \), is an equivalence class of \(\Gamma^{Hs}_v \).
(iii) For any \(y \in \Gamma^{Hs}_v \) let \([y]_{Hs} \triangleq \{ z \in \Gamma^{Hs}_v \mid y \sim_v z \} \) denote the equivalence class to which \(y \)
belongs. All elements of \(\Gamma^{Hs}_v \) equivalent to each other are also elements of the same
equivalence class.
(iv) The collection of all possible equivalence classes of \(\Gamma^{Hs}_v \) by \(\sim_v \), denoted \(\Gamma^{Hs}_v/\sim_v \)
\[\Gamma^{Hs}_v/\sim_v \triangleq \{ [y]_{Hs} \mid y \in \Gamma^{Hs}_v \} \].

Remark 2.1.2. Note that from the axiom of separation it follows directly that \(\Gamma^{Hs}_v/\sim_v \) \ is
set in the sense of the set theory \(\text{ZFC}^{Hs}_2 \).

Definition 2.1.6. Let \(\mathfrak{A}^{Hs}_2 \) be the countable collection of the all sets definable by 1-place
open wff of the set theory \(\text{ZFC}^{Hs}_2 \), i.e.
\[\forall Y (Y \in \mathfrak{A}^{Hs}_2 \iff \exists Y(X)([\Psi(X)]_{Hs} \in \Gamma^{Hs}_x \sim_x \iff \exists X[\Psi(X) \land Y = X]) \} \].
Definition 2.1.7. We rewrite now (2.1.10) in the following equivalent form
\[\forall Y \{ Y \in \mathcal{Y}_H \Leftrightarrow \exists \psi(X)[(\psi(X))_H \in \Gamma^H_\psi / \sim_X) \land (Y = X)] \}, \tag{2.1.11} \]
where the countable collection \(\Gamma^H_\psi / \sim_X \) is defined by
\[\forall \psi(X)\{[\psi(X)] \in \Gamma^H_\psi / \sim_X \Leftrightarrow [(\psi(X))_H \in \Gamma^H_\psi / \sim_X) \land \exists !X \psi(X)]\}. \tag{2.1.12} \]

Definition 2.1.8. Let \(\mathcal{R}_H \) be the countable collection of all sets such that
\[\forall X(X \in \mathcal{Y}_H) \Leftrightarrow X \notin \mathcal{Y}_H]. \tag{2.1.13} \]

Remark 2.1.3. Note that from the axiom schema of replacement (1.1.1) it follows directly that
\[\text{which immediately one obtains a contradiction} (\mathcal{R}_H \in \mathcal{R}_H) \land (\mathcal{R}_H \notin \mathcal{R}_H). \tag{2.1.14} \]

However contradiction (2.1.15) it is not a contradiction inside \(\mathcal{ZFC}_H \) for the reason that the countable collection \(\mathcal{Y}_H \) is not a set in the sense of the set theory \(\mathcal{ZFC}_H \).

In order to obtain a contradiction inside \(\mathcal{ZFC}_H \) we introduce the following definitions.

Definition 2.1.9. We define the countable set \(\Gamma^H_v / \sim_v \) by
\[\forall y \{ [y]_H \in \Gamma^H_v / \sim_v \Leftrightarrow ([y]_H \in \Gamma^H_v / \sim_v) \land \forall \psi(y, v) \psi(X) \}. \tag{2.1.16} \]

Remark 2.1.4. Note that from the axiom of separation it follows directly that \(\Gamma^H_v \) is a set in the sense of the set theory \(\mathcal{ZFC}_H \).

Definition 2.1.10. We define the countable set \(\mathcal{Z}_H \) by formula
\[\forall Y \{ Y \in \mathcal{Z}_H \Leftrightarrow \exists \psi([y] \in \Gamma^H_v / \sim_v) \land \psi(\mathcal{Z}_H(X) = v) \land Y = X] \}. \tag{2.1.17} \]

Note that from the axiom schema of replacement (1.1.1) it follows directly that \(\mathcal{Z}_H \) is a set in the sense of the set theory \(\mathcal{ZFC}_H \).

Definition 2.1.12. We define the countable set \(\mathcal{R}_H \) by formula
\[\forall X(X \in \mathcal{Z}_H) \Leftrightarrow X \notin \mathcal{Z}_H]. \tag{2.1.18} \]

Note that from the axiom schema of separation it follows directly that \(\mathcal{R}_H \) is a set in the sense of the set theory \(\mathcal{ZFC}_H \).

Remark 2.1.5. Note that \(\mathcal{R}_H \) since \(\mathcal{R}_H \) is a definable by the following formula
\[\psi^*(Z) \Leftrightarrow \forall X(X \in \mathcal{Z}_H) \Leftrightarrow X \notin \mathcal{Z}_H \]. \tag{2.1.19} \]

Theorem 2.1. Set theory \(\mathcal{ZFC}_H \) is inconsistent.

Proof. From (2.1.18) and Remark 2.1.5 we obtain \(\mathcal{R}_H \in \mathcal{R}_H \Leftrightarrow \mathcal{R}_H \notin \mathcal{R}_H \) from which immediately one obtains a contradiction \((\mathcal{R}_H \in \mathcal{R}_H) \land (\mathcal{R}_H \notin \mathcal{R}_H) \).

2.2. Derivation of the inconsistent definable set in set
theory \(ZFC_{st} \).

Designation 2.2.1 (i) Let \(g_{ZFC_{st}}(u) \) be a Gödel number of given an expression \(u \) of the set theory \(ZFC_{st} \triangleq ZFC + \exists M^{ZFC}_0 \).

(ii) Let \(Fr_{st}(y,v) \) be the relation : \(y \) is the Gödel number of a wff of the set theory \(ZFC_{st} \) that contains free occurrences of the variable \(x \) with Gödel number \(v \) [9].

(iii) Note that the relation \(Fr_{st}(y,v) \) is expressible in \(ZFC_{st} \) by a wff \(\overline{Fr}_{st}(y,v) \)

(iv) Note that for any \(y,v \in \mathbb{N} \) by definition of the relation \(Fr_{st}(y,v) \) follows that

\[
\overline{Fr}_{st}(y,v) \iff \exists !\Psi(X)[(g_{ZFC_{st}}(\Psi(X)) = y) \land (g_{ZFC_{st}}(X) = v)],
\]

(2.2.1)

where \(\Psi(X) \) is a unique wff of \(ZFC_{st} \) which contains free occurrences of the variable \(x \) with Gödel number \(v \). We denote a unique wff \(\Psi(X) \) defined by using equivalence (2.2.1) by symbol \(\Psi_{y,v}(X) \), i.e.

\[
\overline{Fr}_{st}(y,v) \iff \exists !\Psi_{y,v}(X)[(g_{ZFC_{st}}(\Psi_{y,v}(X)) = y) \land (g_{ZFC_{st}}(X) = v)],
\]

(2.2.2)

(v) Let \(\phi_{st}(y,v,v_1) \) be a Gödel number of the following wff: \(\exists !X[\Psi(X) \land X = Y] \) where \(g_{ZFC_{st}}(\Psi(X)) = y, g_{ZFC_{st}}(X) = v, g_{ZFC_{st}}(Y) = v_1 \).

(vi) Let \(Pr_{ZFC_{st}}(z) \) be a predicate asserting provability in \(ZFC_{st} \), which defined by formula (2.6) in section 2, see Remark 2.2 and Designation 2.3, (see also [8]-[9]).

Remark 2.2.0 Note that this function \(g_{ZFC_{st}}(\Psi_{y,v}(X)) = y \) is expressible in set theory \(ZFC_{st} \).

by a wff of the set theory \(ZFC_{st} \) that contains free occurrences of the variable \(y \in \mathbb{N} \). Note that formula \(\Psi_{y,v}(X) \) is given by an expression \(u_0u_1u_2 \ldots u_j \ldots u_r \), where each \(u_j \) is a symbol of \(ZFC_{st} \). We introduce now a functions \([\Psi_{y,v}(X);j] : \Psi_{y,v}(X) \rightarrow \mathbb{Z}, 0,1, \ldots \) i.e. \([\Psi_{y,v}(X);j] = u_j \) and rewrite expression \(u_0u_1u_2 \ldots u_r \) in the following equivalent form

\[
[\Psi_{y,v}(X);0][\Psi_{y,v}(X);1][\Psi_{y,v}(X);2] \ldots [\Psi_{y,v}(X);j][\Psi_{y,v}(X);r].
\]

By definitions we obtain that

\[
g_{ZFC_{st}}(\Psi_{y,v}(X)) = y \iff y = 2^{g([\Psi_{y,v}(X);0])} \cdot 3^{g([\Psi_{y,v}(X);1])} \cdot \ldots \cdot p_j^{g([\Psi_{y,v}(X);j])} \ldots p_r^{g([\Psi_{y,v}(X);r])}.
\]

Let us denote by \((y)_j\) the exponent \(g([\Psi_{y,v}(X);j]) \) in this factorization

\[
y = 2^{g([\Psi_{y,v}(X);0])} \cdot 3^{g([\Psi_{y,v}(X);1])} \cdot \ldots \cdot p_j^{g([\Psi_{y,v}(X);j])} \ldots p_r^{g([\Psi_{y,v}(X);r])}.
\]

If \(y = 1, (y)_j = 1 \) for all \(j \). If \(y = 0 \), we arbitrarily let \((y)_j = 0 \) for all \(j \). Then the functions \((y)_j, j = 0,1, \ldots \) is primitive recursive, since \((y)_j = \mu_{z}(p_j^z | y - p_j^{z+1} | y)\), [8]. Thus the function \((y)_j\) is expressible in set theory \(ZFC_{st} \) by formula denoted below by

\[\lambda_j(y, g([\Psi_{y,v}(X);j])).\]

For \(y > 0 \), let \(lh(y) \) be the number of non-zero exponents in the factorization of \(y \) into powers of primes, or, equivalently, the number of distinct primes that divide \(y \). Let \(lh(0) = 0 \), then \(lh(y) \) is primitive recursive. Thus function \(g_{ZFC_{st}}(\Psi_{y,v}(X)) = y \) is expressible in set theory \(ZFC_{st} \) by formula \(\exists (\Psi_{y,v}(X),y) \)
\[\Xi(\Psi_{1,2}(X), y) \iff \bigwedge_{j \in \text{Fr}(y)} \lambda_j(y, g([\Psi_{1,2}(X); j])). \]

Definition 2.2.1. Let \(\Gamma^v \) be the countable collection of the all 1-place open wff’s of the set theory \(ZFC_{st} \) that contains free occurrences of the variable \(X \).

Definition 2.2.2. Let \(g_{ZFC_{st}}(X) = v \). Let \(\Gamma^v \) be a set of the all Gödel numbers of the 1-place open wff’s of the set theory \(ZFC_{st} \) that contains free occurrences of the variable \(X \) with Gödel number \(v \), i.e.

\[\Gamma^v = \{ y \in \mathbb{N} \mid (y, v) \in \text{Fr}_{st}(y, v) \}, \quad (2.2.3) \]

or in the following equivalent form:

\[\forall y (y \in \mathbb{N}) \left[y \in \Gamma^v \iff (y \in \mathbb{N}) \land \bigwedge \text{Fr}_{st}(y, v) \right]. \]

Remark 2.2.1. Note that from the axiom of separation it follows directly that \(\Gamma^v \) is a set in the sense of the set theory \(ZFC_{st} \).

Definition 2.2.3.
(i) We define now the equivalence relation \((\cdot \sim_X \cdot) \subset \Gamma^v \times \Gamma^v \) by

\[\Psi_1(X) \sim_X \Psi_2(X) \iff (\forall X \in [\Psi_1(X) \iff \Psi_2(X)]) \quad (2.2.4) \]

(ii) A subcollection \(\Lambda^v_X \) of \(\Gamma^v \) such that \(\Psi_1(X) \sim_X \Psi_2(X) \) holds for all \(\Psi_1(X) \) and \(\Psi_2(X) \) in \(\Lambda^v_X \), and never for \(\Psi_1(X) \) in \(\Lambda^v_X \) and \(\Psi_2(X) \) outside \(\Lambda^v_X \), is an equivalence class of \(\Gamma^v \).

(iii) For any \(\Psi(X) \in \Gamma^v \), let \([\Psi(X)]_{st} \triangleq \{ \Phi(X) \in \Gamma^v \mid [\Psi(X) \sim_X \Phi(X)] \} \) denote the equivalence class to which \(\Psi(X) \) belongs. All elements of \(\Gamma^v \) equivalent to each other are also elements of the same equivalence class.

(iv) The collection of all possible equivalence classes of \(\Gamma^v \) by \(\sim_X \), denoted \(\Gamma^v/\sim_X \) holds for all \(\Psi_1(X) \) and \(\Psi_2(X) \) in \(\Lambda^v_X \) by

\[\Gamma^v/\sim_X \triangleq \{ \Psi(X) \mid (\forall X \in \Psi(X) \iff \Psi_2(X)) \}. \quad (2.2.5) \]

Definition 2.2.4.
(i) We define now the equivalence relation \((\cdot \sim_v \cdot) \subset \Gamma^v \times \Gamma^v \) in the sense of the set theory \(ZFC_{st} \) by

\[y_1 \sim_v y_2 \iff (\forall X \in [\Psi_{1,2}(X) \iff \Psi_{2,1}(X)]) \quad (2.2.6) \]

Note that from the axiom of separation it follows directly that the equivalence relation \((\cdot \sim_v \cdot) \) is a relation in the sense of the set theory \(ZFC_{st} \).

(ii) A subset \(\Lambda^v \) of \(\Gamma^v \) such that \(y_1 \sim_v y_2 \) holds for all \(y_1 \) and \(y_2 \) in \(\Lambda^v \), and never for \(y_1 \) in \(\Lambda^v \) and \(y_2 \) outside \(\Lambda^v \), is an equivalence class of \(\Gamma^v \).

(iii) For any \(y \in \Gamma^v \), let \([y]_{st} \triangleq \{ z \in [\Psi(X) \sim v \ z] : \text{denote the equivalence class to which } y \text{ belongs. All elements of } \Gamma^v \text{ equivalent to each other are also elements of the same equivalence class.}

(iv) The collection of all possible equivalence classes of \(\Gamma^v \) by \(\sim_v \), denoted \(\Gamma^v/\sim_v \) holds for all \(\Psi_1(X) \) and \(\Psi_2(X) \) in \(\Lambda^v \) by

\[\Gamma^v/\sim_v \triangleq \{ [y]_{st} \mid y \in \Gamma^v \}. \quad (2.2.7) \]

Remark 2.2.2. Note that from the axiom of separation it follows directly that \(\Gamma^v/\sim_v \) is a set in the sense of the set theory \(ZFC_{st} \).

Definition 2.2.5. Let \(\mathcal{A}_{st} \) be the countable collection of the all sets definable by 1-place open wff of the set theory \(ZFC_{st} \), i.e.
\[
\forall Y \{ Y \in \mathcal{I}_s \iff \exists \Psi(X) (\{ \Psi(X) \}_s \in \Gamma^s_y/\sim_x \land \exists! X (\Psi(X) \land Y = X))\}. \tag{2.2.8}
\]

Definition 2.2.6. We rewrite now (2.2.8) in the following equivalent form
\[
\forall Y \{ Y \in \mathcal{I}_s \iff \exists \Psi(X) (\{ \Psi(X) \}_s \in \Gamma^s_y/\sim_x \land (Y = X))\}, \tag{2.2.9}
\]
where the countable collection \(\Gamma^s_y/\sim_x\) is defined by
\[
\forall \Psi(X) (\{ \Psi(X) \}_s \in \Gamma^s_y/\sim_x \iff (\{ \Psi(X) \}_s \in \Gamma^s_y/\sim_x \land \exists! X \Psi(X))\}. \tag{2.2.10}
\]

Definition 2.2.7. Let \(\mathcal{R}_s\) be the countable collection of the all sets such that
\[
\forall X (X \in \mathcal{I}_s) [X \in \mathcal{R}_s \iff X \not\in X]. \tag{2.2.11}
\]

Remark 2.2.3. Note that \(\mathcal{R}_s \in \mathcal{I}_s\), since \(\mathcal{R}_s\) is a collection definable by 1-place open wff
\[
\Psi(Z, \mathcal{I}_s) \iff \forall X (X \in \mathcal{I}_s) [X \in Z \iff X \not\in X].
\]

From (2.2.11) and Remark 2.2.3 one obtains directly
\[
\mathcal{R}_s \in \mathcal{R}_s \iff \mathcal{R}_s \not\in \mathcal{R}_s. \tag{2.2.12}
\]
But (2.2.12) immediately gives a contradiction
\[
(\mathcal{R}_s \in \mathcal{R}_s) \land (\mathcal{R}_s \not\in \mathcal{R}_s). \tag{2.2.13}
\]
However contradiction (2.2.13) it is not a true contradiction inside \(\mathcal{ZFC}_s\) for the reason that the countable collection \(\mathcal{I}_s\) is not a set in the sense of the set theory \(\mathcal{ZFC}_s\).

In order to obtain a true contradiction inside \(\mathcal{ZFC}_s\) we introduce the following definitions.

Definition 2.2.8. We define now the countable set \(\Gamma^s_y/\sim_v\) by formula
\[
\forall y \{ [y]_y \in \Gamma^s_y/\sim_v \iff ([y]_y \in \Gamma^s_y/\sim_v \land \exists! \mathcal{R}_s (y, v) \land \exists! X \Psi(y, v)(X))\}. \tag{2.2.14}
\]

Remark 2.2.4. Note that from the axiom of separation it follows directly that \(\Gamma^s_y/\sim_v\) is a set in the sense of the set theory \(\mathcal{ZFC}_s\).

Definition 2.2.9. We define now the countable set \(\mathcal{I}_s^*\) by formula
\[
\forall Y (Y \in \mathcal{I}_s^* \iff \exists y ([y]_y \in \Gamma^s_y/\sim_v \land (g_{\mathcal{ZFC}_s}(X) = v) \land Y = X)). \tag{2.2.15}
\]
Note that from the axiom schema of replacement it follows directly that \(\mathcal{I}_s^*\) is a set in the sense of the set theory \(\mathcal{ZFC}_s\).

Definition 2.2.10. We define now the countable set \(\mathcal{R}_s^*\) by formula
\[
\forall X (X \in \mathcal{I}_s^*) [X \in \mathcal{R}_s^* \iff X \not\in X]. \tag{2.2.16}
\]
Note that from the axiom schema of separation it follows directly that \(\mathcal{R}_s^*\) is a set in the sense of the set theory \(\mathcal{ZFC}_s\).

Remark 2.2.5. Note that \(\mathcal{R}_s^* \in \mathcal{I}_s^*\), since \(\mathcal{R}_s^*\) is a definable by the following formula
\[
\Psi^*(Z) \iff \forall X (X \in \mathcal{I}_s^*) [X \in Z \iff X \not\in X]. \tag{2.2.17}
\]

Theorem 2.2.1. Set theory \(\mathcal{ZFC}_s\) is inconsistent.

Proof. From (2.2.17) and Remark 2.2.5 we obtain \(\mathcal{R}_s^* \in \mathcal{R}_s^* \iff \mathcal{R}_s^* \not\in \mathcal{R}_s^*\) from which immediately one obtains a contradiction \((\mathcal{R}_s^* \in \mathcal{R}_s^*) \land (\mathcal{R}_s^* \not\in \mathcal{R}_s^*)\).

2.3. Derivation of the inconsistent definable set in \(\mathcal{ZFC}_{Nst}\).

Definition 2.3.1. Let \(\overline{PA}\) be a first order theory which contain usual postulates of Peano
arithmetic [9] and recursive defining equations for every primitive recursive function as desired. So for any \((n + 1)\)-place function \(f\) defined by primitive recursion over any \(n\)-place base function \(g\) and \((n + 2)\)-place iteration function \(h\) there would be the defining equations:

(i) \(f(0, y_1, \ldots, y_n) = g(y_1, \ldots, y_n)\),
(ii) \(f(x + 1, y_1, \ldots, y_n) = h(x, f(x, y_1, \ldots, y_n), y_1, \ldots, y_n)\).

Designation 2.3.1.(i) Let \(M^{ZFC}_{\text{Nat}}\) be a nonstandard model of \(ZFC\) and let \(M^{\overline{ZFC}}_{\text{Nat}}\) be a standard model of \(\overline{ZFC}\). We assume now that \(M^{\overline{ZFC}}_{\text{Nat}} \subset M^{ZFC}_{\text{Nat}}\) and denote such nonstandard model of the set theory \(ZFC\) by \(M^{ZFC}_{\text{Nat}}[\overline{PA}]\).

Designation 2.3.2.(i) Let \(g_{ZFC_{\text{Nat}}}(u)\) be a Gödel number of given an expression \(u\) of the set theory \(ZFC_{\text{Nat}} \triangleq ZFC + \exists M^{ZFC}_{\text{Nat}}[\overline{PA}]\).

(ii) Let \(\text{Fr}_{\text{Nat}}(y, v)\) be the Gödel number of a wff of the set theory \(ZFC_{\text{Nat}}\) that contains free occurrences of the variable \(X\) with Gödel number \(v\) [9].

(iii) Note that the relation \(\text{Fr}_{\text{Nat}}(y, v)\) is expressible in \(ZFC_{\text{Nat}}\) by a wff \(\widehat{\text{Fr}}_{\text{Nat}}(y, v)\)

(iv) Note that for any \(y, v \in \mathbb{N}\) by definition of the relation \(\text{Fr}_{\text{Nat}}(y, v)\) follows that

\[
\widehat{\text{Fr}}_{\text{Nat}}(y, v) \iff \exists \Psi(X)[(g_{ZFC_{\text{Nat}}}((\Psi(X)) = y) \land (g_{ZFC_{\text{Nat}}}(X) = v)],
\tag{2.3.1}
\]

where \(\Psi(X)\) is a unique wff of \(ZFC_{\text{Nat}}\) which contains free occurrences of the variable \(X\) with Gödel number \(v\). We denote a unique wff \(\Psi(X)\) defined by using equivalence (2.3.1) by symbol \(\Psi_{y,v}(X)\), i.e.

\[
\widehat{\text{Fr}}_{\text{Nat}}(y, v) \iff \exists \Psi_{y,v}(X)[(g_{ZFC_{\text{Nat}}}((\Psi_{y,v}(X)) = y) \land (g_{ZFC_{\text{Nat}}}(X) = v)],
\tag{2.3.2}
\]

(v) Let \(g_{\text{Nat}}(y, v, v_1)\) be a Gödel number of the following wff: \(\exists X[\Psi(X) \land Y = X]\), where \(g_{ZFC_{\text{Nat}}}((\Psi(Y)) = y, g_{ZFC_{\text{Nat}}}(Y) = v_1\).

(vi) Let \(\text{Pr}_{ZFC_{\text{Nat}}}(z)\) be a predicate asserting provability in \(ZFC_{\text{Nat}}\), which defined by formula (2.6) in section 2, see Remark 2.2 and Designation 2.3. (see also [9]-[10]).

Definition 2.3.2. Let \(\Gamma^X_{y,v}\) be the countable collection of the all 1-place open wff’s of the set theory \(ZFC_{\text{Nat}}\) that contains free occurrences of the variable \(X\).

Definition 2.3.3. Let \(g_{ZFC_{\text{Nat}}}(X) = v\). Let \(\Gamma^X_{v}\) be a set of the all Gödel numbers of the 1-place open wff’s of the set theory \(ZFC_{\text{Nat}}\) that contains free occurrences of the variable \(X\) with Gödel number \(v\), i.e.

\[
\Gamma^X_{v} = \{y \in \mathbb{N} | (y, v) \in \text{Fr}_{\text{Nat}}(y, v)\},
\tag{2.3.3}
\]

or in the following equivalent form:

\[
\forall y(y \in \mathbb{N})\left[y \in \Gamma^X_{v} \iff (y \in \mathbb{N}) \land \widehat{\text{Fr}}_{\text{Nat}}(y, v) \right].
\]

Remark 2.3.1. Note that from the axiom of separation it follows directly that \(\Gamma^X_{v}\) is a set in the sense of the set theory \(ZFC_{\text{Nat}}\).
(ii) A subcollection $\Lambda_1^\mathcal{V}$ of $\Gamma_1^\mathcal{V}$ such that $\Psi_1(X) \sim_X \Psi_2(X)$ holds for all $\Psi_1(X)$ and $\Psi_2(X)$ in $\Lambda_1^\mathcal{V}$, and never for $\Psi_1(X)$ in $\Lambda_2^\mathcal{V}$ and $\Psi_2(X)$ outside $\Lambda_2^\mathcal{V}$, is an equivalence class of $\Gamma_1^\mathcal{V}$.

(iii) For any $\Psi(X) \in \Gamma_1^\mathcal{V}$ let $[\Psi(X)]_{\mathcal{N}_\mathcal{V}} \triangleq \{ \Phi(X) \in \Gamma_1^\mathcal{V} | \Psi(X) \sim_X \Phi(X) \}$ denote the equivalence class to which $\Psi(X)$ belongs. All elements of $\Gamma_1^\mathcal{V}$ equivalent to each other are also elements of the same equivalence class.

(iv) The collection of all possible equivalence classes of $\Gamma_1^\mathcal{V}$ by \sim_X, denoted $\Gamma_1^\mathcal{V}/\sim_X$

\[
\Gamma_1^\mathcal{V}/\sim_X \triangleq \{ [\Psi(X)]_{\mathcal{N}_\mathcal{V}} | \Psi(X) \in \Gamma_1^\mathcal{V} \}. \quad (2.3.5)
\]

Definition 2.3.4. (i) We define now the equivalence relation $(\cdot \sim_v \cdot) \subset \Gamma_v^\mathcal{V} \times \Gamma_v^\mathcal{V}$ in the sense of the set theory $\mathcal{ZFC}_\mathcal{V}$ by

\[
y_1 \sim_v y_2 \iff (\forall X[\Psi_{y_1,v}(X) \iff \Psi_{y_2,v}(X)]) \quad (2.3.6)
\]

Note that from the axiom of separation it follows directly that the equivalence relation $(\cdot \sim_v \cdot)$ is a relation in the sense of the set theory $\mathcal{ZFC}_\mathcal{V}$.

(ii) A subset $\Lambda_1^\mathcal{V}$ of $\Gamma_1^\mathcal{V}$ such that $y_1 \sim_v y_2$ holds for all y_1 and y_2 in $\Lambda_1^\mathcal{V}$, and never for y_1 in $\Lambda_2^\mathcal{V}$ and y_2 outside $\Lambda_2^\mathcal{V}$, is an equivalence class of $\Gamma_v^\mathcal{V}$.

(iii) For any $y \in \Gamma_v^\mathcal{V}$ let $[y]_{\mathcal{N}_\mathcal{V}} \triangleq \{ z \in \Gamma_v^\mathcal{V} | y \sim_v z \}$ denote the equivalence class to which y belongs. All elements of $\Gamma_v^\mathcal{V}$ equivalent to each other are also elements of the same equivalence class.

(iv) The collection of all possible equivalence classes of $\Gamma_v^\mathcal{V}$ by \sim_v, denoted $\Gamma_v^\mathcal{V}/\sim_v$

\[
\Gamma_v^\mathcal{V}/\sim_v \triangleq \{ [y]_{\mathcal{N}_\mathcal{V}} | y \in \Gamma_v^\mathcal{V} \}. \quad (2.3.7)
\]

Remark 2.3.2. Note that from the axiom of separation it follows directly that $\Gamma_v^\mathcal{V}/\sim_v$ is a set in the sense of the set theory $\mathcal{ZFC}_\mathcal{V}$.

Definition 2.3.5. Let $\mathcal{I}_\mathcal{V}$ be the countable collection of the all sets definable by 1-place open wff of the set theory $\mathcal{ZFC}_\mathcal{V}$, i.e.

\[
\forall Y \{ Y \in \mathcal{I}_\mathcal{V} \iff \exists \Psi(X)[[[\Psi(X)]_{\mathcal{N}_\mathcal{V}} \in \Gamma_1^\mathcal{V}/\sim_X \land \exists! X[\Psi(X) \land Y = X]]] \}. \quad (2.3.8)
\]

Definition 2.3.6. We rewrite now (2.3.8) in the following equivalent form

\[
\forall Y \{ Y \in \mathcal{I}_\mathcal{V} \iff \exists \Psi(X)[[[\Psi(X)]_{\mathcal{N}_\mathcal{V}} \in \Gamma_1^\mathcal{V}/\sim_X \land (Y = X)]], \quad (2.3.9)
\]

where the countable collection $\Gamma_1^\mathcal{V}/\sim_X$ is defined by

\[
\forall \Psi(X) [[\Psi(X)]_{\mathcal{N}_\mathcal{V}} \in \Gamma_1^\mathcal{V}/\sim_X \iff [[[\Psi(X)]_{\mathcal{N}_\mathcal{V}} \in \Gamma_1^\mathcal{V}/\sim_X] \land \exists! X \Psi(X)]] \} \quad (2.3.10)
\]

Definition 2.3.7. Let $\mathcal{R}_\mathcal{V}$ be the countable collection of the all sets such that

\[
\forall X(X \in \mathcal{I}_\mathcal{V}) [X \in \mathcal{R}_\mathcal{V} \iff X \notin X]. \quad (2.3.11)
\]

Remark 2.3.3. Note that $\mathcal{R}_\mathcal{V} \in \mathcal{I}_\mathcal{V}$ since $\mathcal{R}_\mathcal{V}$ is a collection definable by 1-place open wff

\[
\Psi(Z, \mathcal{I}_\mathcal{V}) \triangleq \forall X(X \in \mathcal{I}_\mathcal{V}) [X \in Z \iff X \notin X].
\]

From (2.3.11) one obtains
But (2.3.12) gives a contradiction
\[(R_{Nat} \in R_{Nat}) \land (R_{Nat} \not\in R_{Nat}).\] (2.3.13)

However a contradiction (2.3.13) is not a true contradiction inside ZFC_{Nat} for the reason
that the countable collection \mathcal{I}_{Nat} is not a set in the sense of the set theory ZFC_{Nat}. In order to obtain a true contradiction inside ZFC_{Nat} we introduce the following definitions.

Definition 2.3.8. We define now the countable set $\Gamma^{Nat}_v \sim_v$ by formula
\[\forall y \{ [y]_{Nat} \in \Gamma^{Nat}_v \sim_v \Leftrightarrow ([y]_{Nat} \in \Gamma^{Nat}_v \sim_v) \land \text{Fr}_{Nat}(y, v) \land \exists X \Psi(y, v, X) \}.\] (2.3.14)

Remark 2.3.4. Note that from the axiom of separation it follows directly that $\Gamma^{Nat}_v \sim_v$ is a set in the sense of the set theory ZFC_{Nat}.

Definition 2.3.9. We define now the countable set \mathcal{I}_{Nat}^* by formula
\[\forall y \{ y \in \mathcal{I}_{Nat}^* \Leftrightarrow \exists y([y]_{Nat} \in \Gamma^{Nat}_v \sim_v) \land (\forall ZFC_{Nat}(X) = v) \land Y = X \}.\] (2.3.15)

Note that from the axiom schema of replacement it follows directly that \mathcal{I}_{Nat}^* is a set in the sense of the set theory ZFC_{Nat}.

Definition 2.3.10. We define now the countable set R_{Nat}^* by formula
\[\forall X(X \in \mathcal{I}_{Nat}^*)[X \in R_{Nat}^* \Leftrightarrow X \not\in X].\] (2.3.16)

Note that from the axiom schema of separation it follows directly that R_{Nat}^* is a set in the sense of the set theory ZFC_{Nat}.

Remark 2.3.5. Note that $R_{Nat}^* \in \mathcal{I}_{Nat}^*$ since R_{Nat}^* is a definable by the following formula
\[\Psi^*(Z) \triangleq \forall X(X \in \mathcal{I}_{Nat}^*)[X \in Z \Leftrightarrow X \not\in X].\] (2.3.17)

Theorem 2.3.1. Set theory ZFC_{Nat} is inconsistent.

Proof. From (2.3.16) and Remark 2.3.5 we obtain $R_{Nat}^* \in R_{Nat} \Leftrightarrow R_{Nat}^* \not\in R_{Nat}^*$ from which one obtains a contradiction $(R_{Nat} \in R_{Nat}) \land (R_{Nat}^* \not\in R_{Nat}^*)$.

3. Derivation of the inconsistent provably definable set in set theory \overline{ZFC}^H_2, ZFC_{st} and ZFC_{Nst}.

3.1. Derivation of the inconsistent provably definable set in set theory \overline{ZFC}^H_2.

Definition 3.1.1. Let $\overline{\mathcal{I}}^H_2$ be the countable collection of all provable definable sets X such that $\overline{ZFC}^H_2 \vdash \exists X \Psi(X)$, where $\Psi(X)$ is a 1-place open wff i.e.,
\[\forall Y \{ Y \in \overline{\mathcal{I}}^H_2 \Leftrightarrow \overline{ZFC}^H_2 \vdash \exists \Psi(X)[([\Psi(X)] \in \Gamma^{Nat}_v \sim_v) \land [\exists X][\Psi(X) \land Y = X] \)].\] (3.1.1)
Let \(X \not\in \mathop{\mathcal{P}}_{\text{ZFC}} \) be a predicate such that \(X \not\in \mathcal{H}_s \). Let \(\bar{\mathcal{R}}_2^{\text{ZFC}} \) be the countable collection of all sets such that
\[
\forall X \left(X \in \bar{\mathcal{R}}_2^{\text{ZFC}} \right) \left[X \in \bar{\mathcal{R}}_2^{\text{ZFC}} \leftrightarrow X \not\in \mathop{\mathcal{P}}_{\text{ZFC}} \right].
\] (3.1.2)

From (3.1.2) one obtains
\[
\bar{\mathcal{R}}_2^{\text{ZFC}} \in \bar{\mathcal{R}}_2^{\text{ZFC}} \iff \bar{\mathcal{R}}_2^{\text{ZFC}} \not\in \mathop{\mathcal{P}}_{\text{ZFC}}.
\] (3.1.3)

But obviously this is a contradiction. However contradiction (3.1.3) it is not a contradiction inside \(\mathcal{H}_s \) for the reason that predicate \(X \not\in \mathcal{H}_s \) is not a predicate of \(\text{ZFC}_s \) and therefore countable collections \(\bar{\mathcal{R}}_2^{\text{ZFC}} \) and \(\bar{\mathcal{R}}_2^{\text{ZFC}} \) are not a sets of \(\text{ZFC}_s \).

Nevertheless by using Gödel encoding the above stated contradiction can be shipped in special consistent extensions of \(\text{ZFC}_s \).

Remark 3.1.1. More formally I can to explain the gist of the contradictions derived in this paper (see Proposition 2.5.(i)-(ii)) as follows.

Let \(M \) be Henkin model of \(\text{ZFC}_s \). Let \(\bar{\mathcal{R}}_2^{\mathcal{H}_s} \) be the set of the all sets of \(M \) provably definable in \(\text{ZFC}_s \), and let \(\bar{\mathcal{R}}_2^{\mathcal{H}_s} = \{ x \in \bar{\mathcal{R}}_2^{\mathcal{H}_s} : \Box(x \not= x) \} \) where \(\Box A \) means 'sentence \(A \) derivable in \(\text{ZFC}_s \)', or some appropriate modification thereof. We replace now formula (3.1.1) by the following formula
\[
\forall Y \left\{ Y \in \bar{\mathcal{R}}_2^{\mathcal{H}_s} \iff \exists \Psi(Y)[(\Psi(Y)] \in \Gamma^{\mathcal{H}_s}_X \land \Box \exists X \Psi(Y) \land Y = X) \right\}.
\] (3.1.4)

and we replace formula (3.1.2) by the following formula
\[
\forall X \left(X \in \bar{\mathcal{R}}_2^{\mathcal{H}_s} \right) \left[X \in \bar{\mathcal{R}}_2^{\mathcal{H}_s} \iff \Box(X \not= X) \right].
\] (3.1.5)

Definition 3.1.2. We rewrite now (3.1.4) in the following equivalent form
\[
\forall Y \left\{ Y \in \bar{\mathcal{R}}_2^{\mathcal{H}_s} \iff \exists \Psi(Y)[(\Psi(Y)] \in \Gamma^{\mathcal{H}_s}_X \land (Y = X) \right\}.
\] (3.1.6)

where the countable collection \(\Gamma^{\mathcal{H}_s}_X \) is defined by the following formula
\[
\forall \Psi(Y)[(\Psi(Y)] \in \Gamma^{\mathcal{H}_s}_X \iff [(\Psi(Y)] \in \Gamma^{\mathcal{H}_s}_X \land \Box \exists X \Psi(Y) \}
\] (3.1.7)

Definition 3.1.3. Let \(\bar{\mathcal{R}}_2^{\mathcal{H}_s} \) be the countable collection of the all sets such that
\[
\forall X \left(X \in \bar{\mathcal{R}}_2^{\mathcal{H}_s} \right) \left[X \in \bar{\mathcal{R}}_2^{\mathcal{H}_s} \iff \Box X \not= X \right].
\] (3.1.8)

Remark 3.1.2. Note that \(\bar{\mathcal{R}}_2^{\mathcal{H}_s} \) is a collection definable by 1-place open wff
\[
\Psi(Z, \bar{\mathcal{R}}_2^{\mathcal{H}_s}) \iff \forall X \left(X \in \bar{\mathcal{R}}_2^{\mathcal{H}_s} \right) [X \in Z \iff \Box(X \not= X)].
\]

From (3.1.8) one obtains
\[
\bar{\mathcal{R}}_2^{\mathcal{H}_s} \in \bar{\mathcal{R}}_2^{\mathcal{H}_s} \iff \Box \left(\bar{\mathcal{R}}_2^{\mathcal{H}_s} \not= \bar{\mathcal{R}}_2^{\mathcal{H}_s} \right).
\] (3.1.9)

But (3.1.9) immediately gives a contradiction
\[
\text{ZFC}_s \vdash \left(\bar{\mathcal{R}}_2^{\mathcal{H}_s} \in \bar{\mathcal{R}}_2^{\mathcal{H}_s} \right) \land \left(\bar{\mathcal{R}}_2^{\mathcal{H}_s} \not= \bar{\mathcal{R}}_2^{\mathcal{H}_s} \right).
\] (3.1.10)
However contradiction (3.1.10) it is not a true contradiction inside \mathcal{ZFC}^H_2 for the reason that the countable collection $\tilde{\mathcal{Z}}^H_2$ is not a set in the sense of the set theory \mathcal{ZFC}^H_2.

In order to obtain a true contradiction inside \mathcal{ZFC}^H_2 we introduce the following definitions.

Definition 3.1.4. We define now the countable set $\Gamma^H_2/\not\sim_2$ by

$$\forall y \left\{ [y]_{H_2} \in \Gamma^H_2/\not\sim_2 \iff ([y]_{H_2} \in \Gamma^H_2/\not\sim_2) \land \bigwedge \text{Fr}_2^H (y,v) \land \left[\square \exists Y \Psi_{y,v}(X) \right] \right\}.$$

(3.1.11)

Definition 3.1.5. We choose now $\Box A$ in the following form

$$\Box A \triangleq \text{Bew}_{\mathcal{ZFC}^H_2}(#A) \land \left[\text{Bew}_{\mathcal{ZFC}^H_2}(#A) \Rightarrow A \right].$$

(3.1.12)

Here $\text{Bew}_{\mathcal{ZFC}^H_2}(#A)$ is a canonical Gödel formula which says to us that there exists proof in \mathcal{ZFC}^H_2 of the formula A with Gödel number $#A$.

Remark 3.1.3. Notice that the Definition 3.1.5 holds as definition of predicate really asserting provability in \mathcal{ZFC}^H_2.

Definition 3.1.7. Using Definition 3.1.5, we replace now formula (3.1.7) by the following formula

$$\forall \Psi(X) \left\{ \left[\Psi(X) \right] \in \Gamma^H_2/\not\sim_2 \iff \exists \Psi(X) \left[\left[\Psi(X) \right] \in \Gamma^H_2/\not\sim_2 \right) \land \
\bigwedge \left[\text{Bew}_{\mathcal{ZFC}^H_2}(\#X[\Psi(X) \land Y = X]) \right] \land \
\bigwedge \left[\text{Bew}_{\mathcal{ZFC}^H_2}(\#X[\exists X[\Psi(X) \land Y = X]) \Rightarrow \exists X[\Psi(X) \land Y = X]) \right] \right\}.$$

(3.1.13)

Definition 3.1.8. Using Definition 3.1.5, we replace now formula (3.1.8) by the following formula

$$\forall X \left\{ X \in \tilde{\mathcal{Z}}_2^H \iff \left[\text{Bew}_{\mathcal{ZFC}^H_2}(\#(X \not\in X)) \right] \land \
\bigwedge \left[\text{Bew}_{\mathcal{ZFC}^H_2}(\#(X \not\in X)) \Rightarrow X \not\in X \right] \right\}.$$

(3.1.14)

Definition 3.1.9. Using Definition 1.3.5, we replace now formula (3.1.11) by the following formula

$$\forall y \left\{ [y]_{H_2} \in \Gamma^H_2/\not\sim_2 \iff \
([y]_{H_2} \in \Gamma^H_2/\not\sim_2) \land \text{Fr}_2^H (y,v) \land \left[\text{Bew}_{\mathcal{ZFC}^H_2}(\#X[\Psi_{y,v}(X) \land Y = X]) \right] \land \
\bigwedge \left[\text{Bew}_{\mathcal{ZFC}^H_2}(\#X[\exists X[\Psi_{y,v}(X) \land Y = X]) \Rightarrow \exists X[\Psi_{y,v}(X) \land Y = X]) \right] \right\}.$$

(3.1.15)

Definition 3.1.10. Using Definitions 3.1.4-3.1.7, we define now the countable set $\tilde{\mathcal{Z}}^H_2$ by formula

$$\forall Y \left\{ Y \in \tilde{\mathcal{Z}}^H_2 \iff \exists y \left[([y] \in \Gamma^H_2/\not\sim_2) \land \left[\text{Fr} \mathcal{ZFC}^H_2 (X) = v \right] \right] \right\}.$$

(3.1.16)

Remark 3.1.4. Note that from the axiom schema of replacement (1.1.1) it follows directly that $\tilde{\mathcal{Z}}^H_2$ is a set in the sense of the set theory \mathcal{ZFC}^H_2.

Definition 3.1.11. Using Definition 3.1.8 we replace now formula (3.1.14) by the following formula
\[\forall X \left(X \in \tilde{\mathcal{H}}_2^{\ast Hs} \right) \iff \left[\text{Bew}_{ZFC_2^H}^{\ast Hs}(\#(X \notin X)) \land \text{Bew}_{ZFC_2^H}(\#(X \notin X)) \Rightarrow X \notin X \right] \]

Remark 3.1.5. Notice that the expression (3.1.18)

\[\left[\text{Bew}_{ZFC_2^H}^{\ast Hs}(\#(X \notin X)) \land \text{Bew}_{ZFC_2^H}(\#(X \notin X)) \Rightarrow X \notin X \right] \]

obviously is a well formed formula of \(ZFC_2^{Hs} \) and therefore collection \(\tilde{\mathcal{H}}_2^{\ast Hs} \) is a set in the sense of \(ZFC_2^{Hs} \).

Remark 3.1.6. Note that \(\tilde{\mathcal{H}}_2^{\ast Hs} \in \tilde{\mathcal{H}}_2^{\ast Hs} \) since \(\tilde{\mathcal{H}}_2^{\ast Hs} \) is a collection definable by 1-place open \(\Psi(\tilde{\mathcal{H}}_2^{\ast Hs}) \triangleq \forall X \left(X \in \tilde{\mathcal{H}}_2^{\ast Hs} \right) \iff \left[\text{Bew}_{ZFC_2^H}^{\ast Hs}(\#(X \notin X)) \land \text{Bew}_{ZFC_2^H}(\#(X \notin X)) \Rightarrow X \notin X \right] \].

Theorem 3.1.1. Set theory \(ZFC_2^{Hs} \triangleq ZFC_2^{Hs} + \exists M_{\alpha}^{ZFC_2^{Hs}} \) is inconsistent.

Proof. From (3.1.17) we obtain

\[\tilde{\mathcal{H}}_2^{\ast Hs} \in \tilde{\mathcal{H}}_2^{\ast Hs} \iff \left[\text{Bew}_{ZFC_2^H}^{\ast Hs}(\#(\tilde{\mathcal{H}}_2^{\ast Hs} \notin \tilde{\mathcal{H}}_2^{\ast Hs})) \right] \land \left[\text{Bew}_{ZFC_2^H}(\#(\tilde{\mathcal{H}}_2^{\ast Hs} \notin \tilde{\mathcal{H}}_2^{\ast Hs})) \Rightarrow \tilde{\mathcal{H}}_2^{\ast Hs} \notin \tilde{\mathcal{H}}_2^{\ast Hs} \right] \]

(a) Assume now that:

\[\tilde{\mathcal{H}}_2^{\ast Hs} \in \tilde{\mathcal{H}}_2^{\ast Hs} \]

From (3.1.21) we obtain \(\vdash_{ZFC_2^H} \text{Bew}_{ZFC_2^H}^{\ast Hs}(\#(\tilde{\mathcal{H}}_2^{\ast Hs} \notin \tilde{\mathcal{H}}_2^{\ast Hs})) \) and

\[\vdash_{ZFC_2^H} \text{Bew}_{ZFC_2^H}(\#(\tilde{\mathcal{H}}_2^{\ast Hs} \notin \tilde{\mathcal{H}}_2^{\ast Hs})) \Rightarrow \tilde{\mathcal{H}}_2^{\ast Hs} \notin \tilde{\mathcal{H}}_2^{\ast Hs} \), therefore \(\vdash_{ZFC_2^H} \tilde{\mathcal{H}}_2^{\ast Hs} \notin \tilde{\mathcal{H}}_2^{\ast Hs} \) and

\[\vdash_{ZFC_2^H} \tilde{\mathcal{H}}_2^{\ast Hs} \in \tilde{\mathcal{H}}_2^{\ast Hs} \Rightarrow \tilde{\mathcal{H}}_2^{\ast Hs} \notin \tilde{\mathcal{H}}_2^{\ast Hs} \]

(b) Assume now that:

\[\tilde{\mathcal{H}}_2^{\ast Hs} \in \tilde{\mathcal{H}}_2^{\ast Hs} \]

From (3.1.21) we obtain

\[\tilde{\mathcal{H}}_2^{\ast Hs} \in \tilde{\mathcal{H}}_2^{\ast Hs} \land \tilde{\mathcal{H}}_2^{\ast Hs} \in \tilde{\mathcal{H}}_2^{\ast Hs} \Rightarrow \tilde{\mathcal{H}}_2^{\ast Hs} \notin \tilde{\mathcal{H}}_2^{\ast Hs} \]

and thus \(\vdash_{ZFC_2^H} \left(\tilde{\mathcal{H}}_2^{\ast Hs} \notin \tilde{\mathcal{H}}_2^{\ast Hs} \right) \land \left(\tilde{\mathcal{H}}_2^{\ast Hs} \notin \tilde{\mathcal{H}}_2^{\ast Hs} \right) \).
contraсtion $\vdash_{ZFC}^{\mu} \left(\tilde{\mathcal{R}}_2^{\ast_{HS}} \in \tilde{\mathcal{R}}_2^{\ast_{HS}} \right) \land \left(\tilde{\mathcal{R}}_2^{\ast_{HS}} \not\in \tilde{\mathcal{R}}_2^{\ast_{HS}} \right)$.

Definition 3.1.12. We choose now $\square A$ in the following form

$$\square A \triangleq \text{Bew}_{ZFC}^{\mu}(\#A),$$

or in the following equivalent form

$$\square A \triangleq \text{Bew}_{ZFC}^{\mu}(\#A) \land \left[\text{Bew}_{ZFC}^{\mu}(\#A) \Rightarrow A \right]$$

similar to (3.1.5). Here $\text{Bew}_{ZFC}^{\mu}(\#A)$ is a Gödel formula (see Chapt. II section 2, Definition)

which really asserts provability in ZFC^{HS}_2 of the formula A with Gödel number $\#A$.

Remark 3.1.7. Notice that the Definition 3.1.12 with formula (3.1.24) holds as definition

of predicate really asserting provability in ZFC^{HS}_2.

Definition 3.1.13. Using Definition 3.1.12 with formula (3.1.24), we replace now formula (3.1.7) by the following formula

$$\forall \Psi(X) \left\{ \left[\Psi(X) \right] \in \Gamma_X^{\ast_{HS}} / \sim_X \iff \exists \Psi(Y)([\Psi(Y)] \in \Gamma_Y^{\ast_{HS}} / \sim_Y) \land \right.$$

$$\land \left[\text{Bew}_{ZFC}^{\mu}(\#\exists X[\Psi(X) \land Y = X]) \right] \right\}.$$

(3.1.25)

Definition 3.1.14. Using Definition 3.1.12 with formula (3.1.24), we replace now formula (3.1.8) by the following formula

$$\forall X \left(X \in \tilde{\mathcal{Z}}_2^{\ast_{HS}} \right) \left[X \in \tilde{\mathcal{R}}_2^{\ast_{HS}} \iff \left[\text{Bew}_{ZFC}^{\mu}(\#(X \in X)) \right] \right]$$

(3.1.26)

Definition 3.1.15. Using Definition 3.1.12 with formula (3.1.24), we replace now formula (3.1.11) by the following formula

$$\forall Y \{ [Y]_{HS} \in \Gamma_Y^{\ast_{HS}} / \sim_Y \iff$$

$$\left([Y]_{HS} \in \Gamma_Y^{\ast_{HS}} / \sim_Y \right) \land \tilde{\mathcal{R}}_2^{\ast_{HS}}(y, v) \land \left[\text{Bew}_{ZFC}^{\mu}(\#\exists X[\Psi_{y,v}(X) \land Y = X]) \right] \right\}.$$

(3.1.27)

Definition 3.1.16. Using Definitions 3.1.13-3.1.17, we define now the countable set $\tilde{\mathcal{Z}}_2^{\ast_{HS}}$ by formula

$$\forall Y \left\{ Y \in \tilde{\mathcal{Z}}_2^{\ast_{HS}} \iff \exists \Psi \left([\Psi] \in \Gamma_Y^{\ast_{HS}} / \sim_Y \right) \land \left(\text{Bew}_{ZFC}^{\mu}(\#(X \in X)) \right) \right\}.$$

(3.1.28)

Remark 3.1.8. Note that from the axiom schema of replacement (1.1.1) it follows directly that $\tilde{\mathcal{Z}}_2^{\ast_{HS}}$ is a set in the sense of the set theory ZFC^{HS}_2.

Definition 3.1.17. Using Definition 3.1.16 we replace now formula (3.1.26) by the following formula

$$\forall X \left(X \in \tilde{\mathcal{Z}}_2^{\ast_{HS}} \right) \left[X \in \tilde{\mathcal{R}}_2^{\ast_{HS}} \iff \left[\text{Bew}_{ZFC}^{\mu}(\#(X \in X)) \right] \right].$$

(3.1.29)

Remark 3.1.9. Notice that the expressions (3.1.30)
obviously is a well formed formula of ZFC_2^{Hs} and therefore collection \mathcal{R}_2^{Hs} is a set in the sense of ZFC_2^{Hs}.

Remark 3.1.10. Note that $\mathcal{R}_2^{Hs} \in \mathcal{S}_2^{Hs}$ since \mathcal{R}_2^{Hs} is a collection definable by 1-place open wff

$$\Psi \bigg(Z, \mathcal{R}_2^{Hs} \bigg) \triangleq \forall X \bigg(X \in \mathcal{S}_2^{Hs} \bigg) \bigg[X \in Z \iff \text{Bew}_{ZFC_2^{Hs}}(\#(X \in X)) \bigg].$$

(3.1.31)

Theorem 3.1.2. Set theory $ZFC_2^{Hs} \triangleq ZFC_2^{st} \cup M_2^{ZFC_2^{Hs}}$ is inconsistent.

Proof. From (3.1.29) we obtain $\mathcal{R}_2^{Hs} \in \mathcal{R}_2^{Hs} \iff \text{Bew}_{ZFC_2^{Hs}}(\#(\mathcal{R}_2^{Hs} \in \mathcal{R}_2^{Hs}))$.

(3.1.32)

(a) Assume now that:

$$\mathcal{R}_2^{Hs} \in \mathcal{R}_2^{Hs}.$$

(3.1.33)

Then from (3.1.32) we obtain $\vdash_{ZFC_2^{Hs}} \text{Bew}_{ZFC_2^{Hs}}(\#(\mathcal{R}_2^{Hs} \in \mathcal{R}_2^{Hs}))$ and therefore

$$\vdash_{ZFC_2^{Hs}} \mathcal{R}_2^{Hs} \in \mathcal{R}_2^{Hs}.$$

(3.1.34)

From (3.1.33)-(3.1.34) we obtain $\mathcal{R}_2^{Hs} \in \mathcal{R}_2^{Hs}$ and $\mathcal{R}_2^{Hs} \in \mathcal{R}_2^{Hs} \Rightarrow \mathcal{R}_2^{Hs} \notin \mathcal{R}_2^{Hs}$ thus

$$\vdash_{ZFC_2^{Hs}} \mathcal{R}_2^{Hs} \notin \mathcal{R}_2^{Hs}$$

and finally we obtain $\vdash_{ZFC_2^{Hs}} (\mathcal{R}_2^{Hs} \in \mathcal{R}_2^{Hs}) \land (\mathcal{R}_2^{Hs} \notin \mathcal{R}_2^{Hs})$.

(b) Assume now that

$$\text{Bew}_{ZFC_2^{Hs}}(\#(\mathcal{R}_2^{Hs} \in \mathcal{R}_2^{Hs})).$$

(3.1.23)

Then from (3.1.35) we obtain $\vdash_{ZFC_2^{Hs}} \mathcal{R}_2^{Hs} \in \mathcal{R}_2^{Hs}$. From (3.1.35) and (3.1.32) we obtain

$$\vdash_{ZFC_2^{Hs}} \mathcal{R}_2^{Hs} \in \mathcal{R}_2^{Hs}, \text{thus } \vdash_{ZFC_2^{Hs}} \mathcal{R}_2^{Hs} \in \mathcal{R}_2^{Hs} \text{ and } \vdash_{ZFC_2^{Hs}} \mathcal{R}_2^{Hs} \in \mathcal{R}_2^{Hs}$$

which immediately gives us a contradiction $\vdash_{ZFC_2^{Hs}} (\mathcal{R}_2^{Hs} \in \mathcal{R}_2^{Hs}) \land (\mathcal{R}_2^{Hs} \notin \mathcal{R}_2^{Hs})$.

3.2. Derivation of the inconsistent provably definable set in ZFC_2^{st}.

Let \mathcal{J}_2 be the countable collection of all sets X such that $ZFC_2^{st} \vdash \exists X \Psi(X)$, where $\Psi(X)$ is a 1-place open wff i.e.,

$$\forall Y (Y \in \mathcal{J}_2 \iff ZFC_2^{st} \vdash \exists \Psi(X) ([\Psi(X)] \in \Gamma^{ZFC_2^{st}} \land \exists X [\Psi(X) \land Y = X]) \land \exists X[Y = X]).$$

(3.2.1)

Let $X \in \mathcal{J}_2$, Y be a predicate such that $X \notin \mathcal{J}_2$, $Y \iff ZFC_2^{st} \vdash X \notin Y$. Let \mathcal{R} be the countable collection of all sets such that
\forall X \left[X \in \mathcal{R}_\mathcal{M} \iff (X \in \mathcal{I}_\mathcal{M}) \land \left(X \not\in_{\mathcal{PFC}_\mathcal{M}} X \right) \right]. \quad (3.2.2)

From (3.2.1) one obtains

\mathcal{R}_\mathcal{M} \in \mathcal{R}_\mathcal{M} \iff \mathcal{R}_\mathcal{M} \not\in_{\mathcal{PFC}_\mathcal{M}} \mathcal{R}_\mathcal{M}. \quad (3.2.3)

But (3.2.3) gives a contradiction

\left(\mathcal{R}_\mathcal{M} \in \mathcal{R}_\mathcal{M} \right) \land \left(\mathcal{R}_\mathcal{M} \not\in \mathcal{R}_\mathcal{M} \right). \quad (3.2.4)

However contradiction (3.2.4) it is not a contradiction inside \(\mathcal{PFC}_\mathcal{M}\) for the reason that predicate \(X \not\in_{\mathcal{PFC}_\mathcal{M}} Y\) is not a predicate of \(\mathcal{PFC}_\mathcal{M}\) and therefore countable collections \(\mathcal{I}_\mathcal{M}\) and \(\mathcal{R}_\mathcal{M}\) are not a sets of \(\mathcal{PFC}_\mathcal{M}\). Nevertheless by using Gödel encoding the above stated contradiction can be shipped in special consistent extensions of \(\mathcal{PFC}_\mathcal{M}\).

Designation 3.2.1

(i) Let \(\mathcal{M}^{\mathcal{PFC}}\) be a standard model of \(\mathcal{PFC}\) and

(ii) let \(\mathcal{M}^{\mathcal{PFC}}\) be the theory \(\mathcal{ZFC} = \mathcal{PFC} + \exists \mathcal{M}^{\mathcal{PFC}}\),

(iii) let \(\mathcal{I}_\mathcal{M}\) be the set of the all sets of \(\mathcal{M}^{\mathcal{PFC}}\) provably definable in \(\mathcal{PFC}_\mathcal{M}\), and let

\(\mathcal{R}_\mathcal{M} = \{ X \in \mathcal{I}_\mathcal{M} : \square_{\mathcal{M}}(X \not\in X) \}\) where \(\square_{\mathcal{M}}A\) means: ‘sentence A derivable in \(\mathcal{PFC}_\mathcal{M}\)’, or some appropriate modification thereof.

We replace now (3.2.1) by formula

\[\forall Y \{ Y \in \mathcal{I}_\mathcal{M} \iff \square_{\mathcal{M}}[\exists \Psi(\cdot) \exists X[\Psi(X) \land Y = X]] \}, \]

and we replace (3.2.2) by formula

\[\forall X \left[X \in \mathcal{R}_\mathcal{M} \iff (X \in \mathcal{I}_\mathcal{M}) \land \square_{\mathcal{M}}(X \not\in X) \right]. \quad (3.2.5) \]

Assume that \(\mathcal{ZFC}_\mathcal{M} \vdash \mathcal{R}_\mathcal{M} \in \mathcal{I}_\mathcal{M}\). Then, we have that: \(\mathcal{R}_\mathcal{M} \in \mathcal{R}_\mathcal{M}\) if and only if

\(\square_{\mathcal{M}}(\mathcal{R}_\mathcal{M} \not\in \mathcal{R}_\mathcal{M})\), which immediately gives us \(\mathcal{R}_\mathcal{M} \in \mathcal{R}_\mathcal{M}\) if and only if \(\mathcal{R}_\mathcal{M} \not\in \mathcal{R}_\mathcal{M}\). But this is a contradiction, i.e., \(\mathcal{ZFC}_\mathcal{M} \vdash (\mathcal{R}_\mathcal{M} \in \mathcal{R}_\mathcal{M}) \land (\mathcal{R}_\mathcal{M} \not\in \mathcal{R}_\mathcal{M})\). We choose now \(\square_{\mathcal{M}}A\) in the following form

\[\square_{\mathcal{M}}A \triangleq \text{Bew}_{\mathcal{PFC}_\mathcal{M}}(\#A) \land [\text{Bew}_{\mathcal{PFC}_\mathcal{M}}(\#A) \Rightarrow A]. \]

(3.2.7)

Here \(\text{Bew}_{\mathcal{PFC}_\mathcal{M}}(\#A)\) is a canonical Gödel formula which says to us that there exists proof in \(\mathcal{PFC}_\mathcal{M}\) of the formula \(A\) with Gödel number \(\#A \in \mathcal{M}^{\mathcal{PFC}}\).

Remark 3.2.1. Notice that definition (3.2.7) holds as definition of predicate really asserting provability in \(\mathcal{PFC}_\mathcal{M}\).

Definition 3.2.2. We rewrite now (3.2.5) in the following equivalent form

\[\forall Y \{ Y \in \mathcal{I}_\mathcal{M} \iff \exists \Psi(\cdot) \exists X[\Psi(X) \land Y = X] \}, \]

where the countable collection \(\mathcal{I}^{\mathcal{PFC}}/\not\in X\) is defined by the following formula

\[\forall \Psi(\cdot) \{ \exists X[\Psi(X) \land [\exists X[\Psi(X) \land Y = X]]] \}, \]

(3.2.8)

Definition 3.2.3. Let \(\mathcal{R}^{\mathcal{PFC}}_{\mathcal{M}}\) be the countable collection of the all sets such that

\[\forall X \left[X \in \mathcal{R}^{\mathcal{PFC}}_{\mathcal{M}} \iff \square_{\mathcal{M}}(X \not\in X) \right]. \]

(3.2.9)

Remark 3.2.2. Note that \(\mathcal{R}^{\mathcal{PFC}}_{\mathcal{M}} \in \mathcal{I}^{\mathcal{PFC}}\) since \(\mathcal{R}^{\mathcal{PFC}}_{\mathcal{M}}\) is a collection definable by 1-place open wff

\[\Psi(Z, \mathcal{R}^{\mathcal{PFC}}_{\mathcal{M}}) \triangleq \forall X \{ X \in \mathcal{R}^{\mathcal{PFC}}_{\mathcal{M}}[X \in Z \iff \square_{\mathcal{M}}(X \not\in X)] \}. \]

(3.2.10)

Definition 3.2.4. By using formula (3.2.7) we rewrite now (3.2.8) in the following
equivalent form
\[\forall Y \{ Y \in \mathcal{F}_{st} \iff \exists \Psi(X) \{(\Psi(X))_{st} \in \Gamma^{st}_{\sim \chi} \land (Y = X)\}\} \quad (3.2.12) \]
where the countable collection \(\Gamma^{st}_{\sim \chi} \) is defined by the following formula
\[\forall \Psi(X) \{ (\Psi(X))_{st} \in \Gamma^{st}_{\sim \chi} \iff ((\Psi(X))_{st} \in \Gamma^{st}_{\sim \chi} \land \text{Bew}_{ZFC_n}(#) \iff \exists ! \Psi(X)) \land \text{Bew}_{ZFC_n}(\#(X \notin X)) \}\} \quad (3.2.13) \]

Definition 3.2.5. Using formula (3.2.7), we replace now formula (3.2.10) by the following formula
\[\forall X \{ X \in \mathcal{F}_{st} \iff [\text{Bew}_{ZFC_n}(\#(X \notin X))] \land \text{Bew}_{ZFC_n}(\#(X \notin X)) \} \quad (3.2.14) \]

Definition 3.2.6. Using Definition 1.3.5, we replace now formula (3.2.11) by the following formula
\[\forall \gamma \{ [\gamma]_{st} \in \Gamma^{st}_v \iff ([\gamma]_{st} \in \Gamma^{st}_v \land \text{Fr}_{\gamma}(v) \land [\text{Bew}_{ZFC_n}(\#X(\gamma) \land Y = X)] \land \text{Bew}_{ZFC_n}(\#X(\gamma) \land Y = X)] \Rightarrow \exists ! X[\text{Bew}_{ZFC_n}(\#(X \notin X))] \} \quad (3.2.15) \]

Definition 3.2.7. Using Definitions 3.2.4-3.2.6, we define now the countable set \(\mathcal{F}^*_{st} \) by formula
\[\forall Y \{ Y \in \mathcal{F}^*_{st} \iff \exists \Psi \{ ((y)_{st} \in \Gamma^{st}_v \land (g_{ZFC_n}(X) = v)) \}\} \quad (3.2.16) \]

Remark 3.2.3. Note that from the axiom schema of replacement it follows directly that \(\mathcal{F}^*_{st} \) is a set in the sense of the set theory \(ZFC_{st} \).

Definition 3.2.8. Using Definition 3.2.7 we replace now formula (3.2.14) by the following formula
\[\forall X \{ X \in \mathcal{F}^*_{st} \iff [\text{Bew}_{ZFC_n}(\#(X \notin X))] \land [\text{Bew}_{ZFC_n}(\#(X \notin X)) \Rightarrow X \notin X] \} \quad (3.2.17) \]

Remark 3.2.4. Notice that the expression (3.2.18)
\[[\text{Bew}_{ZFC_n}(\#(X \notin X))] \land [\text{Bew}_{ZFC_n}(\#(X \notin X)) \Rightarrow X \notin X] \quad (3.2.18) \]

obviously is a well formed formula of \(ZFC_{st} \) and therefore collection \(\mathcal{F}^*_{st} \) is a set in the sense of \(ZFC_{st}^{\sim} \).

Remark 3.2.5. Note that \(\mathcal{F}^*_{st} \in \mathcal{F}_{st} \) since \(\mathcal{F}^*_{st} \) is a collection definable by 1-place open wff.
Theorem 3.2.1. Set theory $\text{ZFC}_{st} \triangleq \text{ZFC} + \exists M_{st}^{\text{ZFC}}$ is inconsistent.

Proof. From (3.2.17) we obtain

$$\forall X (X \in \tilde{\mathbb{R}}_{st}^* \iff \text{Bew}_{\text{ZFC}_{st}}(\#(X \notin \tilde{\mathbb{R}}_{st}^*)) \land \text{Bew}_{\text{ZFC}_{st}}(\#(X \in \tilde{\mathbb{R}}_{st}^*) \Rightarrow \tilde{\mathbb{R}}_{st}^* \notin \tilde{\mathbb{R}}_{st}^*).$$

(3.2.20)

(a) Assume now that:

$$\tilde{\mathbb{R}}_{st}^* \in \tilde{\mathbb{R}}_{st}^*.$$

(3.2.21)

Then from (3.2.20) we obtain $\vdash \text{Bew}_{\text{ZFC}_{st}}(\#(\tilde{\mathbb{R}}_{st}^* \notin \tilde{\mathbb{R}}_{st}^*))$ and

$$\vdash \text{Bew}_{\text{ZFC}_{st}}(\#(\tilde{\mathbb{R}}_{st}^* \in \tilde{\mathbb{R}}_{st}^*) \Rightarrow \tilde{\mathbb{R}}_{st}^* \notin \tilde{\mathbb{R}}_{st}^*),$$

therefore $\tilde{\mathbb{R}}_{st}^* \in \tilde{\mathbb{R}}_{st}^*$ and so

$$\vdash \text{ZFC}_{st} \tilde{\mathbb{R}}_{st}^* \in \tilde{\mathbb{R}}_{st}^* \Rightarrow \tilde{\mathbb{R}}_{st}^* \notin \tilde{\mathbb{R}}_{st}^*.$$

(3.2.22)

From (3.2.21)-(3.2.22) we obtain $\forall X (X \in \tilde{\mathbb{R}}_{st}^* \Rightarrow \tilde{\mathbb{R}}_{st}^* \notin \tilde{\mathbb{R}}_{st}^*)$ and therefore $\vdash \text{ZFC}_{st} (\tilde{\mathbb{R}}_{st}^* \notin \tilde{\mathbb{R}}_{st}^*) \land (\tilde{\mathbb{R}}_{st}^* \notin \tilde{\mathbb{R}}_{st}^*).$

(b) Assume now that

$$\vdash \text{Bew}_{\text{ZFC}_{st}}(\#(\tilde{\mathbb{R}}_{st}^* \in \tilde{\mathbb{R}}_{st}^*) \land \text{Bew}_{\text{ZFC}_{st}}(\#(\tilde{\mathbb{R}}_{st}^* \notin \tilde{\mathbb{R}}_{st}^*) \Rightarrow \tilde{\mathbb{R}}_{st}^* \notin \tilde{\mathbb{R}}_{st}^*).$$

(3.2.23)

Then from (3.2.23) we obtain $\vdash \tilde{\mathbb{R}}_{st}^{\mathit{Hs}} \notin \tilde{\mathbb{R}}_{st}^{\mathit{Hs}}.$ From (3.2.23) and (3.2.20) we obtain

$$\vdash \text{ZFC}_{st} \tilde{\mathbb{R}}_{st}^{\mathit{Hs}} \in \tilde{\mathbb{R}}_{st}^{\mathit{Hs}}, \text{ so } \vdash \text{ZFC}_{st} \tilde{\mathbb{R}}_{st}^{\mathit{Hs}} \notin \tilde{\mathbb{R}}_{st}^{\mathit{Hs}}, \tilde{\mathbb{R}}_{st}^{\mathit{Hs}} \in \tilde{\mathbb{R}}_{st}^{\mathit{Hs}} \text{ which immediately gives us a contradiction } \vdash \text{ZFC}_{st} (\tilde{\mathbb{R}}_{st}^{\mathit{Hs}} \in \tilde{\mathbb{R}}_{st}^{\mathit{Hs}}) \land (\tilde{\mathbb{R}}_{st}^{\mathit{Hs}} \notin \tilde{\mathbb{R}}_{st}^{\mathit{Hs}}).$$

3.3. Derivation of the inconsistent provably definable set in ZFC_{Nst}.

Designation 3.3.1. (i) Let \overline{PA} be a first order theory which contain usual postulates of Peano arithmetic [8] and recursive defining equations for every primitive recursive function as desired.

(ii) Let M_{Nst}^{ZFC} be a nonstandard model of ZFC and let $M_{st}^{\overline{PA}}$ be a standard model of $\overline{PA}.$ We assume now that $M_{st}^{\overline{PA}} \subset M_{Nst}^{\text{ZFC}}$ and denote such nonstandard model of ZFC by $M_{Nst}^{\text{ZFC}}[\overline{PA}].$

(iii) Let ZFC_{Nst} be the theory $\text{ZFC}_{Nst} = \text{ZFC} + M_{Nst}^{\text{ZFC}}[\overline{PA}].$
(iv) Let $\mathfrak{S}_{\text{Nat}}$ be the set of the all sets of $M_{\text{ZFC}}^P[PA]$ provably definable in ZFC_{Nat}, and let $\mathfrak{R}_{\text{Nat}} = \{X \in \mathfrak{S}_{\text{Nat}} : \square_{\text{Nat}}(X \not\in X)\}$ where $\square_{\text{Nat}}A$ means ‘sentence A derivable in ZFC_{Nat}’,

or

some appropriate modification thereof. We replace now (3.1.4) by formula

$$\forall Y\{Y \in \mathfrak{S}_{\text{Nat}} \iff \square_{\text{Nat}}[\exists \Psi(\cdot) \exists X[\Psi(X) \land Y = X]]\},$$

(3.3.1)

and we replace (3.1.5) by formula

$$\forall X\{X \in \mathfrak{S}_{\text{Nat}} \iff (X \in \mathfrak{S}_{\text{Nat}}) \land \square_{\text{Nat}}(X \not\in X)\}.$$

(3.3.2)

Assume that $\text{ZFC}_{\text{Nat}} \vdash \mathfrak{R}_{\text{Nat}} \in \mathfrak{S}_{\text{Nat}}$. Then, we have that: $\mathfrak{R}_{\text{Nat}} \in \mathfrak{S}_{\text{Nat}}$, if and only if

$$\square_{\text{Nat}}(\mathfrak{R}_{\text{Nat}} \not\in \mathfrak{R}_{\text{Nat}})$$

which immediately gives us $\mathfrak{R}_{\text{Nat}} \in \mathfrak{S}_{\text{Nat}}$ if and only if $\mathfrak{R}_{\text{Nat}} \not\in \mathfrak{R}_{\text{Nat}}$. But this is a contradiction, i.e., $\text{ZFC}_{\text{Nat}} \vdash (\mathfrak{R}_{\text{Nat}} \in \mathfrak{S}_{\text{Nat}}) \land (\mathfrak{R}_{\text{Nat}} \not\in \mathfrak{S}_{\text{Nat}})$. We choose now $\square_{\text{Nat}}A$ in the following form

$$\square_{\text{Nat}}A \equiv \text{Bew}_{\text{ZFC}_{\text{Nat}}}(\#A) \land [\text{Bew}_{\text{ZFC}_{\text{Nat}}}(\#A) \Rightarrow A].$$

(3.3.3)

Here $\text{Bew}_{\text{ZFC}_{\text{Nat}}}(\#A)$ is a canonical Gödel formula which says to us that there exists proof in ZFC_{Nat} of the formula A with Gödel number $\#A \in M_{\text{PA}}$.

Remark 3.3.1. Notice that definition (3.3.3) holds as definition of predicate really asserting provability in ZFC_{Nat}.

Designation 3.3.2.(i) Let $g_{\text{ZFC}_{\text{Nat}}}(u)$ be a Gödel number of given an expression u of ZFC_{Nat}.

(ii) Let $\text{Fr}_{\text{Nat}}(y, v)$ be the relation: y is the Gödel number of a wff of ZFC_{Nat} that contains free occurrences of the variable with Gödel number v [10].

(iii) Let $\varphi_{\text{Nat}}(y, v, v_1)$ be a Gödel number of the following wff:

$$\exists X[\Psi(X) \land Y = X],$$

where

$$g_{\text{ZFC}_{\text{Nat}}}((\Psi(X))) = y, g_{\text{ZFC}_{\text{Nat}}}(X) = v, g_{\text{ZFC}_{\text{Nat}}}(Y) = v_1.$$

(iv) Let $\text{Pr}_{\text{ZFC}_{\text{Nat}}}(x)$ be a predicate asserting provability in ZFC_{Nat}, which defined by formula (2.6), see Chapt. II, section 2, Remark 2.2 and Designation 2.3,(see also [10]-[11]).

Remark 3.3.2.Let $\mathfrak{S}_{\text{Nat}}$ be the countable collection of all sets X such that $\text{ZFC}_{\text{Nat}} \vdash \exists ! \Psi(X)$, where $\Psi(X)$ is a 1-place open wff i.e.,

$$\forall Y\{Y \in \mathfrak{S}_{\text{Nat}} \iff \text{ZFC}_{\text{Nat}} \vdash \exists ! \Psi(X) \exists X[\Psi(X) \land Y = X]\}.$$

(3.3.4)

We rewrite now (3.3.4) in the following form

$$\forall Y\{Y \in \mathfrak{S}_{\text{Nat}} \iff$$

$$\quad(g_{\text{ZFC}_{\text{Nat}}}(Y) = v_1) \land \exists y \text{Fr}_{\text{Nat}}(y, v) \land (g_{\text{ZFC}_{\text{Nat}}}(X) = v) \land [\text{Pr}_{\text{ZFC}_{\text{Nat}}}(\varphi_{\text{Nat}}(y, v, v_1)) \land$$

$$\quad[\text{Pr}_{\text{ZFC}_{\text{Nat}}}(\varphi_{\text{Nat}}(y, v, v_1)) \Rightarrow \exists ! X[\Psi(X) \land Y = X]]]\}.$$

(3.3.5)

Designation 3.3.3.Let $\varphi_{\text{Nat}}(z)$ be a Gödel number of the following wff: $Z \not\in Z$, where $g_{\text{ZFC}_{\text{Nat}}}(Z) = z$.

Remark 3.3.3.Let $\mathfrak{R}_{\text{Nat}}$ above by formula (3.3.2), i.e.,

$$\forall Z\{Z \in \mathfrak{R}_{\text{Nat}} \iff (Z \in \mathfrak{S}_{\text{Nat}}) \land \square_{\text{Nat}}(Z \not\in Z)\}.$$

(3.3.6)

We rewrite now (3.3.6) in the following form
\[\forall z \left[z \in R_{\text{Nat}}^* \iff \left(z \in D_{\text{Nat}} \right) \land g_{\text{ZFCNat}}(z) = z \land \Pr_{\text{ZFCNat}}(\phi_{\text{Nat}}(z)) \right] \land \\
\left[\Pr_{\text{ZFCNat}}(\phi_{\text{Nat}}(z)) \Rightarrow z \notin z \right]. \]

(3.3.7)

Theorem 3.3.1. \(ZFC_{\text{Nat}} \vdash R_{\text{Nat}}^* \in R_{\text{Nat}}^* \land R_{\text{Nat}}^* \notin R_{\text{Nat}}^*. \)

3.4. Generalized Tarski’s undefinability lemma.

Remark 3.4.1. Remind that: (i) if \(\text{Th} \) is a theory, let \(T_{\text{Th}} \) be the set of Godel numbers of theorems of \(\text{Th} \),[10],(ii) the property \(x \in T_{\text{Th}} \) is said to be is expressible in \(\text{Th} \) by wff \(\text{True}(x) \) if the following properties are satisfies [10]:

(a) if \(n \in T_{\text{Th}} \) then \(\text{Th} \vdash \text{True}(n) \), (b) if \(n \notin T_{\text{Th}} \) then \(\text{Th} \vdash \neg \text{True}(n) \).

Remark 3.4.2. Notice it follows from (a) \(\land \) (b) that
\[\neg [(\text{Th} \not\vdash \text{True}(\bar{n})) \land (\text{Th} \not\vdash \neg \text{True}(\bar{n}))]. \]

Theorem 3.4.1. (Tarski’s undefinability Lemma) [10]. Let \(\text{Th} \) be a consistent theory with
equality in the language \(\mathcal{L} \) in which the diagonal function \(D \) is representable and let
\(g_{\text{Th}}(u) \)
be a Godel number of given an expression \(u \) of \(\text{Th} \). Then the property \(x \in T_{\text{Th}} \) is not expressible in \(\text{Th} \).

Proof. By the diagonalization lemma applied to \(\neg \text{True}(x) \) there is a sentence \(F \) such that:

(c) \(\text{Th} \vdash F \iff \neg \text{True}(\bar{q}) \), where \(q \) is the Godel number of \(F \), i.e. \(g_{\text{Th}}(F) = q \).

Case 1. Suppose that \(\text{Th} \vdash F \), then \(q \in T_{\text{Th}} \). By (a), \(\text{Th} \vdash \text{True}(\bar{q}) \). But, from \(\text{Th} \vdash F \) and (c), by biconditional elimination, one obtains \(\text{Th} \vdash \neg \text{True}(\bar{q}) \). Hence \(\text{Th} \) is inconsistent, contradicting our hypothesis.

Case 2. Suppose that \(\text{Th} \not\vdash F \). Then \(q \notin T_{\text{Th}} \). By (b), \(\text{Th} \vdash \neg \text{True}(\bar{q}) \). Hence, by (c) and biconditional elimination, \(\text{Th} \vdash \neg F \). Thus, in either case a contradiction is reached.

Definition 3.4.1. If \(\text{Th} \) is a theory, let \(T_{\text{th}} \) be the set of Godel numbers of theorems of \(\text{Th} \) and let \(g_{\text{Th}}(u) \) be a Godel number of given an expression \(u \) of \(\text{Th} \). The property \(x \in T_{\text{Th}} \) is said to be is a strongly expressible in \(\text{Th} \) by wff \(\text{True}^*(x) \) if the following properties are satisfies:

(a) if \(n \in T_{\text{Th}} \) then \(\text{Th} \vdash \text{True}^*(\bar{n}) \land (\text{True}^*(\bar{n}) \Rightarrow g_{\text{Th}}(n)) \),

(b) if \(n \notin T_{\text{Th}} \) then \(\text{Th} \vdash \neg \text{True}^*(\bar{n}) \).

Theorem 3.4.2. (Generalized Tarski’s undefinability Lemma). Let \(\text{Th} \) be a consistent theory with equality in the language \(\mathcal{L} \) in which the diagonal function \(D \) is representable and let \(g_{\text{Th}}(u) \) be a Godel number of given an expression \(u \) of \(\text{Th} \). Then the property \(x \in T_{\text{Th}} \) is not strongly expressible in \(\text{Th} \).

Proof. By the diagonalization lemma applied to \(\neg \text{True}^*(x) \) there is a sentence \(F^* \) such that:

(c) \(\text{Th} \vdash F^* \iff \neg \text{True}^*(\bar{q}) \), where \(q \) is the Godel number of \(F^* \), i.e. \(g_{\text{Th}}(F^*) = q \).

Case 1. Suppose that \(\text{Th} \vdash F^* \), then \(q \in T_{\text{Th}} \). By (a), \(\text{Th} \vdash \text{True}^*(\bar{q}) \). But, from
and (c), by biconditional elimination, one obtains $\mathbf{Th} \vdash \neg \text{True}^*(q)$. Hence \mathbf{Th} is inconsistent, contradicting our hypothesis.

Case 2. Suppose that $\mathbf{Th} \nvdash \mathcal{F}^*$. Then $q \notin T_{\mathbf{Th}}$. By (b), $\mathbf{Th} \vdash \neg \text{True}^*(q)$. Hence, by (c) and biconditional elimination, $\mathbf{Th} \vdash \mathcal{F}^*$. Thus, in either case a contradiction is reached.

Remark 3.4.3. Notice that it is widely believed on unnormal part of the mathematical comunity that Tarski’s undefinability theorems 3.4.1-3.4.2 blocking any possible definitions of the sets $\mathcal{S}, \mathcal{S}_* , \mathcal{S}_{\text{Nat}}$, mentioned in subsection 1.2 and therefore these theorems blocking definitions of the sets $\mathcal{R}, \mathcal{R}_* , \mathcal{R}_{\text{Nat}}$, and correspondingly Tarski’s undefinability theorem blocking the biconditionals

$$\mathcal{R} \in \mathcal{R} \iff \mathcal{R} \notin \mathcal{R} , \mathcal{R}_* \in \mathcal{R}_* \iff \mathcal{R}_* \notin \mathcal{R}_* , \mathcal{R}_{\text{Nat}} \in \mathcal{R}_{\text{Nat}} \iff \mathcal{R}_{\text{Nat}} \notin \mathcal{R}_{\text{Nat}} .$$

(3.4.1)

3.5. Generalized Tarski’s undefinability theorem.

Remark 3.5.1. (i) Let $\mathbf{Th}_1^\#$ be the theory $\mathbf{Th}_1^\# \models ZFC^H_{\omega}$. In addition under assumption $\overline{\text{Con}}(\mathbf{Th}_1^\#)$, we establish a countable sequence of the consistent extensions of the theory $\mathbf{Th}_1^\#$ such that:

(i) $\mathbf{Th}_1^\# \subseteq \cdots \subseteq \mathbf{Th}_i^\# \subseteq \mathbf{Th}_{i+1}^\# \subseteq \cdots \mathbf{Th}_s^\#$, where

(ii) $\mathbf{Th}_i^\#$ is a finite consistent extension of $\mathbf{Th}_1^\#$,

(iii) $\mathbf{Th}_s^\# = \bigcup_{i \in \omega} \mathbf{Th}_i^\#$,

(iv) $\mathbf{Th}_s^\#$ proves the all sentences of $\mathbf{Th}_1^\#$, which valid in \mathcal{M}, i.e., $\mathcal{M} \models A \Rightarrow \mathbf{Th}_s^\# \vdash A,$

see Part II, section 2, Proposition 2.1.(i).

(ii) Let $\mathbf{Th}_{1, st}^\#$ be $\mathbf{Th}_{1, st}^\# \models ZFC_{st}$.

In addition under assumption $\overline{\text{Con}}(\mathbf{Th}_{1, st}^\#)$, we establish a countable sequence of the consistent extensions of the theory $\mathbf{Th}_{1, st}^\#$ such that:

(i) $\mathbf{Th}_{1, st}^\# \subseteq \cdots \subseteq \mathbf{Th}_{i, st}^\# \subseteq \mathbf{Th}_{i+1, st}^\# \subseteq \cdots \mathbf{Th}_{s, st}^\#$, where

(ii) $\mathbf{Th}_{i, st}^\#$ is a finite consistent extension of $\mathbf{Th}_{1, st}^\#$,

(iii) $\mathbf{Th}_{s, st}^\# = \bigcup_{i \in \omega} \mathbf{Th}_{i, st}^\#$,

(iv) $\mathbf{Th}_{s, st}^\#$ proves the all sentences of $\mathbf{Th}_{1, st}^\#$, which valid in \mathcal{M}_{st}^{ZFC}, i.e.,

$\mathcal{M}_{st}^{ZFC} \models A \Rightarrow \mathbf{Th}_{s, st}^\# \vdash A,$

see Part II, section 2, Proposition 2.1.(ii).

(iii) Let $\mathbf{Th}_{1, Nat}^\#$ be $\mathbf{Th}_{1, Nat}^\# \models ZFC_{Nat}$.

In addition under assumption $\overline{\text{Con}}(\mathbf{Th}_{1, Nat}^\#)$, we establish a countable sequence of the consistent extensions of the theory $\mathbf{Th}_1^\#$ such that:

(i) $\mathbf{Th}_{1, Nat}^\# \subseteq \cdots \subseteq \mathbf{Th}_{i, Nat}^\# \subseteq \mathbf{Th}_{i+1, Nat}^\# \subseteq \cdots \mathbf{Th}_{s, Nat}^\#$, where

(ii) $\mathbf{Th}_{i, Nat}^\#$ is a finite consistent extension of $\mathbf{Th}_{1, Nat}^\#$,

(iii) $\mathbf{Th}_{s, Nat}^\# = \bigcup_{i \in \omega} \mathbf{Th}_{i, Nat}^\#$,

(iv) $\mathbf{Th}_{s, Nat}^\#$ proves the all sentences of $\mathbf{Th}_{1, Nat}^\#$, which valid in $\mathcal{M}_{Nat}^{ZFC}[PA]$, i.e.,

$\mathcal{M}_{Nat}^{ZFC}[PA] \models A \Rightarrow \mathbf{Th}_{s, Nat}^\# \vdash A,$

see Part II, section 2, Proposition 2.1.(iii).

Remark 3.5.2. (i) Let $\mathcal{S}_i, i = 1, 2, \ldots$ be the set of the all sets of \mathcal{M} provably definable in $\mathbf{Th}_i^\#$,

$$\forall Y \{ Y \in \mathcal{S}_i \iff \Box_i \exists \Psi(\cdot) \exists X [\Psi(X) \wedge Y = X] \}. \quad (3.5.1)$$

and let $\mathcal{R}_i = \{ x \in \mathcal{S}_i : \Box_i (x \neq x) \}$ where $\Box_i A$ means sentence A derivable in $\mathbf{Th}_i^\#$. Then
we have that \(\mathcal{R}_i \in \mathcal{R}_i \) if and only if \(\Box_i(\mathcal{R}_i \notin \mathcal{R}_i) \), which immediately gives us \(\mathcal{R}_i \in \mathcal{R}_i \) if and only if \(\mathcal{R}_i \notin \mathcal{R}_i \). We choose now \(\Box_i A, i = 1, 2, \ldots \) in the following form

\[
\Box_i A \triangleq Bew_i(\#A) \land [Bew_i(\#A) \Rightarrow A]. \quad (3.5.2)
\]

Here \(Bew_i(\#A), i = 1, 2, \ldots \) is a canonical Gödel formulae which says to us that there exist proof in \(\text{Th}^i_{\#}, i = 1, 2, \ldots \) of the formula \(A \) with Gödel number \(\#A \).

(II) Let \(\mathcal{I}_{i,\text{st}}, i = 1, 2, \ldots \) be the set of the all sets of \(M^{ZFC} \) provably definable in \(\text{Th}^i_{\text{st}} \),

\[
\forall Y \{ Y \in \mathcal{I}_{i,\text{st}} \leftrightarrow \Box_{i,\text{st}} \exists \Psi(x) \exists X [\Psi(X) \land Y = X] \}. \quad (3.5.3)
\]

and let \(\mathcal{R}_{i,\text{st}} = \{ x \in \mathcal{I}_{i,\text{st}} : \Box_{i,\text{st}}(x \not\in x) \} \) where \(\Box_{i,\text{st}} A \) means sentence \(A \) derivable in \(\text{Th}^i_{\text{st}} \).

Then we have that \(\mathcal{R}_{i,\text{st}} \in \mathcal{R}_{i,\text{st}} \) if and only if \(\Box_{i,\text{st}}(\mathcal{R}_{i,\text{st}} \not\in \mathcal{R}_{i,\text{st}}) \), which immediately gives us

\[
\mathcal{R}_{i,\text{st}} \in \mathcal{R}_{i,\text{st}} \text{ if and only if } \mathcal{R}_{i,\text{st}} \not\in \mathcal{R}_{i,\text{st}}. \]

We choose now \(\Box_{i,\text{st}} A, i = 1, 2, \ldots \) in the following form

\[
\Box_{i,\text{st}} A \triangleq Bew_{i,\text{st}}(\#A) \land [Bew_{i,\text{st}}(\#A) \Rightarrow A]. \quad (3.5.4)
\]

Here \(Bew_{i,\text{st}}(\#A), i = 1, 2, \ldots \) is a canonical Gödel formulae which says to us that there exist proof in \(\text{Th}^i_{\text{st}}, i = 1, 2, \ldots \) of the formula \(A \) with Gödel number \(\#A \).

(III) Let \(\mathcal{I}_{i,\text{Nat}}, i = 1, 2, \ldots \) be the set of the all sets of \(M^{ZFC}[PA] \) provably definable in \(\text{Th}^i_{\text{Nat}} \),

\[
\forall Y \{ Y \in \mathcal{I}_{i,\text{Nat}} \leftrightarrow \Box_{i,\text{Nat}} \exists \Psi(x) \exists X [\Psi(X) \land Y = X] \}. \quad (3.5.5)
\]

and let \(\mathcal{R}_{i,\text{Nat}} = \{ x \in \mathcal{I}_{i,\text{Nat}} : \Box_{i,\text{Nat}}(x \not\in x) \} \) where \(\Box_{i,\text{Nat}} A \) means sentence \(A \) derivable in \(\text{Th}^i_{\text{Nat}} \). Then we have that \(\mathcal{R}_{i,\text{Nat}} \in \mathcal{R}_{i,\text{Nat}} \) if and only if \(\Box_{i,\text{Nat}}(\mathcal{R}_{i,\text{Nat}} \not\in \mathcal{R}_{i,\text{Nat}}) \), which immediately gives us \(\mathcal{R}_{i,\text{Nat}} \in \mathcal{R}_{i,\text{Nat}} \) if and only if \(\mathcal{R}_{i,\text{Nat}} \not\in \mathcal{R}_{i,\text{Nat}} \). We choose now \(\Box_{i,\text{Nat}} A, i = 1, 2, \ldots \) in the following form

\[
\Box_{i,\text{Nat}} A \triangleq Bew_{i,\text{Nat}}(\#A) \land [Bew_{i,\text{Nat}}(\#A) \Rightarrow A]. \quad (3.5.6)
\]

Here \(Bew_{i,\text{Nat}}(\#A), i = 1, 2, \ldots \) is a canonical Gödel formulae which says to us that there exist proof in \(\text{Th}^i_{\text{Nat}}, i = 1, 2, \ldots \) of the formula \(A \) with Gödel number \(\#A \).

Remark 3.5.3 Notice that definitions (3.5.2), (3.5.4) and (3.5.6) hold as definitions of predicates really asserting provability in \(\text{Th}^i, \text{Th}^i_{\text{st}}, \text{Th}^i_{\text{Nat}}, i = 1, 2, \ldots \) correspondingly.

Remark 3.5.4 Of course the all theories \(\text{Th}^i, \text{Th}^i_{\text{st}}, \text{Th}^i_{\text{Nat}}, i = 1, 2, \ldots \) are inconsistent, see Part II, Proposition 2.10.(i)-(iii).

Remark 3.5.5.(I) Let \(\mathcal{I}_\infty \) be the set of the all sets of \(M \) provably definable in \(\text{Th}_\infty \),

\[
\forall Y \{ Y \in \mathcal{I}_\infty \leftrightarrow \Box_\infty \exists \Psi(x) \exists X [\Psi(X) \land Y = X] \}. \quad (3.5.7)
\]

and let \(\mathcal{R}_\infty = \{ x \in \mathcal{I}_\infty : \Box_\infty(x \not\in x) \} \) where \(\Box_\infty A \) means sentence \(A \) derivable in \(\text{Th}_\infty \). Then, we have that \(\mathcal{R}_\infty \in \mathcal{R}_\infty \) if and only if \(\Box_\infty(\mathcal{R}_\infty \not\in \mathcal{R}_\infty) \), which immediately gives us \(\mathcal{R}_\infty \in \mathcal{R}_\infty \) if and only if \(\mathcal{R}_\infty \not\in \mathcal{R}_\infty \). We choose now \(\Box_\infty A, i = 1, 2, \ldots \) in the following form

\[
\Box_\infty A \triangleq \exists i[Bew_i(\#A) \land [Bew_i(\#A) \Rightarrow A]]. \quad (3.5.8)
\]

(II) Let \(\mathcal{I}_{x,\text{st}} \) be the set of the all sets of \(M^{ZFC} \) provably definable in \(\text{Th}_{x,\text{st}} \),

\[
\forall Y \{ Y \in \mathcal{I}_{x,\text{st}} \leftrightarrow \Box_{x,\text{st}} \exists \Psi(x) \exists X [\Psi(X) \land Y = X] \}. \quad (3.5.9)
\]
and let $\mathcal{R}_{\alpha,lt}$ be the set $\mathcal{R}_{\alpha,lt} = \{x \in \mathcal{I}_{\alpha,lt} : \Box_{\alpha,lt}(x \not\in x)\}$, where $\Box_{\alpha,lt}A$ means ‘sentence A derivable in $\text{Th}_{\alpha,lt}^\#$. Then, we have that $\mathcal{R}_{\alpha,lt} \in \mathcal{R}_{\alpha,lt}$ if and only if $\Box_{\alpha,lt}(\mathcal{R}_{\alpha,lt} \not\in \mathcal{R}_{\alpha,lt})$, which immediately gives us $\mathcal{R}_{\alpha,lt} \in \mathcal{R}_{\alpha,lt}$ if and only if $\mathcal{R}_{\alpha,lt} \not\in \mathcal{R}_{\alpha,lt}$. We choose now $\Box_{\alpha,lt}A, i = 1, 2, \ldots$ in the following form

$$\square_{\alpha,lt}A \triangleq \exists [\text{Bew}_{\alpha,lt}(\#A) \land [\text{Bew}_{\alpha,lt}(\#A) \Rightarrow A]]. \tag{3.5.10}$$

(III) Let $\mathcal{I}_{\alpha,\text{Nat}}$ be the set of the all sets of $M^{\mathcal{P}_\alpha/\alpha}_{\text{Nat}}[\text{PA}]$ provably definable in $\text{Th}_{\alpha,\text{Nat}}^\#$,

$$\forall Y \langle Y \in \mathcal{I}_{\alpha,\text{Nat}} \iff \Box_{\alpha,\text{Nat}} \exists \Psi(Y) \exists X [\Psi(X) \land Y = X]\rangle. \tag{3.5.11}$$

and let $\mathcal{R}_{\alpha,\text{Nat}}$ be the set $\mathcal{R}_{\alpha,\text{Nat}} = \{x \in \mathcal{I}_{\alpha,\text{Nat}} : \Box_{\alpha,\text{Nat}}(x \not\in x)\}$ where $\Box_{\alpha,\text{Nat}}A$ means ‘sentence A derivable in $\text{Th}_{\alpha,\text{Nat}}^\#$. Then, we have that $\mathcal{R}_{\alpha,\text{Nat}} \in \mathcal{R}_{\alpha,\text{Nat}}$ if and only if $\Box_{\alpha,\text{Nat}}(\mathcal{R}_{\alpha,\text{Nat}} \not\in \mathcal{R}_{\alpha,\text{Nat}})$, which immediately gives us $\mathcal{R}_{\alpha,\text{Nat}} \in \mathcal{R}_{\alpha,\text{Nat}}$ if and only if $\mathcal{R}_{\alpha,\text{Nat}} \not\in \mathcal{R}_{\alpha,\text{Nat}}$. We choose now $\Box_{\alpha,\text{Nat}}A, i = 1, 2, \ldots$ in the following form

$$\Box_{\alpha,\text{Nat}}A \triangleq \exists [\text{Bew}_{\alpha,\text{Nat}}(\#A) \land [\text{Bew}_{\alpha,\text{Nat}}(\#A) \Rightarrow A]]. \tag{3.5.12}$$

Remark 3.5.6. Notice that definitions (3.5.8),(3.5.10) and (3.5.12) holds as definitions of a predicate really asserting provability in $\text{Th}_{\alpha}^\#, \text{Th}_{\alpha,lt}^\#$ and $\text{Th}_{\alpha,\text{Nat}}^\#$ correspondingly.

Remark 3.5.7. Of course all the theories $\text{Th}_{\alpha}^\#, \text{Th}_{\alpha,lt}^\#$ and $\text{Th}_{\alpha,\text{Nat}}^\#$ are inconsistent, see Part II, Proposition 2.14.(i)-(iii).

Remark 3.5.8. Notice that under naive consideration the set \mathcal{I}_{α} and \mathcal{R}_{α} can be defined directly using a truth predicate, which of course is not available in the language of ZFC_2^H (but iff ZFC_2^H is consistent) by well-known Tarski’s undefinability theorem [10].

Theorem 3.5.1. Tarski’s undefinability theorem: (I) Let Th_L be first order theory with formal language L, which includes negation and has a Gödel numbering $g(\cdot)$ such that for every L-formula $A(x)$ there is a formula B such that $B \leftrightarrow A(g(B))$ holds. Assume that Th_L

has a standard model $M_{st}^{\text{Th}_L}$ and $\text{Con}(\text{Th}_L, \text{st})$ where

$$\text{Th}_{L,lt} \triangleq \text{Th}_L + \exists M_{st}^{\text{Th}_L}. \tag{3.5.13}$$

Let T^* be the set of Gödel numbers of L-sentences true in $M_{st}^{\text{Th}_L}$. Then there is no L-formula $\text{True}(n)$ (truth predicate) which defines T^*. That is, there is no L-formula $\text{True}(n)$ such that for every L-formula A,

$$\text{True}(g(A)) \iff A \tag{3.5.14}$$

holds.

(II) Let $\text{Th}_L^{H_s}$ be second order theory with Henkin semantics and formal language L, which includes negation and has a Gödel numbering $g(\cdot)$ such that for every L-formula $A(x)$ there is a formula B such that $B \leftrightarrow A(g(B))$ holds.

Assume that $\text{Th}_L^{H_s}$ has a standard model $M_{st}^{\text{Th}_L^{H_s}}$ and $\text{Con}(\text{Th}_L^{H_s}, \text{st})$, where

$$\text{Th}_{L,lt}^{H_s} \triangleq \text{Th}_L^{H_s} + \exists M_{st}^{\text{Th}_L^{H_s}}. \tag{3.5.15}$$

Let T^* be the set of Gödel numbers of the all L-sentences true in M. Then there is no L-formula $\text{True}(n)$ (truth predicate) which defines T^*. That is, there is no L-formula
such that for every \mathcal{L}-formula A,

$$\text{True}(g(A)) \iff A \quad (3.5.16)$$

holds.

Remark 3.5.9. Notice that the proof of Tarski’s undefinability theorem in this form is again by simple reductio ad absurdum. Suppose that an \mathcal{L}-formula $\text{True}(n)$ defines T^*. In particular, if A is a sentence of $\text{Th}_\mathcal{L}$ then $\text{True}(g(A))$ holds in \mathbb{N} if and only if A is true in M^Th_c. Hence for all A, the Tarski T-sentence $\text{True}(g(A)) \iff A$ is true in M^Th_c. But the diagonal lemma yields a counterexample to this equivalence, by giving a “Liar” sentence S such that $S \iff \lnot \text{True}(g(S))$ holds in M^Th_c. Thus no \mathcal{L}-formula $\text{True}(n)$ can define T^*.

Remark 3.5.10. Notice that the formal machinery of this proof is wholly elementary except for the diagonalization that the diagonal lemma requires. The proof of the diagonal lemma is likewise surprisingly simple; for example, it does not invoke recursive functions in any way. The proof does assume that every \mathcal{L}-formula has a Gődel number, but the specifics of a coding method are not required.

Remark 3.5.11. The undefinability theorem does not prevent truth in one consistent theory from being defined in a stronger theory. For example, the set of (codes for) formulas of first-order Peano arithmetic that are true in \mathbb{N} is definable by a formula in second order arithmetic. Similarly, the set of true formulas of the standard model of second order arithmetic (or n-th order arithmetic for any n) can be defined by a formula in first-order ZFC.

Remark 1.3.5.12. Notice that it is widely believed on unnormal part of mathematical community that Tarski’s undefinability theorem blocking any possible definition of the sets $\mathcal{I}_{i=0}^\mathbb{N}, \mathcal{I}_{i=0}^\infty, \mathcal{I}_{i=0}^\mathbb{N}_{\text{str}}, \mathcal{I}_{i=0}^\infty_{\text{str}}, \mathcal{I}_{i=0}^\mathbb{N}_{\text{str}}$, and the sets $\mathcal{R}_{i=0}, \mathcal{R}_{i=0}$, and the sets $\mathcal{R}_{i=0}_{\text{str}}$. Correspondingly Tarski’s undefinability theorem blocking the biconditionals

$$\mathcal{R}_{i=0} \in \mathcal{R}_{i=0} \iff \mathcal{R}_{i=0} \notin \mathcal{R}_{i=0}, i \in \mathbb{N}, \quad (3.5.17)$$

$$\mathcal{R}_{i=0} \in \mathcal{R}_{i=0} \iff \mathcal{R}_{i=0} \notin \mathcal{R}_{i=0}, \text{etc.}$$

Thus in contrast with naive definition of the sets $\mathcal{I}_{i=0}$ and $\mathcal{R}_{i=0}$ there is no any problem which arises from Tarski’s undefinability theorem.

Remark 3.5.13. (I) We define again the set $\mathcal{I}_{i=0}$ but now by using generalized truth predicate $\text{True}_{i=0}(g(A), A)$ such that

$$\text{True}_{i=0}(g(A), A) \iff \exists i [\text{Bew}_{i}(\#A) \land [\text{Bew}_{i}(\#A) \Rightarrow A]] \iff \text{True}_{i=0}(g(A)) \land [\text{True}_{i=0}(g(A)) \Rightarrow A] \iff A, \quad (3.5.18)$$

$$\text{True}_{i=0}(g(A)) \iff \exists i \text{Bew}_{i}(\#A).$$

holds.

(II) We define the set $\mathcal{I}_{i=0}_{\text{str}}$ using generalized truth predicate $\text{True}_{i=0}_{\text{str}}(g(A), A)$ such that

$$\text{True}_{i=0}_{\text{str}}(g(A), A) \iff \exists i [\text{Bew}_{i,\text{str}}(\#A) \land [\text{Bew}_{i,\text{str}}(\#A) \Rightarrow A]] \iff \text{True}_{i=0}_{\text{str}}(g(A)) \land [\text{True}_{i=0}_{\text{str}}(g(A)) \Rightarrow A] \iff A, \quad (3.5.19)$$

$$\text{True}_{i=0}_{\text{str}}(g(A)) \iff \exists i \text{Bew}_{i,\text{str}}(\#A).$$

holds. Thus in contrast with naive definition of the sets $\mathcal{I}_{i=0}$ and $\mathcal{R}_{i=0}$ there is no any
problem which arises from Tarski’s undefinability theorem.

(III) We define the set \(N_{\text{st}} \) using generalized truth predicate \(\text{True}^g_{\text{st}}(A) \) such that

\[
\text{True}^g_{\text{st}}(A) \iff \exists \bar{g} \left[\text{Bew}^g_{\text{st}}(\#A) \land \left[\text{Bew}^g_{\text{st}}(\#A) \Rightarrow A \right] \right] \iff \\
\text{True}^g_{\text{st}}(A) \land \left[\text{True}^g_{\text{st}}(g(A)) \Rightarrow A \right] \iff A,
\]

(3.5.20)

holds. Thus in contrast with naive definition of the sets \(N_{\text{st}} \) and \(R_{\text{st}} \), there is no any problem which arises from Tarski’s undefinability theorem.

Remark 3.5.14. In order to prove that set theory \(\text{ZFC}^{Hs} + \exists M^{\text{ZFC}^{Hs}} \) is inconsistent without any reference to the set \(\exists N_{\text{st}} \), notice that by the properties of the extension \(\text{Th} \) follows that definition given by formula (1.5.18) is correct, i.e., for every \(\text{ZFC}^{Hs} \)-formula \(\Phi \) such that \(M^{\text{ZFC}^{Hs}} \models \Phi \) the following equivalence \(\Phi \iff \text{True}^g(g(\Phi), \Phi) \) holds.

Theorem 3.5.2. (Generalized Tarski’s undefinability theorem) (see Part II, section 2, Proposition 2.30). Let \(\text{Th}_\mathcal{L} \) be a first order theory or the second order theory with Henkin semantics and with formal language \(\mathcal{L} \), which includes negation and has a Gödel encoding \(g(\cdot) \) such that for every \(\mathcal{L} \)-formula \(A(x) \) there is a formula \(B \) such that the equivalence \(B \iff A(g(B)) \land [A(g(B) \Rightarrow B)] \) holds. Assume that \(\text{Th}_\mathcal{L} \) has an standard Model \(M^{\text{Th}}_\mathcal{L} \).

Then there is no \(\mathcal{L} \)-formula \(\text{True}(n), n \in \mathbb{N} \), such that for every \(\mathcal{L} \)-formula \(A \) such that \(M \models A \), the following equivalence

\[
A \iff \text{True}(g(A)) \land [\text{True}(g(A)) \Rightarrow A]
\]

holds.

Theorem 3.5.3. (i) Set theory \(\text{Th}^g_{\text{st}} = \text{ZFC}^{Hs} + \exists M^{\text{ZFC}^{Hs}} \) is inconsistent;

(ii) Set theory \(\text{Th}^{1,\text{st}} = \text{ZFC} + \exists M^{\text{ZFC}} \) is inconsistent;

(iii) Set theory \(\text{Th}^{1,\text{st}} = \text{ZFC} + \exists M^{\text{ZFC}} \) is inconsistent; (see Part II, section 2, Proposition 2.31.(i)-(iii)).

Proof. (i) Notice that by the properties of the extension \(\text{Th}^g \) of the theory \(\text{ZFC}^{Hs} + \exists M^{\text{ZFC}^{Hs}} = \text{Th}^g \) follows that

\[
M^{ZFC^{Hs}} \models \Phi \Rightarrow \text{Th}^g_\mathcal{L} \vdash \Phi.
\]

Therefore formula (3.5.18) gives generalized “truth predicate” for the set theory \(\text{Th}^g_{\text{st}} \).

By Theorem 3.5.2 one obtains a contradiction.

(ii) Notice that by the properties of the extension \(\text{Th}^g_{\text{st}} \) of the theory \(\text{ZFC} + \exists M^{\text{ZFC}} = \text{Th}^{1,\text{st}} \) follows that

\[
M^{\text{ZFC}} \models \Phi \Rightarrow \text{Th}^{1,\text{st}} \vdash \Phi.
\]

Therefore formula (3.5.19) gives generalized “truth predicate” for the set theory \(\text{Th}^{1,\text{st}} \).

By Theorem 3.5.2 one obtains a contradiction.
(iii) Notice that by the properties of the extension $\text{Th}^\#_{\text{Nst}}$ of the theory $ZFC + \exists M^ZFC_{\text{Nst}} = \text{Th}^\#_{\text{Nst}}$ follows that

$$M^ZFC_{\text{Nst}} \models \Phi \iff \text{Th}^\#_{\text{Nst}} \models \Phi.$$ \hfill (3.5.24)

Therefore (3.5.20) gives generalized "truth predicate" for the set theory $\text{Th}^\#_{\text{Nst}}$. By Theorem 3.5.2 one obtains a contradiction.

3.6. Avoiding the contradictions from set theory ZFC^H_2, ZFC_{st} and set theory ZFC_{Nst} using Quinean approach.

In order to avoid difficulties mentioned above we use well known Quinean approach.

3.6.1. Quinean set theory NF.

Remind that the primitive predicates of Russellian unramified typed set theory (TST), a streamlined version of the theory of types, are equality $=$ and membership \in. TST has a linear hierarchy of types: type 0 consists of individuals otherwise undescribed. For each (meta-) natural number n, type $n + 1$ objects are sets of type n objects; sets of type n have members of type $n - 1$. Objects connected by identity must have the same type.

The following two atomic formulas succinctly describe the typing rules: $x^n = y^n$ and $x^n \in y^{n+1}$.

The axioms of TST are:

Extensionality: sets of the same (positive) type with the same members are equal;

Axiom schema of comprehension:
If $\Phi(x^n)$ is a formula, then the set $\{x^n \mid \Phi(x^n)\}^{n+1}$ exists i.e., given any formula $\Phi(x^n)$, the formula

$$\exists A^{n+1} \forall x^n [x^n \in A^{n+1} \iff \Phi(x^n)]$$ \hfill (3.6.1)

is an axiom where A^{n+1} represents the set $\{x^n \mid \Phi(x^n)\}^{n+1}$ and is not free in $\Phi(x^n)$.

Quinean set theory (New Foundations) seeks to eliminate the need for such superscripts.

New Foundations has a universal set, so it is a non-well founded set theory. That is to say, it is a logical theory that allows infinite descending chains of membership such as

$$\ldots x_n \in x_{n-1} \in \ldots x_3 \in x_2 \in x_1.$$ It avoids Russell’s paradox by only allowing stratifiable formulae in the axiom of comprehension. For instance $x \in y$ is a stratifiable formula, but $x \in x$ is not (for details of how this works see below).

Definition 3.6.1. In New Foundations (NF) and related set theories, a formula Φ in the language of first-order logic with equality and membership is said to be stratified if and only if there is a function σ which sends each variable appearing in Φ [considered as an item of syntax] to a natural number (this works equally well if all integers are used) in such a way that any atomic formula $x \in y$ appearing in Φ satisfies $\sigma(x) + 1 = \sigma(y)$ and any atomic formula $x = y$ appearing in Φ satisfies $\sigma(x) = \sigma(y)$.

Quinean set theory NF.

Axioms and stratification are:

The well-formed formulas of New Foundations (NF) are the same as the well-formed formulas of TST, but with the type annotations erased. The axioms of NF are:
Extensionality: Two objects with the same elements are the same object;
A comprehension schema: All instances of TST Comprehension but with type indices
dropped (and without introducing new identifications between variables).
By convention, NF’s Comprehension schema is stated using the concept of stratified
formula and making no direct reference to types. Comprehension then becomes.

Stratified Axiom schema of comprehension:
\{x \mid \Phi^s\} exists for each stratified formula \Phi^s.
Even the indirect reference to types implicit in the notion of stratification can be
eliminated. Theodore Hailperin showed in 1944 that Comprehension is equivalent to a
finite conjunction of its instances, so that NF can be finitely axiomatized without any
reference to the notion of type. Comprehension may seem to run afoul of problems
similar to those in naive set theory, but this is not the case. For example, the existence
of the impossible Russell class \{x \mid x \notin x\} is not an axiom of NF, because \(x \notin x\)
cannot be stratified.

3.6.2. Set theory $\mathcal{ZFC}_{2}^{Hs}, \mathcal{ZFC}_{st}$ and set theory \mathcal{ZFC}_{Nst} with
stratified axiom schema of replacement.

The stratified axiom schema of replacement asserts that the image of a set under any
function definable by stratified formula of the theory \mathcal{ZFC}_{st} will also fall inside a set.

Stratified Axiom schema of replacement:
Let $\Phi^s(x, y, w_1, w_2, \ldots, w_n)$ be any stratified formula in the language of \mathcal{ZFC}_{st} whose free
variables are among $x, y, A, w_1, w_2, \ldots, w_n$, so that in particular B is not free in Φ^s. Then
\[
\forall A \forall w_1 \forall w_2 \ldots \forall w_n [\forall x (x \in A \Rightarrow \exists y (\Phi^s(x, y, w_1, w_2, \ldots, w_n))) \Rightarrow \\
\exists B \forall x (x \in A \Rightarrow \exists y (y \in B \land \Phi^s(x, y, w_1, w_2, \ldots, w_n)))],
\] (3.6.2)
i.e., if the relation $\Phi^s(x, y, \ldots)$ represents a definable function f, A represents its domain,
and $f(x)$ is a set for every $x \in A$, then the range of f is a subset of some set B.

Stratified Axiom schema of separation:
Let $\Phi^s(x, w_1, w_2, \ldots, w_n)$ be any stratified formula in the language of \mathcal{ZFC}_{st} whose free
variables are among $x, A, w_1, w_2, \ldots, w_n$, so that in particular B is not free in Φ^s. Then
\[
\forall w_1 \forall w_2 \ldots \forall w_n \forall A \exists B \forall x [x \in B \iff (x \in A \land \Phi^s(x, w_1, w_2, \ldots, w_n))],
\] (3.6.3)

Remark 3.6.1. Notice that the stratified axiom schema of separation follows from the
stratified axiom schema of replacement together with the axiom of empty set.

Remark 3.6.2. Notice that the stratified axiom schema of replacement (separation)
obviously violated any contradictions (2.1.20), (2.2.18) and (2.3.18) mentioned above.
The existence of the countable Russell sets $\mathcal{R}^{Hs}_2, \mathcal{R}^{st}_s$ and \mathcal{R}^{Nst}_s impossible, because $x \notin x$
cannot be stratified.

Designation 3.6.1.

Part II. Generalized Löbs Theorem.
1.

2. Generalized Löbs Theorem

Remark 2.1. In this section we use second-order arithmetic Z^H_2 with Henkin semantics.
Notice that any standard model $M^{Z_{2}^{lf}}$ of second-order arithmetic Z_{2}^{lf} consists of a set \mathbb{N} of usual natural numbers (which forms the range of individual variables) together with a constant 0 (an element of \mathbb{N}), a function S from \mathbb{N} to \mathbb{N}, two binary operations $+$ and \cdot on \mathbb{N}, a binary relation $<$ on \mathbb{N}, and a collection $D \subseteq 2^{\mathbb{N}}$ of subsets of \mathbb{N}, which is the range of the set variables. Omitting D produces a model of the first order Peano arithmetic.

When $D = 2^{\mathbb{N}}$ is the full powerset of \mathbb{N}, the model $M^{Z_{2}}$ is called a full model. The use of full second-order semantics is equivalent to limiting the models of second-order arithmetic to the full models. In fact, the axioms of second-order arithmetic Z_{2}^{lf} have only one full model. This follows from the fact that the axioms of Peano arithmetic with the second-order induction axiom have only one model under second-order semantics, see section 3.

Let Th be some fixed, but unspecified, consistent formal theory. For later convenience, we assume that the encoding is done in some fixed formal second order theory S and that Th contains S. We assume throughout this paper that formal second order theory S has an ω-model M^{S}_{ω}. The sense in which S is contained in Th is better exemplified than explained: if S is a formal system of a second order arithmetic Z_{2}^{lf} and Th is, say, ZFC^{lf}, then Th contains S in the sense that there is a well-known embedding, or interpretation, of S in Th. Since encoding is to take place in M^{S}_{ω}, it will have to have a large supply of constants and closed terms to be used as codes. (e.g. in formal arithmetic, one has $0, 1, \ldots$.) S will also have certain function symbols to be described shortly. To each formula, ϕ, of the language of Th is assigned a closed term, $[\phi]^{c}$, called the code of ϕ. We note that if $\phi(x)$ is a formula with free variable x, then $[\phi(x)]^{c}$ is a closed term encoding the formula $\phi(x)$ with x viewed as a syntactic object and not as a parameter. Corresponding to the logical connectives and quantifiers are the function symbols, $\text{neg}(\cdot), \text{imp}(\cdot)$, etc., such that for all formulae ϕ, ψ:

$$\phi, \psi : S \vdash \text{neg}([\phi]^{c}) = [\neg \phi]^{c}, \quad S \vdash \text{imp}([\phi]^{c}, [\psi]^{c}) = [\phi \rightarrow \psi]^{c}$$

Of particular importance is the substitution operator, represented by the function symbol $\text{sub}(\cdot, \cdot)$. For formulae $\phi(x)$, terms t with codes $[t]^{c}$:

$$S \vdash \text{sub}([\phi(x)]^{c}, [t]^{c}) = [\phi(t)]^{c}.$$ \tag{2.1}$$

It is well known [8] that one can also encode derivations and have a binary relation $\text{Prov}_{\text{Th}}(x, y)$ (read "x proves y" or "x is a proof of y") such that for closed $t_{1}, t_{2} : S \vdash \text{Prov}_{\text{Th}}(t_{1}, t_{2})$ iff t_{1} is the code of a derivation in Th of the formula with code t_{2}. It follows that

$$\text{Th} \vdash \phi \text{ iff } S \vdash \text{Prov}_{\text{Th}}(t, [\phi]^{c})$$ \tag{2.2}$$

for some closed term t. Thus one can define

$$\text{Pr}_{\text{Th}}(y) \leftrightarrow \exists x \text{Prov}_{\text{Th}}(x, y),$$ \tag{2.3}$$

and therefore one obtain a predicate asserting provability.

Remark 2.2. (I) We note that it is not always the case that [8]:

$$\text{Th} \vdash \phi \quad \text{iff} \quad S \vdash \text{Pr}_{\text{Th}}([\phi]^{c}).$$ \tag{2.4}$$

unless S is fairly sound, e.g. this is a case when S and Th replaced by $S_{m} = S \upharpoonright M^{S}_{\omega}$ and $\text{Th}_{m} = \text{Th} \upharpoonright M^{S}_{\omega}$ correspondingly (see Designation 2.1 below).

(II) Notice that it is always the case that:
really asserts provability.

It is well known [8] that the above encoding can be carried out in such a way that the following important conditions D1, D2 and D3 are meet for all sentences [8]:

\[\text{D1.} \text{Th} \vdash \Phi \text{ implies } S \vdash \text{Pr}_{\text{Th}}([\Phi]^c), \]
\[\text{D2.} S \vdash \text{Pr}_{\text{Th}}([\Phi]^c) \rightarrow \text{Pr}_{\text{Th}}([\text{Pr}_{\text{Th}}([\Phi]^c)]^c), \]
\[\text{D3.} S \vdash \text{Pr}_{\text{Th}}([\Phi]^c) \land \text{Pr}_{\text{Th}}([\Phi \rightarrow \Psi]^c) \rightarrow \text{Pr}_{\text{Th}}([\Psi]^c). \]

Conditions D1, D2 and D3 are called the Derivability Conditions.

Remark 2.3. From (2.5)-(2.6) follows that

\[\text{D4.} \text{Th} \vdash \Phi \text{ iff } S \vdash \text{Pr}_{\text{Th}}([\Phi]^c), \]
\[\text{D5.} S \vdash \text{Pr}_{\text{Th}}([\Phi]^c) \leftrightarrow \text{Pr}_{\text{Th}}([\text{Pr}_{\text{Th}}([\Phi]^c)]^c), \]
\[\text{D6.} S \vdash \text{Pr}_{\text{Th}}([\Phi]^c) \land \text{Pr}_{\text{Th}}([\Phi \rightarrow \Psi]^c) \rightarrow \text{Pr}_{\text{Th}}([\Psi]^c). \]

Conditions D4, D5 and D6 are called the Strong Derivability Conditions.

Definition 2.1. Let \(\Phi \) be well formed formula (wff) of \(\text{Th} \). Then wff \(\Phi \) is called a \(\text{Th} \)-sentence iff it has no free variables.

Designation 2.1. (i) Assume that a theory \(\text{Th} \) has an \(\omega \)-model \(M^\text{Th}_\omega \) and \(\Phi \) is a \(\text{Th} \)-sentence, then:
\(\Phi_{M^\text{Th}_\omega} \triangleq \Phi \upharpoonright M^\text{Th}_\omega \) (we will write \(\Phi_{M^\text{Th}_\omega} \) instead \(\Phi_{M^\text{Th}_\omega} \)) is a \(\text{Th} \)-sentence \(\Phi \) with all quantifiers relativized to \(\omega \)-model \(M^\text{Th}_\omega \) [11] and
\(\text{Th} \vdash \text{Th} \upharpoonright M^\text{Th}_\omega \) is a theory \(\text{Th} \) relativized to model \(M^\text{Th}_\omega \), i.e., any \(\text{Th} \)-sentence \(\Phi \).

(ii) Assume that a theory \(\text{Th} \) has a standard model \(M^\text{Th} \) and \(\Phi \) is a \(\text{Th} \)-sentence, then:
\(\Phi_{M^\text{Th}} \triangleq \Phi \upharpoonright M^\text{Th} \) (we will write \(\Phi_{M^\text{Th}} \) instead \(\Phi_{M^\text{Th}} \)) is a \(\text{Th} \)-sentence with all quantifiers relativized to non-standard model \(M^\text{Th} \), and
\(\text{Th} \vdash \text{Th} \upharpoonright M^\text{Th} \) is a theory \(\text{Th} \) relativized to model \(M^\text{Th} \), i.e., any \(\text{Th} \)-sentence \(\Phi \).

(iii) Assume that a theory \(\text{Th} \) has a non-standard model \(M^\text{Th}_{\text{Nst}} \) and \(\Phi \) is a \(\text{Th} \)-sentence, then:
\(\Phi_{M^\text{Th}_{\text{Nst}}} \triangleq \Phi \upharpoonright M^\text{Th}_{\text{Nst}} \) (we will write \(\Phi_{M^\text{Th}_{\text{Nst}}} \) instead \(\Phi_{M^\text{Th}_{\text{Nst}}} \)) is a \(\text{Th} \)-sentence with all quantifiers relativized to non-standard model \(M^\text{Th}_{\text{Nst}} \), and
\(\text{Th} \vdash \text{Th} \upharpoonright M^\text{Th}_{\text{Nst}} \) is a theory \(\text{Th} \) relativized to model \(M^\text{Th}_{\text{Nst}} \), i.e., any \(\text{Th} \)-sentence \(\Phi \).
(iv) Assume that a theory \(\text{Th} \) has a model \(M = M^\text{Th} \) and \(\Phi \) is a \(\text{Th} \)-sentence, then:
\(\Phi_{M^\text{Th}} \) is a \(\text{Th} \)-sentence with all quantifiers relativized to model \(M^\text{Th} \), and
\(\text{Th} \vdash \text{Th} \upharpoonright M^\text{Th} \) is a theory \(\text{Th} \) relativized to model \(M^\text{Th} \), i.e., any \(\text{Th} \)-sentence \(\Phi \) has a form \(\Phi_{M^\text{Th}} \).

Designation 2.2. (i) Assume that a theory \(\text{Th} \) with a lenguage \(\mathcal{L} \) has an \(\omega \)-model \(M^\text{Th}_\omega \) and there exists \(\text{Th} \)-sentence \(S_{\mathcal{L}} \) such that: (a) \(S_{\mathcal{L}} \) expressible by lenguage \(\mathcal{L} \) and (b) \(S_{\mathcal{L}} \) asserts
\(\text{Th} \) has a model \(M^\text{Th}_\omega \); we denote such \(\text{Th} \)-sentence \(S_{\mathcal{L}} \) by \(\text{Con}(\text{Th}; M^\text{Th}_\omega) \).

(ii) Assume that a theory \(\text{Th} \) with a lenguage \(\mathcal{L} \) has a non-standard model \(M^\text{Th}_{\text{Nst}} \) and there
exists Th-sentence $S_\mathcal{L}$ such that: (a) $S_\mathcal{L}$ expressible by language \mathcal{L} and (b) $S_\mathcal{L}$ asserts that Th has a non-standard model M^n_{Th}; we denote such Th-sentence $S_\mathcal{L}$ by $\text{Con}(\text{Th}; M^n_{\text{Th}})$.

(iii) Assume that a theory Th with a language \mathcal{L} has an model M^Th and there exists Th-sentence $S_\mathcal{L}$ such that: (a) $S_\mathcal{L}$ expressible by language \mathcal{L} and (b) $S_\mathcal{L}$ asserts that Th has a model M^Th; we denote such Th-sentence $S_\mathcal{L}$ by $\text{Con}(\text{Th}; M^\text{Th})$

Remark 2.4. We emphasize that: (i) it is well known that there exist a ZFC-sentence $\text{Con}(\text{ZFC}; M^{\text{ZFC}})$ [10],[11],(ii) obviously there exists a ZFC^{Th}-sentence $\text{Con}(\text{ZFC}^{\text{Th}}; M^{\text{ZFC}^{\text{Th}}})$

and there exists a ZFC^{Th}-sentence $\text{Con}(\text{ZFC}^{\text{Th}}; M^{\text{ZFC}^{\text{Th}}})$.

Designation 2.3. Let $\widehat{\text{Con}(\text{Th})}$ be the formula:

$$\widehat{\text{Con}(\text{Th})} \triangleq \forall t_1 (t_1 \in M^\text{Th}_a) \forall t'_1 (t'_1 \in M^\text{Th}_a) \forall t_2 (t_2 \in M^\text{Th}_a) \forall t'_2 (t'_2 \in M^\text{Th}_a)$$

$$-[(\text{Prov}_\text{Th}(t_1, [\Phi]^c) \land \text{Prov}_\text{Th}(t_2, \text{neg}([\Phi]^c))],$$

$$t'_1 = [\Phi]^c, t'_2 = \text{neg}([\Phi]^c)$$

or

$$\widehat{\text{Con}(\text{Th})} \triangleq \forall \Phi \forall t_1 (t_1 \in M^\text{Th}_a) \forall t_2 (t_2 \in M^\text{Th}_a) -[\text{Prov}_\text{Th}(t_1, [\Phi]^c) \land \text{Prov}_\text{Th}(t_2, \text{neg}([\Phi]^c))].$$

and where t_1, t'_1, t_2, t'_2 is a closed term.

Lemma 2.1. (i) Assume that: (i) $\text{Con}(\text{Th}; M^\text{Th})$, (ii) $M^\text{Th} \models \widehat{\text{Con}(\text{Th})}$ and (iii) $\text{Th} \vdash \text{Pr}_\text{Th}([\Phi]^c)$, where Φ is a closed formula. Then $\text{Th} \not\vdash \text{Pr}_\text{Th}([-\Phi]^c)$.

(ii) Assume that: (i) $\text{Con}(\text{Th}; M^\text{Th})$ (ii) $M^\text{Th} \models \widehat{\text{Con}(\text{Th})}$ and (iii) $\text{Th}_a \vdash \text{Pr}_\text{Th}_a([\Phi^a]^c)$, where Φ^a is a closed formula. Then $\text{Th}_a \not\vdash \text{Pr}_\text{Th}_a([-\Phi^a]^c)$.

Proof. (i) Let $\widehat{\text{Con}_\text{Th}(\Phi)}$ be the formula:

$$\widehat{\text{Con}_\text{Th}(\Phi)} \triangleq \forall t_1 (t_1 \in M^\text{Th}_a) \forall t_2 (t_2 \in M^\text{Th}_a) -[\text{Prov}_\text{Th}(t_1, [\Phi]^c) \land \text{Prov}_\text{Th}(t_2, \text{neg}([\Phi]^c))],$$

$$\forall t_1 (t_1 \in M^\text{Th}_a) \forall t_2 (t_2 \in M^\text{Th}_a) -[\text{Prov}_\text{Th}(t_1, [\Phi]^c) \land \text{Prov}_\text{Th}(t_2, \text{neg}([\Phi]^c))].$$

where t_1, t_2 is a closed term. From (i)-(iii) follows that theory $\text{Th} \vdash \widehat{\text{Con}(\text{Th})}$ is consistent.

We note that $\text{Th} \vdash \widehat{\text{Con}(\text{Th})} \vdash \widehat{\text{Con}_\text{Th}(\Phi)}$ for any closed Φ. Suppose that $\text{Th} \vdash \text{Pr}_\text{Th}([-\Phi]^c)$, then (iii) gives

$$\text{Th} \vdash \text{Pr}_\text{Th}([\Phi]^c) \land \text{Pr}_\text{Th}([-\Phi]^c).$$

From (2.3) and (2.11) we obtain

$$\exists t_1 \exists t_2 [\text{Prov}_\text{Th}(t_1, [\Phi]^c) \land \text{Prov}_\text{Th}(t_2, \text{neg}([\Phi]^c))].$$

But the formula (2.10) contradicts the formula (2.12). Therefore $\text{Th} \not\vdash \text{Pr}_\text{Th}([-\Phi]^c)$.

(ii) This case is trivial because formula $\text{Pr}_\text{Th}_a([-\Phi^a]^c)$ by the Strong Derivability
Condition D4, see formulae (2.8), really asserts provability of the Th_{ω}-sentence $-\Phi_{\omega}$. But this is a contradiction.

Lemma 2.2. (i) Assume that: (i) $\text{Con}(\text{Th};M^{\text{Th}})$, (ii) $M^{\text{Th}} \models \overline{\text{Con}}(\text{Th})$ and (iii) $\text{Th} \vdash \text{Pr}_{\text{Th}}([\neg \Phi])^{\text{c}}$, where Φ is a closed formula. Then $\text{Th} \not\vdash \text{Pr}_{\text{Th}}([\Phi])^{\text{c}}$.

(ii) Assume that: (i) $\text{Con}(\text{Th};M^{\text{Th}})$ (ii) $M^{\text{Th}} \models \overline{\text{Con}}(\text{Th})$ and (iii) $\text{Th}_{\omega} \vdash \text{Pr}_{\text{Th}_{\omega}}([\neg \Phi_{\omega}])^{\text{c}}$, where Φ_{ω} is a closed formula. Then $\text{Th}_{\omega} \not\vdash \text{Pr}_{\text{Th}_{\omega}}([\Phi_{\omega}])^{\text{c}}$.

Proof. Similarly as Lemma 2.1 above.

Example 2.1. (i) Let $\text{Th} = \text{PA}$ be Peano arithmetic and $\Phi \iff 0 = 1$. Then obviously by Löbs theorem $\text{PA} \vdash \text{Pr}_{\text{PA}}(0 \neq 1)$, and therefore by Lemma 2.1 $\text{PA} \not\vdash \text{Pr}_{\text{PA}}(0 = 1)$.

(ii) Let $\text{PA}^{*} = \text{PA} + \overline{\text{Con}}(\text{PA})$ and $\Phi \iff 0 = 1$. Then obviously by Löbs theorem

$\text{PA}^{*} \vdash \text{Pr}_{\text{PA}^{*}}(0 \neq 1)$,

and therefore

$\text{PA}^{*} \not\vdash \text{Pr}_{\text{PA}^{*}}(0 = 1)$.

However obviously

$\text{PA}^{*} \vdash [\text{Pr}_{\text{PA}}(0 \neq 1)] \land [\text{Pr}_{\text{PA}}(0 = 1)]$.

Remark 2.5. Notice that there is no standard model of PA^{*}.

Assumption 2.1. Let Th be a first order a second order theory with the Henkin semantics. We assume now that:

(i) the language of Th consists of:
numerals $0, 1, \ldots$,

(ii) Th contains ZFC^{Th} or ZFC

(iii) Th has an ω-model M^{Th}_{ω}

(iv) Th has a nonstandard model $M^{\text{Th}}_{\omega} [\text{PA}]$.

Definition 2.1. A Th-wff Φ (well-formed formula Φ) is closed - i.e. Φ is a sentence - if it has no free variables; a wff is open if it has free variables. We’ll use the slang ‘k-place open wff’ to mean a wff with k distinct free variables.

Definition 2.2. We will say that $\text{Th}^{\omega}_{\omega}$ is a nice theory or a nice extension of the Th iff the following

(i) $\text{Th}^{\omega}_{\omega}$ contains Th;

(ii) Let Φ be any closed formula of Th, then $\text{Th} \vdash \text{Pr}_{\text{Th}}([\Phi])^{\text{c}}$ implies $\text{Th}^{\omega}_{\omega} \vdash \Phi$;

(iii) Let Φ_{ω} be any closed formula of $\text{Th}^{\omega}_{\omega}$, then $M^{\text{Th}}_{\omega} \models \Phi_{\omega}$ implies $\text{Th}^{\omega}_{\omega} \vdash \Phi_{\omega}$, i.e.

$\text{Con}(\text{Th} + \Phi_{\omega}; M^{\text{Th}}_{\omega})$ implies $\text{Th}^{\omega}_{\omega} \vdash \Phi_{\omega}$.

Remark 2.6. Notice that formulae $\text{Con}(\text{Th} + \Phi_{\omega}; M^{\text{Th}}_{\omega})$ and $\text{Con}(\text{Th}^{\omega}_{\omega} + \Phi_{\omega}; M^{\text{Th}}_{\omega})$ are expressible in $\text{Th}^{\omega}_{\omega}$.

Definition 2.3. Let L be a classical propositional logic L. Recall that a set Δ of L-wff’s is said to be L-consistent, or consistent for short, if $\Delta \not\vdash \bot$ and there are other equivalent formulations of consistency: (1) Δ is consistent, (2) $\text{Ded}(\Delta) := \{A \mid \Delta \vdash A\}$ is not the
set
of all wff’s,(3) there is a formula such that Δ ⫌ A.(4) there are no formula A such that
Δ ⊨ A and Δ ⊨ ¬A.
We will say that, Thₘᵦ is a maximally nice theory or a maximally nice extension of the Th
iff
θ
Thₘᵦ is consistent and for any consistent nice extension Thₘᵦ of the Th :

Remark 2.7. We note that a theory Thₘᵦ depend on model M₁ , or M₁ , i.e.
Thₘᵦ = Thₘᵦ[M₁] or Thₘᵦ = Thₘᵦ[M₁] correspondingly. We will consider now the case
Thₘᵦ = Thₘᵦ[M₁] without loss of generality.

Remark 2.8.a. Notice that in order to prove the statements: (i) ¬Con(ZFC_[ₘ []; M₁]),
(ii) ¬Con(ZFC; M₁) the following Proposition 2.1 is not necessary, see Proposition
2.18.

Proposition 2.1. (Generalized Löbs Theorem).
(I) Assume that:
(i) Con(Th), where predicate Con(Th) defined by formula 2.9
(ii) Th has an ω-model M₁ , and
(iii) the statement ∃M₁ is expressible by language of Th as a single sentence of Th.
Then theory Th can be extended to a maximally consistent nice theory
Thₘᵦ = Thₘᵦ[M₁]. Below we write for short Thₘᵦ = Thₘᵦ[M₁].

Remark 2.8.b. We emphasize that (iii) valid for ZFC despite the fact that the axioms
of ZFC are infinite, see [10] Chapter II, section 7.p.78.

(II) Assume that:
(i) Con(Th), where predicate Con(Th) defined by formula 2.9,
(ii) Th has an ω-model M₁ and
(iii) the statement ∃M₁ is expressible by language of Th as a single sentence of Th.
Then theory Thₘᵦ = Th[M₁] can be extended to a maximally consistent nice theory
Thₘᵦ.

(III) Assume that:
(i) Con(Th), where predicate Con(Th) defined by formula 2.9,
(ii) Th has a nonstandard model M₁ [PA] and
(iii) the statement ∃M₁ [PA] is expressible by language of Th as a single sentence of Th.
Then theory Th can be extended to a maximally consistent nice theory
Thₘᵦ = Th[M₁].

Remark 2.8.c. We emphasize that (iii) valid for ZFC despite the fact that the axioms
of ZFC are infinite, see [10] Ch.II, section 7.p.78.

Proof.(I) Let Φ₁; ... Φᵦ be an enumeration of all closed wff’s of the theory Th (this
can be achieved if the set of propositional variables can be enumerated). Define a chain
φᵦ = {Thₘᵦ[M₁]}, Thₘᵦ = Th of consistent theories inductively as follows: assume
that
theory Thₘᵦ is defined. Notice that below we write for short Thₘᵦ = Thₘᵦ.
(i) Suppose that the statement (2.13) is satisfied
\[
\left[\text{Th}_i^\# \models \Pr_{\text{Th}_1^\#}([\Phi_i]^c) \right] \land \left[\text{Th}_i^\# \nvdash \Phi_i \right] \land M_{\omega}^\# \models \Phi_i. \quad (2.13)
\]

Then we define a theory \(\text{Th}_{i+1}^\# \) as follows \(\text{Th}_{i+1}^\# \triangleq \text{Th}_i^\# \cup \{\Phi_i\} \). We will rewrite the condition (2.13) using predicate \(\Pr_{\text{Th}_{i+1}^\#}(\cdot) \) symbolically as follows:

\[
\left\{
\begin{array}{l}
\text{Th}_{i+1}^\# \vdash \Pr_{\text{Th}_{i+1}^\#}([\Phi_i]^c), \\
\Pr_{\text{Th}_{i+1}^\#}([\Phi_i]^c) \Leftrightarrow \Pr_{\text{Th}_i^\#}([\Phi_i]^c) \land [M_{\omega}^\# \models \Phi_i], \\
M_{\omega}^\# \models \Phi_i \iff \text{Con}(\text{Th}_{i+1}^\# \vdash \Phi_i; M_{\omega}^\#), \\
i.e.,
\end{array}
\right.
\]

\(\Pr_{\text{Th}_{i+1}^\#}([\Phi_i]^c) \Leftrightarrow \Pr_{\text{Th}_i^\#}([\Phi_i]^c) \land \text{Con}(\text{Th}_{i+1}^\# \vdash \Phi_i; M_{\omega}^\#), \) \(\Pr_{\text{Th}_{i+1}^\#}([\Phi_i]^c) \Rightarrow \Phi_i, \) \(\Pr_{\text{Th}_{i+1}^\#}([\Phi_i]^c) \Rightarrow \Phi_i. \) \((2.14) \)

(ii) Suppose that the statement (2.15) is satisfied

\[
\left[\text{Th}_i^\# \nvdash \Pr_{\text{Th}_1^\#}([\neg \Phi_i]^c) \right] \land \left[\text{Th}_i^\# \nvdash [\neg \Phi_i] \right] \land M_{\omega}^\# \models [\neg \Phi_i]. \quad (2.15)
\]

Then we define a theory \(\text{Th}_{i+1}^\# \) as follows \(\text{Th}_{i+1}^\# \triangleq \text{Th}_i^\# \cup \{\Phi_i\} \). We will rewrite the condition (2.15) using predicate \(\Pr_{\text{Th}_{i+1}^\#}(\cdot) \), symbolically as follows:

\[
\left\{
\begin{array}{l}
\text{Th}_{i+1}^\# \vdash \Pr_{\text{Th}_{i+1}^\#}([\neg \Phi_i]^c), \\
\Pr_{\text{Th}_{i+1}^\#}([\neg \Phi_i]^c) \Leftrightarrow \Pr_{\text{Th}_i^\#}([\neg \Phi_i]^c) \land [M_{\omega}^\# \models [\neg \Phi_i]], \\
M_{\omega}^\# \models [\neg \Phi_i] \iff \text{Con}(\text{Th}_{i+1}^\# \vdash \neg \Phi_i; M_{\omega}^\#), \\
i.e.,
\end{array}
\right.
\]

\(\Pr_{\text{Th}_{i+1}^\#}([\neg \Phi_i]^c) \Leftrightarrow \Pr_{\text{Th}_i^\#}([\neg \Phi_i]^c) \land \text{Con}(\text{Th}_{i+1}^\# \vdash \neg \Phi_i; M_{\omega}^\#), \) \(\Pr_{\text{Th}_{i+1}^\#}([\neg \Phi_i]^c) \Rightarrow \neg \Phi_i, \) \(\Pr_{\text{Th}_{i+1}^\#}([\neg \Phi_i]^c) \Rightarrow \neg \Phi_i. \) \((2.16) \)

(iii) Suppose that the statement (2.17) is satisfied

\[
\text{Th}_i^\# \nvdash \Pr_{\text{Th}_i^\#}([\Phi_i]^c) \quad \text{and} \quad [\text{Th}_i^\# \nvdash \Phi_i] \land [M_{\omega}^\# \models \Phi_i]. \quad (2.17)
\]

Then we define a theory \(\text{Th}_{i+1}^\# \) as follows \(\text{Th}_{i+1}^\# \triangleq \text{Th}_i^\# \cup \{\Phi_i\} \). Using Lemma 2.1 and predicate \(\Pr_{\text{Th}_{i+1}^\#}(\cdot) \), we will rewrite the condition (2.17) symbolically as follows:
Then we define theory

\[
\text{Th}^\#_{i+1} \vdash \text{Pr}^\#_{\text{Th}_{i+1}}([\Phi_i]^c),
\]

\[
\text{Pr}^\#_{\text{Th}_{i+1}}([\Phi_i]^c) \iff \text{Pr}^\#_{\text{Th}_i}([\Phi_i]^c) \land [M^\#_{i+1} \models \Phi_i].
\]

\[
M^\#_{i+1} \models \Phi_i \iff \text{Con}(\text{Th}^\#_i + \Phi_i; M^\#_{i+1}),
\]

i.e.

\[
\text{Pr}^\#_{\text{Th}_{i+1}}([\Phi_i]^c) \iff \text{Pr}^\#_{\text{Th}_i}([\Phi_i]^c) \land \text{Con}(\text{Th}^\#_i + \Phi_i; M^\#_{i+1}),
\]

\[
\text{Pr}^\#_{\text{Th}_{i+1}}([\Phi_i]^c) \iff \text{Pr}^\#_{\text{Th}_i}([\Phi_i]^c).
\]

\[
\text{Pr}^\#_{\text{Th}_{i+1}}([\Phi_i]^c) \Rightarrow \Phi_i.
\]

\[
\text{Pr}^\#_{\text{Th}_{i+1}}([\Phi_i]^c) \Rightarrow \Phi_i.
\]

\[(2.18)\]

Remark 2.9. Notice that predicate \(\text{Pr}^\#_{\text{Th}_{i+1}}([\Phi_i]^c)\) is expressible in \(\text{Th}^\#_i\) because \(\text{Th}^\#_i\) is a finite extension of the recursive theory \(\text{Th}\) and \(\text{Con}(\text{Th}^\#_i + \Phi_i; M^\#_{i+1}) \in \text{Th}^\#_i\).

(iv) Suppose that a statement (2.19) is satisfied

\[
\text{Th}^\#_i \vdash \text{Pr}^\#_{\text{Th}_i}([\neg \Phi_i]^c) \text{ and } \text{Th}^\#_i \vdash \text{Pr}^\#_{\text{Th}_i}([\neg \Phi_i]^c) \land [M^\#_{i+1} \models \neg \Phi_i].
\]

Then we define theory \(\text{Th}^\#_{i+1}\) as follows: \(\text{Th}^\#_{i+1} \triangleq \text{Th}^\#_i \cup \{\neg \Phi_i\}\). Using Lemma 2.2 and predicate \(\text{Pr}^\#_{\text{Th}_{i+1}}(\cdot)\), we will rewrite the condition (2.15) symbolically as follows

\[
\text{Th}^\#_i \vdash \text{Pr}^\#_{\text{Th}_i}([\neg \Phi_i]^c),
\]

\[
\text{Pr}^\#_{\text{Th}_i}([\neg \Phi_i]^c) \iff \text{Pr}^\#_{\text{Th}_i}([\neg \Phi_i]^c) \land [M^\#_{i+1} \models \neg \Phi_i],
\]

\[
M^\#_{i+1} \models \neg \Phi_i \iff \text{Con}(\text{Th}^\#_i + \neg \Phi_i; M^\#_{i+1}),
\]

i.e.

\[
\text{Pr}^\#_{\text{Th}_i}([\neg \Phi_i]^c) \iff \text{Pr}^\#_{\text{Th}_i}([\neg \Phi_i]^c) \land \text{Con}(\text{Th}^\#_i + \neg \Phi_i; M^\#_{i+1}),
\]

\[
\text{Pr}^\#_{\text{Th}_i}([\Phi_i]^c) \iff \text{Pr}^\#_{\text{Th}_i}([\Phi_i]^c).
\]

\[
\text{Pr}^\#_{\text{Th}_i}([\Phi_i]^c) \Rightarrow \Phi_i.
\]

\[
\text{Pr}^\#_{\text{Th}_i}([\Phi_i]^c) \Rightarrow \Phi_i.
\]

\[(2.20)\]

Remark 2.10. Notice that predicate \(\text{Pr}^\#_{\text{Th}_i}([\neg \Phi_i]^c)\) is expressible in \(\text{Th}^\#_i\) because \(\text{Th}^\#_i\) is a finite extension of the recursive theory \(\text{Th}\) and \(\text{Con}(\text{Th}^\#_i + \neg \Phi_i; M^\#_{i+1}) \in \text{Th}^\#_i\).

(v) Suppose that the statement (2.21) is satisfied

\[
\text{Th}^\#_i \vdash \text{Pr}^\#_{\text{Th}_i}([\Phi_i]^c) \text{ and } \text{Th}^\#_i \vdash \text{Pr}^\#_{\text{Th}_i}([\Phi_i]^c) \Rightarrow \Phi_i.
\]

We will rewrite now the conditions (2.21) symbolically as follows

\[
\text{Th}^\#_i \vdash \text{Pr}^\#_{\text{Th}_i}([\Phi_i]^c)
\]

\[
\text{Pr}^\#_{\text{Th}_i}([\Phi_i]^c) \iff \text{Pr}^\#_{\text{Th}_i}([\Phi_i]^c) \land \text{Pr}^\#_{\text{Th}_i}([\Phi_i]^c) \Rightarrow \Phi_i
\]

\[(2.22)\]

Then we define a theory \(\text{Th}^\#_{i+1}\) as follows: \(\text{Th}^\#_{i+1} \triangleq \text{Th}^\#_i\).

(iv) Suppose that the statement (2.23) is satisfied

\[
\text{Th}^\#_i \vdash \text{Pr}^\#_{\text{Th}_i}([\neg \Phi_i]^c) \text{ and } \text{Th}^\#_i \vdash \text{Pr}^\#_{\text{Th}_i}([\neg \Phi_i]^c) \Rightarrow \neg \Phi_i.
\]

\[(2.23)\]
We will rewrite now the condition (2.23) symbolically as follows

\[
\begin{align*}
\text{Th}_i^g &\vdash \Pr_{\text{Th}_i^g}([-\Phi_i]^c) \\
\Pr_{\text{Th}_i^g}([-\Phi_i]^c) &\iff \Pr_{\text{Th}_i^g}([-\Phi_i]^c) \land \Pr_{\text{Th}_i^g}([-\Phi_i]^c) \Rightarrow -\Phi_i
\end{align*}
\]

(2.24)

Then we define a theory \(\text{Th}_{i+1}^g\) as follows: \(\text{Th}_{i+1}^g \triangleq \text{Th}_i^g\). We define now a theory \(\text{Th}_i^g\) as follows:

\[
\text{Th}_i^g \triangleq \bigcup_{i \in \mathbb{N}} \text{Th}_i^g.
\]

(2.25)

First, notice that each \(\text{Th}_i^g\) is consistent. This is done by induction on \(i\) and by Lemmas 2.1-2.2. By assumption, the case is true when \(i = 1\). Now, suppose \(\text{Th}_i^g\) is consistent.

Then its deductive closure \(\text{Ded}(\text{Th}_i^g)\) is also consistent. If the statement (2.14) is satisfied, i.e. \(\text{Th}_{i+1}^g \vdash \Pr_{\text{Th}_{i+1}^g}([\Phi_i]^c)\) and \(\text{Th}_{i+1}^g \vdash \Phi_i\), then clearly \(\text{Th}_{i+1}^g \triangleq \text{Th}_i^g \cup \{\Phi_i\}\) is consistent since it is a subset of closure \(\text{Ded}(\text{Th}_{i+1}^g)\). If a statement (2.16) is satisfied, i.e. \(\text{Th}_{i+1}^g \vdash \Pr_{\text{Th}_{i+1}^g}([-\Phi_i]^c)\) and \(\text{Th}_{i+1}^g \vdash -\Phi_i\), then clearly \(\text{Th}_{i+1}^g \triangleq \text{Th}_i^g \cup \{-\Phi_i\}\) is consistent since it is a subset of closure \(\text{Ded}(\text{Th}_{i+1}^g)\). If the statement (2.18) is satisfied, i.e. \(\text{Th}_i^g \vdash \Pr_{\text{Th}_i^g}([\Phi_i]^c)\) and \([\text{Th}_i^g \not\vdash \Phi_i] \land [\text{Th}_i^g \vdash \Phi_i]\) then clearly \(\text{Th}_{i+1}^g \triangleq \text{Th}_i^g \cup \{\Phi_i\}\) is consistent by Lemma 2.1 and by one of the standard properties of consistency: \(\Delta \cup \{\Phi_i\}\) is consistent iff \(\Delta \not\vdash -\Phi_i\). If the statement (2.20) is satisfied, i.e. \(\text{Th}_i^g \vdash \Pr_{\text{Th}_i^g}([-\Phi_i]^c)\) and \([\text{Th}_i^g \not\vdash -\Phi_i] \land [\text{Th}_i^g \vdash -\Phi_i]\) then clearly \(\text{Th}_{i+1}^g \triangleq \text{Th}_i^g \cup \{-\Phi_i\}\) is consistent by Lemma 2.2 and by one of the standard properties of consistency: \(\Delta \cup \{-\Phi_i\}\) is consistent iff \(\Delta \not\vdash -\Phi_i\). Next, notice \(\text{Ded}(\text{Th}_i^g)\) is maximally consistent nice extension of the \(\text{Ded}(\text{Th})\). \(\text{Ded}(\text{Th}_i^g)\) is consistent because, by the standard Lemma 2.3 below, it is the union of a chain of consistent sets. To see that \(\text{Ded}(\text{Th}_i^g)\) is maximal, pick any wff \(\Phi\).

Then \(\Phi\) is some \(\Phi_i\) in the enumerated list of all wff’s. Therefore for any \(\Phi\) such that \(\text{Th}_i \vdash \Pr_{\text{Th}_i}([\Phi_i]^c)\) or \(\text{Th}_i \vdash \Pr_{\text{Th}_i}([-\Phi_i]^c)\), either \(\Phi \in \text{Th}_i^g\) or \(-\Phi \in \text{Th}_i^g\). Since \(\text{Ded}(\text{Th}_{i+1}^g) \subseteq \text{Ded}(\text{Th}_i^g)\), we have \(\Phi \in \text{Ded}(\text{Th}_i^g)\) or \(-\Phi \in \text{Ded}(\text{Th}_i^g)\), which implies that \(\text{Ded}(\text{Th}_i^g)\) is maximally consistent nice extension of the \(\text{Ded}(\text{Th})\).

Proof. (1) Let \(\Phi_{a0}, \ldots, \Phi_{a\omega}\) be an enumeration of all closed wff’s of the theory \(\text{Th}_{a0}\) (this can be achieved if the set of propositional variables can be enumerated). Define a chain \(\wp = \{\text{Th}_{a_i}|i \in \mathbb{N}\}, \text{Th}_{a_{i+1}} \triangleq \text{Th}_{a_i}\) of consistent theories inductively as follows:

assume that theory \(\text{Th}_{a_i}^g\) is defined.

(i) Suppose that a statement (2.26) is satisfied

\[
\text{Th}_{a_{i+1}}^g \not\vdash \Pr_{\text{Th}_{a_{i+1}}^g}([\Phi_{a_i}]^c) \land \text{M}^a_{a_i} \models \Phi_i.
\]

(2.26)

Then we define a theory \(\text{Th}_{a_{i+1}}^g\) as follows:

\[
\text{Th}_{a_{i+1}}^g \triangleq \text{Th}_{a_i}^g \cup \{\Phi_{a_i}\}.
\]

(2.27)

We will rewrite now the conditions (2.26) and (2.27) symbolically as follows

\[
\begin{align*}
\text{Th}_{a_{i+1}}^g &\vdash \Pr_{\text{Th}_{a_{i+1}}^g}([\Phi_{a_i}]^c) \iff \text{Th}_{a_{i+1}}^g \vdash \Phi_{a_i}, \\
\Pr_{\text{Th}_{a_{i+1}}^g}([-\Phi_{a_i}]^c) &\iff \Pr_{\text{Th}_{a_{i+1}}^g}([-\Phi_{a_i}]^c) \land \Phi_{a_i}.
\end{align*}
\]

(2.28)

(ii) Suppose that a statement (2.29) is satisfied
Then we define a theory \(\text{Th}^{a,i}_\omega \) as follows:

\[
\text{Th}^{a,i}_\omega \triangleq \text{Th}^{a,j}_\omega \cup \{ \neg \Phi_{a,i} \}.
\]

We will rewrite the conditions (2.28) and (2.29) symbolically as follows

\[
\begin{aligned}
\text{Th}^{a,i+1}_\omega & \vdash \text{Pr}_{\text{Th}^{a,i}_\omega}(\neg \Phi_{a,i})^c \iff \text{Th}^{a,i+1}_\omega \vdash \neg \Phi_{a,i}, \\
\text{Pr}^{a,i+1}_\omega(\neg \Phi_{a,i})^c & \iff \text{Pr}_{\text{Th}^{a,i}_\omega}(\neg \Phi_{a,i})^c.
\end{aligned}
\]

(iii) Suppose that the following statement (2.32) is satisfied

\[
\text{Th}^{a,i}_\omega \vdash \text{Pr}_{\text{Th}^{a,i}_\omega}(\Phi_{a,i})^c,
\]

and therefore by Derivability Conditions (2.8)

\[
\text{Th}^{a,i}_\omega \vdash \Phi_{a,i}.
\]

We will rewrite now the conditions (2.28) and (2.29) symbolically as follows

\[
\begin{aligned}
\text{Pr}^{a,i}_\omega(\Phi_{a,i})^c & \iff \text{Th}^{a,i}_\omega \vdash \text{Pr}_{\text{Th}^{a,i}_\omega}(\Phi_{a,i})^c
\end{aligned}
\]

Then we define a theory \(\text{Th}^{a,i+1}_\omega \) as follows:

\[
\text{Th}^{a,i+1}_\omega \triangleq \text{Th}^{a,j}_\omega \cup \{ \neg \Phi_{a,i} \}.
\]

(iv) Suppose that the following statement (2.35) is satisfied

\[
\text{Th}^{a,i}_\omega \vdash \text{Pr}_{\text{Th}^{a,i}_\omega}(\neg \Phi_{a,i})^c,
\]

and therefore by Derivability Conditions (2.8)

\[
\text{Th}^{a,i}_\omega \vdash \neg \Phi_{a,i}.
\]

We will rewrite now the conditions (2.35) and (2.36) symbolically as follows

\[
\begin{aligned}
\text{Pr}^{a,i}_\omega(\neg \Phi_{a,i})^c & \iff \text{Th}^{a,i}_\omega \vdash \text{Pr}_{\text{Th}^{a,i}_\omega}(\neg \Phi_{a,i})^c
\end{aligned}
\]

Then we define a theory \(\text{Th}^{a,i+1}_{c,\omega} \) as follows:

\[
\text{Th}^{a,i+1}_{c,\omega} \triangleq \bigcup_{i \in \mathbb{N}} \text{Th}^{a,i}_\omega.
\]

First, notice that each \(\text{Th}^{a,i}_\omega \) is consistent. This is done by induction on \(i \). Now, suppose \(\text{Th}^{a,j}_\omega \) is consistent. Then its deductive closure \(\text{Ded}(\text{Th}^{a,j}_\omega) \) is also consistent. If statement (2.22) is satisfied, i.e. \(\text{Th}^{a,j}_\omega \not\vdash \text{Pr}_{\text{Th}^{a,j}_\omega}(\Phi_{a,j})^c \) and \(M^{a,j}_\omega \models \Phi_i \), then clearly

\[
\text{Th}^{a,i}_\omega \not\vdash \text{Th}^{a,j}_\omega \cup \{ \Phi_{a,i} \} \text{ is consistent.}.
\]

If statement (2.25) is satisfied, i.e.

\[
\text{Th}^{a,j}_\omega \not\vdash \text{Pr}_{\text{Th}^{a,j}_\omega}(\Phi_{a,j})^c \text{ and } M^{a,j}_\omega \models \Phi_i, \text{ then clearly } \text{Th}^{a,i}_\omega \not\vdash \text{Th}^{a,j}_\omega \cup \{ \Phi_{a,i} \} \text{ is consistent.}
\]

If the statement (2.28) is satisfied, i.e. \(\text{Th}^{a,j}_\omega \vdash \text{Pr}_{\text{Th}^{a,j}_\omega}(\Phi_{a,j})^c \), then clearly

\[
\text{Th}^{a,i}_\omega \vdash \text{Th}^{a,j}_\omega \cup \{ \Phi_{a,i} \} \text{ is consistent.}
\]

Next, notice \(\text{Ded}(\text{Th}^{a,j}_{c,\omega}) \) is a maximally consistent nice extension of the \(\text{Ded}(\text{Th}^{a,j}_\omega) \). The set \(\text{Ded}(\text{Th}^{a,j}_{c,\omega}) \) is consistent because, by the standard Lemma 2.3 below, it is the union of a chain of consistent sets.

Lemma 2.3. The union of a chain \(\mathcal{C} = \{ C_i | i \in \mathbb{N} \} \) of consistent sets \(C_i \), ordered by \(\subseteq \), is
consistent.

Definition 2.4. (I) We define now predicate $\Pr_{\mathbf{Th}_i^a}([\Phi]^c)$ and predicate $\Pr_{\mathbf{Th}_i^a}([\neg \Phi]^c)$ asserting provability in \mathbf{Th}_i^a by the following formulae

\[
\Pr_{\mathbf{Th}_i^a}([\Phi]^c) \iff \{\exists i(\Phi \in \mathbf{Th}_i^a)[\Pr_{\mathbf{Th}_i^a}([\Phi]^c)] \lor [\Pr_{\mathbf{Th}_i^a}([\Phi]^c)] \} \lor \\
\lor[(\Phi \in \mathbf{Th}_i^a) \land \text{Con}(\mathbf{Th}_i^a + \Phi; M_{\mathbf{Th}})],
\]
\[
\text{Con}(\mathbf{Th}_i^a + \Phi; M_{\mathbf{Th}}) \iff
\]
\[
\Pr_{\mathbf{Th}_i^a}([\neg \Phi]^c) \iff \{\exists i(\Phi \in \mathbf{Th}_i^a)[\Pr_{\mathbf{Th}_i^a}([\neg \Phi]^c)] \lor [\Pr_{\mathbf{Th}_i^a}([\neg \Phi]^c)] \} \lor \\
\lor[(\Phi \in \mathbf{Th}_i^a) \land \text{Con}(\mathbf{Th}_i^a + \neg \Phi; M_{\mathbf{Th}})],
\]
\[
\text{Con}(\mathbf{Th}_i^a + \neg \Phi; M_{\mathbf{Th}}) \iff
\]

(II) We define now predicate $\Pr_{\mathbf{Th}_{c,a}^a}([\Phi_0]^c)$ and predicate $\Pr_{\mathbf{Th}_{c,a}^a}([\neg \Phi_0]^c)$

asserting provability in $\mathbf{Th}_{c,a}^a$ by the following formulae

\[
\Pr_{\mathbf{Th}_{c,a}^a}([\Phi_0]^c) \iff
\]
\[
\exists i(\Phi_0 \in \mathbf{Th}_{c,a}^a)[\Pr_{\mathbf{Th}_{c,a}^a}([\Phi_0]^c)] \lor [\Pr_{\mathbf{Th}_{c,a}^a}([\Phi_0]^c)] \} \lor \\
\lor[(\Phi_0 \in \mathbf{Th}_{c,a}^a) \land \text{Con}(\mathbf{Th}_{c,a}^a + \Phi_0; M_{\mathbf{Th}})],
\]
\[
\text{Con}(\mathbf{Th}_{c,a}^a + \Phi_0; M_{\mathbf{Th}}) \iff
\]
\[
\Pr_{\mathbf{Th}_{c,a}^a}([\neg \Phi_0]^c) \iff \{\exists i(\Phi_0 \in \mathbf{Th}_{c,a}^a)[\Pr_{\mathbf{Th}_{c,a}^a}([\neg \Phi_0]^c)] \lor [\Pr_{\mathbf{Th}_{c,a}^a}([\neg \Phi_0]^c)] \} \lor \\
\lor[(\Phi_0 \in \mathbf{Th}_{c,a}^a) \land \text{Con}(\mathbf{Th}_{c,a}^a + \neg \Phi_0; M_{\mathbf{Th}})],
\]
\[
\text{Con}(\mathbf{Th}_{c,a}^a + \neg \Phi_0; M_{\mathbf{Th}}) \iff
\]

Remark 2.11. (I) Notice that both predicate $\Pr_{\mathbf{Th}_i^a}([\Phi]^c)$ and predicate $\Pr_{\mathbf{Th}_i^a}([\neg \Phi]^c)$ are expressible in \mathbf{Th}_i^a because for any $i \in \mathbb{N}$, \mathbf{Th}_i^a is an finite extension of the recursive theory \mathbf{Th} and $\text{Con}(\mathbf{Th}_i^a + \Phi; M_{\mathbf{Th}}) \in \mathbf{Th}_i$, $\text{Con}(\mathbf{Th}_i^a + \neg \Phi; M_{\mathbf{Th}}) \in \mathbf{Th}_i$.

(II) Notice that both predicate $\Pr_{\mathbf{Th}_{c,a}^a}([\Phi_0]^c)$ and predicate $\Pr_{\mathbf{Th}_{c,a}^a}([\neg \Phi_0]^c)$ are expressible in $\mathbf{Th}_{c,a}^a$ because for any $i \in \mathbb{N}$, $\mathbf{Th}_{c,a}^a$ is an finite extension of the recursive theory $\mathbf{Th}_{c,a}$ and $\text{Con}(\mathbf{Th}_{c,a}^a + \Phi_0; M_{\mathbf{Th}}) \in \mathbf{Th}_{c,a}^a$, $\text{Con}(\mathbf{Th}_{c,a}^a + \neg \Phi_0; M_{\mathbf{Th}}) \in \mathbf{Th}_{c,a}^a$.

Definition 2.5. Let $\Psi = \Psi(x)$ be one-place open \mathbf{Th}-wff such that the following condition:

\[
\text{Th} \triangleq \text{Th}_i^a \vdash \exists !x \Psi[\Psi(x)]
\]

(2.41)

is satisfied.

Remark 2.12. We rewrite now the condition (2.41) using only the language of the theory \mathbf{Th}_i^a.
\{Th^\#_1 \vdash \exists ! \psi(\psi(x)) \} \iff \Pr_{Th^\#_1}(\exists ! \psi(\psi(x))) \wedge \\
\wedge \{\Pr_{Th^\#_1}(\exists ! \psi(\psi(x))) \Rightarrow \exists ! \psi(\psi(x))\}. \quad (2.42)

Definition 2.6. We will say that, a set \(y\) is a \(Th^\#_1\)-set if there exist one-place open wff \(\psi(x)\) such that \(y = x_\psi\). We write \(y[Th^\#_1]\) iff \(y\) is a \(Th^\#_1\)-set.

Remark 2.13. Note that
\[y[Th^\#_1] \iff \exists \Psi \{ \psi(x) \wedge \Pr_{Th^\#_1}(\exists ! \psi(\psi(x))) \} \]
\[\{\Pr_{Th^\#_1}(\exists ! \psi(\psi(x))) \Rightarrow \exists ! \psi(\psi(x))\}. \quad (2.43)\]

Definition 2.7. Let \(\mathfrak{I}_1\) be a collection such that:
\[\forall x[x \in \mathfrak{I}_1 \iff x\text{ is a } Th^\#_1\text{-set}]. \quad (2.44)\]

Proposition 2.2. Collection \(\mathfrak{I}_1\) is a \(Th^\#_1\)-set.

Proof. Let us consider an one-place open wff \(\psi(x)\) such that conditions (2.41) are satisfied, i.e. \(Th^\#_1 \vdash \exists ! \psi(\psi(x))\). We note that there exists countable collection \(\mathcal{F}_\psi\) of the one-place open wff’s \(\mathcal{F}_\psi = \{\psi_n(x)\}_{n \in \mathbb{N}}\) such that: (i) \(\psi(x) \in \mathcal{F}_\psi\) and (ii)

\[
\begin{cases}
Th^\#_1 \triangleq Th^\#_1 \vdash \exists ! \psi(\psi(x)) \wedge \{\forall n(n \in \mathbb{N})[\psi(x) \leftrightarrow \psi_n(x)]\} \\
\text{or in the equivalent form}
\end{cases}
\]

\[
Th^\#_1 \triangleq \{\exists ! \psi(\psi(x)) \} \wedge \\
\{\Pr_{Th^\#_1}(\exists ! \psi(\psi(x))) \Rightarrow \exists ! \psi(\psi(x))\} \wedge \\
\{\Pr_{Th^\#_1}(\forall n(n \in \mathbb{N})[\psi(x) \leftrightarrow \psi_n(x)]) \} \wedge \\
\{\Pr_{Th^\#_1}(\forall n(n \in \mathbb{N})[\psi(x) \leftrightarrow \psi_n(x)]) \} \wedge \\
\{\Pr_{Th^\#_1}(\forall n(n \in \mathbb{N})[\psi(x) \leftrightarrow \psi_n(x)]) \} \wedge
\]

or in the following equivalent form

\[
\begin{cases}
Th^\#_1 \vdash \exists ! \psi(\psi(x)) \wedge \{\forall n(n \in \mathbb{N})[\psi(x) \leftrightarrow \psi_n(x)]\} \\
\text{or}
\end{cases}
\]

\[
Th^\#_1 \vdash \{\exists ! \psi(\psi(x)) \} \wedge \\
\{\Pr_{Th^\#_1}(\exists ! \psi(\psi(x))) \Rightarrow \exists ! \psi(\psi(x))\} \wedge \\
\{\Pr_{Th^\#_1}(\forall n(n \in \mathbb{N})[\psi(x) \leftrightarrow \psi_n(x)]) \} \wedge \\
\{\Pr_{Th^\#_1}(\forall n(n \in \mathbb{N})[\psi(x) \leftrightarrow \psi_n(x)]) \} \wedge
\]

where we have set \(\psi(x) = \psi_1(x_1), \psi_n(x_1) = \psi_n(x_1)\) and \(x_\psi = x_1\). We note that any collection \(\mathcal{F}_{\psi_k} = \{\psi_{n,k}(x)\}_{n \in \mathbb{N}}, k = 1, 2, \ldots\) such as mentioned above, defines an unique set \(x_{\psi_k}\), i.e. \(\mathcal{F}_{\psi_{k_1}} \cap \mathcal{F}_{\psi_{k_2}} = \emptyset\) iff \(x_{\psi_{k_1}} \neq x_{\psi_{k_2}}\). We note that collections \(\mathcal{F}_{\psi_k}, k = 1, 2, \ldots\) are not a part of the \(ZFC^{\#_1}\) or \(ZFC\), i.e. collection \(\mathcal{F}_{\psi_k}\) is not a set in sense of \(ZFC^{\#_1}\) or \(ZFC\). However this is no problem, because using Gödel numbering one can to replace any collection \(\mathcal{F}_{\psi_k}, k = 1, 2, \ldots\) by collection \(\Theta_k = g(\mathcal{F}_{\psi_k})\) of the corresponding Gödel numbers.
such that
\[\Theta_k = g(\mathcal{F}_{\Psi_k}) = \{g(\Psi_{n,k}(x_k))\}_{n \in \mathbb{N}}, \quad k = 1, 2, \ldots . \]

(2.47)

It is easy to prove that any collection \(\Theta_k = g(\mathcal{F}_{\Psi_k}), k = 1, 2, \ldots \) is a \(\text{Th}^\# \)-set. This is done by Gödel encoding [7],[10] (2.47), by the statement (2.45) and by axiom schemata of separation [10]. Let \(g_{n,k} = g(\Psi_{n,k}(x_k)), k = 1, 2, \ldots \) be a Gödel number of the wff \(\Psi_{n,k}(x_k) \). Therefore \(g(\mathcal{F}_k) = \{g_{n,k}\}_{n \in \mathbb{N}} \), where we have set \(\mathcal{F}_k = \mathcal{F}_{\Psi_k}, k = 1, 2, \ldots \) and

\[\forall k_1 \forall k_2[\{g_{n,k_1}\}_{n \in \mathbb{N}} \cap \{g_{n,k_2}\}_{n \in \mathbb{N}} = \emptyset \iff x_{k_1} \neq x_{k_2}]. \]

(2.48)

Let \(\{\{g_{n,k}\}_{n \in \mathbb{N}}\}_{k \in \mathbb{N}} \) be a family of the sets \(\{g_{n,k}\}_{n \in \mathbb{N}} \), \(k = 1, 2, \ldots \). By the axiom of choice [10] one obtains unique set \(\Im_1 = \{g_k\}_{k \in \mathbb{N}} \) such that \(\forall k[g_k \in \{g_{n,k}\}_{n \in \mathbb{N}}] \). Finally one obtains a set \(\Im_1 \) from the set \(\Im_1 \) by the axiom schema of replacement [10].

Proposition 2.3. Any collection \(\Theta_k = g(\mathcal{F}_{\Psi_k}), k = 1, 2, \ldots \) is a \(\text{Th}^\# \)-set.

Proof. We define \(g_{n,k} = g(\Psi_{n,k}(x_k)) = [\Psi_{n,k}(x_k)]^c, v_k = [x_k]^c \). Therefore
\[g_{n,k} = g(\Psi_{n,k}(x_k)) \leftrightarrow \text{Fr}(g_{n,k}, v_k) \]

(see [7]). Let us define now predicate \(\Pi(g_{n,k}, v_k) \)

\[\forall n(n \in \mathbb{N})[\text{Pr}_{\text{Th}^\#}(\{[\Psi_{1,k}(x_k)]^c\} \leftrightarrow \text{Pr}_{\text{Th}^\#}(\text{Fr}(g_{n,k}, v_k))]]. \]

(2.49)

We define now a set \(\Theta_k \) such that

\[\Theta_k = \Theta_k' \cup \{g_k\}, \]

\[\forall n(n \in \mathbb{N})[g_{n,k} \in \Theta_k' \leftrightarrow \Pi(g_{n,k}, v_k)] \]

(2.50)

Obviously definitions (2.45) and (2.50) are equivalent.

Definition 2.7. We define now the following \(\text{Th}^\# \)-set \(\mathfrak{R}_1 \subseteq \Im_1 : \)

\[\forall x[x \in \mathfrak{R}_1 \leftrightarrow (x \in \Im_1) \land \text{Pr}_{\text{Th}^\#}(\{x \not\in x\}^c) \land \left[\text{Pr}_{\text{Th}^\#}(\{x \not\in x\}^c) \Rightarrow x \not\in x\right]. \]

(2.51)

Proposition 2.4. (i) \(\text{Th}^\# \vdash \exists \mathfrak{R}_1 \), (ii) \(\mathfrak{R}_1 \) is a countable \(\text{Th}^\# \)-set.

Proof. (i) Statement \(\text{Th}^\# \vdash \exists \mathfrak{R}_1 \) follows immediately from the statement \(\exists \Im_1 \) and the axiom schema of separation [4], (ii) follows immediately from countability of a set \(\Im_1 \). Notice that \(\mathfrak{R}_1 \) is nonempty countable set such that \(\mathbb{N} \subset \mathfrak{R}_1 \), because for any \(n \in \mathbb{N} : \)

\[\text{Th}^\# \vdash n \not\in n. \]

Proposition 2.5. A set \(\mathfrak{R}_1 \) is inconsistent.

Proof. From formula (2.51) we obtain

\[\text{Th}^\# \vdash \mathfrak{R}_1 \in \mathfrak{R}_1 \leftrightarrow \text{Pr}_{\text{Th}^\#}(\{[\mathfrak{R}_1 \not\in \mathfrak{R}_1]^c\} \land \left[\text{Pr}_{\text{Th}^\#}(\{[\mathfrak{R}_1 \not\in \mathfrak{R}_1]^c\} \Rightarrow \mathfrak{R}_1 \not\in \mathfrak{R}_1 \right]. \]

(2.52)

From (2.52) we obtain

\[\text{Th}^\# \vdash \mathfrak{R}_1 \in \mathfrak{R}_1 \leftrightarrow \mathfrak{R}_1 \not\in \mathfrak{R}_1 \]

(2.53)

and therefore

\[\text{Th}^\# \vdash (\mathfrak{R}_1 \in \mathfrak{R}_1) \land (\mathfrak{R}_1 \not\in \mathfrak{R}_1). \]

(2.54)

But this is a contradiction.

Definition 2.8. Let \(\Psi = \Psi(x) \) be one-place open \(\text{Th} \)-wff such that the following
condition:

\[
\text{Th}_i^* \vdash \exists! x_{\Psi} [\Psi(x_{\Psi})]
\]

is satisfied.

Remark 2.14. We rewrite now the condition (2.55) using only the language of the theory

\[
\text{Th}_i^* : \\
\{ \text{Th}_i^* \vdash \exists! x_{\Psi} [\Psi(x_{\Psi})] \} \iff \text{Pr}_{\text{Th}_i^*}([[\exists! x_{\Psi} [\Psi(x_{\Psi})]]^c]) \land \\
\land \{ \text{Pr}_{\text{Th}_i^*}([[\exists! x_{\Psi} [\Psi(x_{\Psi})]]^c]) \Rightarrow \exists! x_{\Psi} [\Psi(x_{\Psi})] \}.
\]

Definition 2.9. We will say that, a set \(y \) is a \(\text{Th}_i^* \)-set if there exist one-place open wff \(\Psi(x) \) such that \(y = x_{\Psi} \). We write \(y[\text{Th}_i^*] \) iff \(y \) is a \(\text{Th}_i^* \)-set.

Remark 2.15. Note that

\[
y[\text{Th}_i^*] \iff \exists \Psi \{ (y = x_{\Psi}) \land \text{Pr}_{\text{Th}_i^*}([[\exists! x_{\Psi} [\Psi(x_{\Psi})]]^c]) \\
\{ \text{Pr}_{\text{Th}_i^*}([[\exists! x_{\Psi} [\Psi(x_{\Psi})]]^c]) \Rightarrow \exists! x_{\Psi} [\Psi(x_{\Psi})] \}.
\]

Definition 2.10. Let \(\mathcal{J}_i \) be a collection such that:

\[
\forall x \left[x \in \mathcal{J}_i \iff x \text{ is a } \text{Th}_i^*\text{-set.} \right]
\]

Proposition 2.6. Collection \(\mathcal{J}_i \) is a \(\text{Th}_i^* \)-set.

Proof. Let us consider an one-place open wff \(\Psi(x) \) such that conditions (2.51) are satisfied, i.e. \(\text{Th}_i^* \vdash \exists! x_{\Psi} [\Psi(x_{\Psi})] \). We note that there exists countable collection \(\mathcal{F}_{\Psi} \) of the one-place open wff’s \(\mathcal{F}_{\Psi} = \{ \Psi_n(x) \}_n \) such that: (i) \(\Psi(x) \in \mathcal{F}_{\Psi} \) and (ii)

\[
\text{Th}_i^* \vdash \exists! x_{\Psi} [\Psi(x_{\Psi}) \land \forall n(\in \mathbb{N})[\Psi(x_{\Psi}) \leftrightarrow \Psi_n(x_{\Psi})]]
\]

or in the equivalent form

\[
\text{Th}_i^* \vdash \text{Pr}_{\text{Th}_i^*}([[\exists! x_{\Psi} [\Psi(x_{\Psi})]]^c]) \land \\
\land \{ \text{Pr}_{\text{Th}_i^*}([[\exists! x_{\Psi} [\Psi(x_{\Psi})]]^c]) \Rightarrow \exists! x_{\Psi} [\Psi(x_{\Psi})] \} \land \\
\land \{ \text{Pr}_{\text{Th}_i^*}([[\forall n(\in \mathbb{N})[\Psi(x_{\Psi}) \leftrightarrow \Psi_n(x_{\Psi})]]^c]) \land \\
\land \{ \text{Pr}_{\text{Th}_i^*}([[\forall n(\in \mathbb{N})[\Psi(x_{\Psi}) \leftrightarrow \Psi_n(x_{\Psi})]]^c]) \Rightarrow \forall n(\in \mathbb{N})[\Psi(x_{\Psi}) \leftrightarrow \Psi_n(x_{\Psi})] \}
\]

or in the following equivalent form

\[
\text{Th}_i^* \vdash \exists! x_1 [[\Psi_1(x_1)] \land \forall n(\in \mathbb{N})[\Psi_1(x_1) \leftrightarrow \Psi_{n,1}(x_1)]]
\]

or

\[
\text{Th}_i^* \vdash \\
\text{Pr}_{\text{Th}_i^*}([[\exists! x_1 \Psi(x_1)]^c]) \land \\
\land \{ \text{Pr}_{\text{Th}_i^*}([[\exists! x_1 \Psi(x_1)]^c]) \Rightarrow \exists! x_1 \Psi(x_1) \} \land \\
\land \{ \text{Pr}_{\text{Th}_i^*}([[\forall n(\in \mathbb{N})[\Psi(x_1) \leftrightarrow \Psi_{n,1}(x_1)]]^c]) \land \\
\land \{ \text{Pr}_{\text{Th}_i^*}([[\forall n(\in \mathbb{N})[\Psi(x_1) \leftrightarrow \Psi_{n,1}(x_1)]]^c]) \Rightarrow \forall n(\in \mathbb{N})[\Psi(x_1) \leftrightarrow \Psi_{n,1}(x_1)] \}
\]

where we have set \(\Psi(x) \triangleq \Psi_1(x_1), \Psi_{n,1}(x_1) \triangleq \Psi_{n,1}(x_1) \) and \(x_{\Psi} \triangleq x_1 \). We note that any collection \(\mathcal{F}_{\Psi_k} = \{ \Psi_{n,k}(x) \}_n \) such as mentioned above, defines an unique
We define now a set \(\mathcal{F}_{\psi_k} \cup \mathcal{F}_{\psi_{k+1}} = \emptyset \) iff \(x_{\psi_k} \neq x_{\psi_{k+1}} \). We note that collections \(\mathcal{F}_{\psi_k}, k = 1, 2, \ldots \) are not a part of the \(ZFC_{\omega} \), i.e., collection \(\mathcal{F}_{\psi_k} \) there is no set in the sense of \(ZFC_{\omega} \). However that is no problem, because by using Gödel numbering one can to replace any collection \(\mathcal{F}_{\psi_k}, k = 1, 2, \ldots \) by collection \(\Theta_k = g(\mathcal{F}_{\psi_k}) \) of the corresponding Gödel numbers such that

\[
\Theta_k = g(\mathcal{F}_{\psi_k}) = \{g(\Psi_{n,k}(x_k))\}_{n\in\mathbb{N}}, k = 1, 2, \ldots.
\] (2.61)

It is easy to prove that any collection \(\Theta_k = g(\mathcal{F}_{\psi_k}), k = 1, 2, \ldots \) is a \(\text{Th}^h \)-set. This is done by Gödel encoding [7],[10] (2.61), by the statement (2.55) and by the axiom schema of separation [10]. Let \(g_{n,k} = g(\Psi_{n,k}(x_k)), k = 1, 2, \ldots \) be a Gödel number of the wff \(\Psi_{n,k}(x_k) \).

Therefore \(g(\mathcal{F}_k) = \{g_{n,k}\}_{n\in\mathbb{N}} \), where we have set \(\mathcal{F}_k = \mathcal{F}_{\psi_k}, k = 1, 2, \ldots \) and

\[
\forall k_1 \forall k_2 \{\{g_{n,k_1}\}_{n\in\mathbb{N}} \cap \{g_{n,k_2}\}_{n\in\mathbb{N}} = \emptyset \iff x_{k_1} \neq x_{k_2}\}.
\] (2.62)

Let \(\{\{g_{n,k}\}_{n\in\mathbb{N}}\}_{k\in\mathbb{N}} \) be a family of the all sets \(\{g_{n,k}\}_{n\in\mathbb{N}} \). By axiom of choice [10] one obtains a unique set \(\mathcal{I}' = \{g_k\}_{k\in\mathbb{N}} \) such that \(\forall k \in \{g_{n,k}\}_{n\in\mathbb{N}} \). Finally for any \(i \in \mathbb{N} \) one obtains a set \(\mathcal{I}_i \) from the set \(\mathcal{I}' \) by the axiom schema of replacement [10].

Proposition 2.8. Any collection \(\Theta_k = g(\mathcal{F}_{\psi_k}), k = 1, 2, \ldots \) is a \(\text{Th}^h \)-set.

Proof. We define \(g_{n,k} = g(\Psi_{n,k}(x_k)) = [x_{\psi_k}]^*, v_k = [x_k]^* \). Therefore \(g_{n,k} = g(\Psi_{n,k}(x_k)) \leftrightarrow \text{Fr}(g_{n,k}, v_k) \) (see [7]). Let us define now predicate \(\Pi_i(g_{n,k}, v_k) \)

\[
\Pi_i(g_{n,k}, v_k) \leftrightarrow \text{Pr}_{\text{Th}^h}([\exists x_{\psi_k} [\Psi_{1,k}(x_k)]]^*) \land \\
\exists x_{\psi_k} [x_{\psi_k} = [x_k]^*] \land \forall n (n \in \mathbb{N}) \left[\text{Pr}_{\text{Th}^h}([[[\psi_{1,k}(x_k)]]^*]) \leftrightarrow \text{Pr}_{\text{Th}^h}([\text{Fr}(g_{n,k}, v_k)]) \right].
\] (2.63)

We define now a set \(\Theta_k \) such that

\[
\Theta_k = \Theta_i' \cup \{g_k\}, \\
\forall n (n \in \mathbb{N}) \left[g_{n,k} \in \Theta_k \leftrightarrow \Pi_i(g_{n,k}, v_k) \right].
\] (2.64)

Obviously definitions (2.59) and (2.64) are equivalent.

Definition 2.11. We define now the following \(\text{Th}^h \)-set \(\mathcal{R}_i \subseteq \mathcal{I}_i : \)

\[
\forall x [x \in \mathcal{R}_i \iff (x \in \mathcal{I}_i) \land \text{Pr}_{\text{Th}^h}([x \notin x]^*) \land \text{Pr}_{\text{Th}^h}([x \in x]^*) \Rightarrow x \notin x].
\] (2.65)

Proposition 2.9. (i) \(\text{Th}^h \vdash \exists \mathcal{R}_i, (ii) \mathcal{R}_i \) is a countable \(\text{Th}^h \)-set, \(i \in \mathbb{N} \).

Proof. Statement \(\text{Th}^h \vdash \exists \mathcal{R}_i \) follows immediately by using statement \(\exists \mathcal{I}_i \) and axiom schema of separation [4]. (ii) follows immediately from countability of a set \(\mathcal{I}_i \).

Proposition 2.10. Any set \(\mathcal{R}_i, i \in \mathbb{N} \) is inconsistent.

Proof. From the formula (2.65) we obtain

\[
\text{Th}^h \vdash \mathcal{R}_i \in \mathcal{R}_i \iff \text{Pr}_{\text{Th}^h}([\mathcal{R}_i \notin \mathcal{R}_i]^*) \land \left[\text{Pr}_{\text{Th}^h}([\mathcal{R}_i \in \mathcal{R}_i]^*) \Rightarrow \mathcal{R}_i \notin \mathcal{R}_i \right].
\] (2.66)

From the formula (2.66) we obtain

\[
\text{Th}^h \vdash \mathcal{R}_i \in \mathcal{R}_i \iff \mathcal{R}_i \notin \mathcal{R}_i.
\] (2.67)

and therefore

\[
\text{Th}^h \vdash (\mathcal{R}_i \in \mathcal{R}_i) \land (\mathcal{R}_i \notin \mathcal{R}_i).
\] (2.68)

But this is a contradiction.

Definition 2.12. A \(\text{Th}^h \)-wff \(\Phi_\infty \) that is: (i) \(\text{Th} \)-wff \(\Phi \) or (ii) well-formed formula \(\Phi_\infty \) which contains predicate \(\text{Pr}_{\text{Th}^h}(\lceil \Phi \rceil^*) \) given by formula (2.39). An \(\text{Th}^h \)-wff \(\Phi_\infty \) (well-formed formula \(\Phi_\infty \)) is closed - i.e. \(\Phi_\infty \) is a sentence - if it has no free variables; a wff is open if it
has free variables.

Definition 2.13. Let \(\Psi = \Psi(x) \) be one-place open \(\text{Th}_x^\# \)-wff such that the following condition:

\[
\text{Th}_x^\# \vdash \exists!x_\Psi[\Psi(x_\Psi)]
\]

(2.69)
is satisfied.

Remark 2.16. We rewrite now the condition (2.69) using only the language of the theory \(\text{Th}_x^\# \):

\[
\{\text{Th}_x^\# \vdash \exists!x_\Psi[\Psi(x_\Psi)]\} \iff \text{Pr}_{\text{Th}_x^\#}([\exists!x_\Psi[\Psi(x_\Psi)]]) \land \\
\land \{\text{Pr}_{\text{Th}_x^\#}([\exists!x_\Psi[\Psi(x_\Psi)]]) \Rightarrow \exists!x_\Psi[\Psi(x_\Psi)]\}.
\]

(2.70)

Definition 2.14. We will say that, a set \(y \) is a \(\text{Th}_x^\# \)-set if there exists one-place open wff \(\Psi(x) \) such that \(y = x_\Psi \). We write \(y[\text{Th}_x^\#] \) iff \(y \) is a \(\text{Th}_x^\# \)-set.

Definition 2.15. Let \(\mathcal{A}_x \) be a collection such that: \(\forall x \exists x_\mathcal{A}_x \iff x \) is a \(\text{Th}_x^\# \)-set.

Proposition 2.11. Collection \(\mathcal{A}_x \) is a \(\text{Th}_x^\# \)-set.

Proof. Let us consider an one-place open wff \(\Psi(x) \) such that condition (2.69) is satisfied, i.e. \(\text{Th}_x^\# \vdash \exists!x_\Psi[\Psi(x_\Psi)] \). We note that there exists countable collection \(\mathcal{F}_\Psi \) of the one-place open wff’s \(\Psi_x = \{\Psi_1(x), \Psi_2(x) \} \) such that: (i) \(\Psi(x) \in \mathcal{F}_\Psi \) and (ii)

\[
\text{Th}_x^\# \vdash \exists!x_\Psi[\Psi(x_\Psi)] \land \{\forall n \in \mathbb{N}[\Psi(x_\Psi) \iff \Psi_n(x_\Psi)]\}
\]

or in the equivalent form

\[
\text{Th}_x^\# \vdash \text{Pr}_{\text{Th}_x^\#}([\exists!x_\Psi[\Psi(x_\Psi)]]) \land \\
\land \{\text{Pr}_{\text{Th}_x^\#}([\exists!x_\Psi[\Psi(x_\Psi)]]) \Rightarrow \exists!x_\Psi[\Psi(x_\Psi)]\} \land \\
\land \text{Pr}_{\text{Th}_x^\#}([\forall n \in \mathbb{N}[\Psi(x_\Psi) \iff \Psi_n(x_\Psi)]]) \land \\
\land \{\text{Pr}_{\text{Th}_x^\#}([\forall n \in \mathbb{N}[\Psi(x_\Psi) \iff \Psi_n(x_\Psi)]]) \Rightarrow \forall n \in \mathbb{N}[\Psi(x_\Psi) \iff \Psi_n(x_\Psi)]\}.
\]

(2.71)

or in the following equivalent form

\[
\text{Th}_x^\# \vdash \exists!x_1[\Psi_1(x_1)] \land \{\forall n \in \mathbb{N}[\Psi_1(x_1) \iff \Psi_{n,1}(x_1)]\}
\]

or

\[
\text{Th}_x^\# \vdash \text{Pr}_{\text{Th}_x^\#}([\exists!x_1[\Psi_1(x_1)]]) \land \\
\land \{\text{Pr}_{\text{Th}_x^\#}([\exists!x_1[\Psi_1(x_1)]]) \Rightarrow \exists!x_1[\Psi_1(x_1)]\} \land \\
\land \text{Pr}_{\text{Th}_x^\#}([\forall n \in \mathbb{N}[\Psi_1(x_1) \iff \Psi_{n,1}(x_1)]]) \land \\
\land \{\text{Pr}_{\text{Th}_x^\#}([\forall n \in \mathbb{N}[\Psi_1(x_1) \iff \Psi_{n,1}(x_1)]]) \Rightarrow \forall n \in \mathbb{N}[\Psi_1(x_1) \iff \Psi_{n,1}(x_1)]\}.
\]

(2.72)

where we set \(\Psi(x) = \Psi_1(x_1), \Psi_n(x_1) = \Psi_{n,1}(x_1) \) and \(x_\Psi = x_1 \). We note that any collection \(\mathcal{F}_\Psi = \{\Psi_{n,k}(x)\}_{n,m,k}, k = 1, 2, \ldots \) such as mentioned above defines a unique set \(x_{\Psi_{n,k}} \), i.e. \(\mathcal{F}_\Psi \cap \mathcal{F}_\Psi_{k+1} = \emptyset \) iff \(x_{\Psi_{n,k}} \neq x_{\Psi_{n,k+1}} \). We note that collections \(\mathcal{F}_{\Psi_{n,k}}, k = 1, 2, \ldots \) are not a part of the \(ZFC^\#_2 \), i.e. collection \(\mathcal{F}_\Psi \) there is no set in sense of \(ZFC^\#_2 \). However that is not a problem, because by using Gödel numbering one can to replace any collection \(\mathcal{F}_{\Psi_{n,k}}, k = 1, 2, \ldots \) by collection \(\Theta_k = g(\mathcal{F}_{\Psi_{n,k}}) \) of the corresponding Gödel numbers such that

\[
\Theta_k = g(\mathcal{F}_{\Psi_{n,k}}) = \{g(\Psi_{n,k}(x))\}_{n,m,k}, k = 1, 2, \ldots .
\]

(2.73)

It is easy to prove that any collection \(\Theta_k = g(\mathcal{F}_{\Psi_{n,k}}), k = 1, 2, \ldots \) is a \(\text{Th}_x^\# \)-set. This is done by Gödel encoding [8], [10] by the statement (2.66) and by axiom schema of separation [9].
Let \(g_{n,k} = g(\Psi_{n,k}(x_k)) \), \(k = 1, 2, \ldots \) be a Gödel number of the wff \(\Psi_{n,k}(x_k) \). Therefore
\[
g(\mathcal{F}_k) = \{g_{n,k}\}_{n \in \mathbb{N}}, \quad \text{where we have set } \mathcal{F}_k = F_{\mathcal{F}_k}, \quad k = 1, 2, \ldots \text{ and}
\]
\[
\forall k_1 \forall k_2 \{g_{n,k_1}\}_{n \in \mathbb{N}} \cap \{g_{n,k_2}\}_{n \in \mathbb{N}} = \emptyset \iff x_{k_1} \neq x_{k_2}.
\]
(2.74)

Let \(\{g_{n,k}\}_{n \in \mathbb{N}} \) be a family of the sets \(\{g_{n,k}\}_{n \in \mathbb{N}} \), \(k = 1, 2, \ldots \). By axiom of choice [9] one obtains an unique set \(\mathcal{J} = \{g_k\}_{k \in \mathbb{N}} \) such that \(\forall k[g_k \in \{g_{n,k}\}_{n \in \mathbb{N}}] \). Finally one obtains a set \(\mathcal{J}_\infty \) from the set \(\mathcal{J}_\alpha \) by axiom schema of replacement [9]. Thus one can define \(\text{Th}_\alpha^\# \)-set
\[
\mathcal{R}_\infty \subseteq \mathcal{J}_\infty :
\]
\[
\forall x[x \in \mathcal{R}_\alpha \iff (x \in \mathcal{J}_\infty) \land [Pr_{\text{Th}_\alpha^\#}(x) \iff x \in \mathcal{X}_\alpha]]].
\]
(2.75)

Proposition 2.12. Any collection \(\Theta_k = g(\mathcal{F}_k), k = 1, 2, \ldots \) is a \(\text{Th}_\alpha^\# \)-set.

Proof. We define \(g_{n,k} = g(\Psi_{n,k}(x_k)) = \Psi_{n,k}(x_k)^c, \; v_k = [x_k]^c \). Therefore
\[
g_{n,k} = g(\Psi_{n,k}(x_k)) \iff Fr(g_{n,k}, v_k) \quad (\text{see [10]}).
\]
Let us define now predicate \(\Pi_{\alpha}(g_{n,k}, v_k) \)
\[
\left\{ \begin{array}{c}
\Pi_{\alpha}(g_{n,k}, v_k) \iff \\
Pr_{\text{Th}_\alpha^\#}([\exists x_1 \Psi_{1,k}(x_1)^c]) \land [Pr_{\text{Th}_\alpha^\#}([\forall x_1 \Psi_{1,k}(x_1)^c]) \Rightarrow \exists x_1 \Psi(x_1)]
\end{array} \right.
\]
\[
\land \exists x_1(v_k = [x_k]^c)[\forall n(n \in \mathbb{N})[Pr_{\text{Th}_\alpha^\#}([\Psi_{1,k}(x_k)^c]) \Rightarrow Pr_{\text{Th}_\alpha^\#}(Fr(g_{n,k}, v_k))]].
\]
(2.76)

We define now a set \(\Theta_k \) such that
\[
\Theta_k = \Theta^\#_k \cup \{g_k\},
\]
\[
\forall n(n \in \mathbb{N})[g_{n,k} \in \Theta_k \iff \Pi(g_{n,k}, v_k)]
\]
(2.77)

Obviously definitions (2.70) and (2.77) are equivalent by Proposition 2.1.

Proposition 2.13. (i) \(\text{Th}_\alpha^\# \vdash \exists \mathcal{J}_\infty \), (ii) \(\mathcal{R}_\infty \) is a countable \(\text{Th}_\alpha^\# \)-set.

Proof. (i) Statement \(\text{Th}_\alpha^\# \vdash \exists \mathcal{J}_\infty \) follows immediately from the statement \(\exists \mathcal{J}_\infty \) and axiom schema of separation [9], (ii) follows immediately from countability of the set \(\mathcal{J}_\infty \).

Proposition 2.14. Set \(\mathcal{R}_\infty \) is inconsistent.

Proof. From the formula (2.75) we obtain
\[
\text{Th}_\alpha^\# \vdash \mathcal{R}_\infty \in \mathcal{R}_\infty \iff Pr_{\text{Th}_\alpha^\#}([\mathcal{R}_\infty \notin \mathcal{R}_\infty]^c) \land [Pr_{\text{Th}_\alpha^\#}([\mathcal{R}_\infty \notin \mathcal{R}_\infty]^c) \Rightarrow \mathcal{R}_\infty \notin \mathcal{R}_\infty].
\]
(2.78)

From (2.74) one obtains
\[
\text{Th}_\alpha^\# \vdash \mathcal{R}_\infty \in \mathcal{R}_\infty \iff \mathcal{R}_\infty \notin \mathcal{R}_\infty
\]
(2.79)

and therefore
\[
\text{Th}_\alpha^\# \vdash (\mathcal{R}_\infty \in \mathcal{R}_\infty) \land (\mathcal{R}_\infty \notin \mathcal{R}_\infty).
\]
(2.80)

But this is a contradiction.

Definition 2.16. An \(\text{Th}_\infty^\# \)-wff \(\Phi_{\infty} \) that is: (i) \(\text{Th}_\alpha^\# \)-wff \(\Phi_\infty \) or (ii) well-formed formula \(\Phi_{\infty} \)

which contains predicate \(Pr_{\text{Th}_\alpha^\#}(\Phi^c) \) given by formula (2.36). An \(\text{Th}_\infty^\# \)-wff \(\Phi_{\infty} \)
(well-formed formula \(\Phi_{\infty} \)) is closed - i.e. \(\Phi_\infty \) is a sentence - if it has no free variables; a

wff is open if it has free variables.

Definition 2.17. Let \(\Psi = \Psi(x) \) be one-place open \(\text{Th}_\alpha^\# \)-wff such that the following condition:
\[\text{Th}_\omega \triangleq \text{Th}^\#_{\omega,1} \iff \exists x \forall y [\Psi(x,y)] \]

(2.81)

is satisfied.

Remark 2.17. We rewrite now the condition (2.81) using only the language of the theory

\[\text{Th}^\#_{\omega,1} : \]

\[\langle \text{Th}^\#_{\omega,1} \iff \exists x \forall y [\Psi(x,y)] \rangle \iff \text{Pr}_{\text{Th}^\#_{\omega,1}} ([\exists x \forall y [\Psi(x,y)]]) \]

(2.82)

Definition 2.18. We will say that, a set \(y \) is a \(\text{Th}^\#_{\omega,1} \)-set if there exist one-place open wff \(\Psi(x) \) such that \(y = x \Psi \). We write \(y[\text{Th}^\#_{\omega,1}] \) iff \(y \) is a \(\text{Th}^\#_{\omega,1} \)-set.

Remark 2.18. Note that

\[y[\text{Th}^\#_{\omega,1}] \iff \exists \Psi \left((y = x \Psi) \land \text{Pr}_{\text{Th}^\#_{\omega,1}} ([\exists x \forall y [\Psi(x,y)]]) \right) \]

(2.83)

\[\{ \text{Pr}_{\text{Th}^\#_{\omega,1}} ([\exists x \forall y [\Psi(x,y)]]) \} \Rightarrow \exists x \forall y [\Psi(x,y)] \}. \]

Definition 2.19. Let \(\mathcal{I}_{\omega,1} \) be a collection such that :

\[\forall x \left(x \in \mathcal{I}_{\omega,1} \iff x \text{ is a } \text{Th}^\#_{\omega,1}-\text{set} \right). \]

(2.84)

Proposition 2.15. Collection \(\mathcal{I}_{\omega,1} \) is a \(\text{Th}^\#_{\omega,1} \)-set.

Proof. Let us consider an one-place open wff \(\Psi(x) \) such that conditions (2.37) are satisfied, i.e. \(\text{Th}^\#_{\omega,1} \iff \exists ! x \forall y [\Psi(x,y)] \). We note that there exists countable collection \(\mathcal{F}_\Psi \) of the one-place open wff’s \(\mathcal{F}_\Psi = \langle \mathcal{F}_\Psi(x) \rangle_{n \in \mathbb{N}} \) such that: (i) \(\Psi(x) \in \mathcal{F}_\Psi \) and (ii)

\[\begin{align*}
\text{Th}_\omega & \triangleq \text{Th}^\#_{\omega,1} \iff \exists ! x \forall y [\Psi(x,y)] \land \langle \forall n(n \in \mathbb{N})[\Psi(x,y) \iff \Psi_n(x,y)] \rangle \\
\text{or in the equivalent form} & \quad \text{Th}_\omega \triangleq \text{Th}^\#_{\omega,1} \iff \text{Pr}_{\text{Th}^\#_{\omega,1}} ([\exists ! x \forall y [\Psi(x,y)]]) \land \\
& \quad \left[\text{Pr}_{\text{Th}^\#_{\omega,1}} ([\forall n(n \in \mathbb{N})[\Psi(x,y) \iff \Psi_n(x,y)]]) \right],
\end{align*} \]

(2.85)

or in the following equivalent form

\[\begin{align*}
\text{Th}^\#_{\omega,1} & \iff \exists ! x_1 [\Psi_1(x_1)] \land \langle \forall n(n \in \mathbb{N})[\Psi_1(x_1) \iff \Psi_{n,1}(x_1)] \rangle \\
\text{or} & \quad \text{Th}^\#_{\omega,1} \iff \text{Pr}_{\text{Th}^\#_{\omega,1}} ([\exists ! x_1 \Psi_1(x_1)]) \land \\
& \quad \left[\text{Pr}_{\text{Th}^\#_{\omega,1}} ([\forall n(n \in \mathbb{N})[\Psi_1(x_1) \iff \Psi_{n,1}(x_1)]]) \right],
\end{align*} \]

(2.86)

where we have set \(\Psi(x) \triangleq \Psi_1(x_1), \Psi_n(x_1) \triangleq \Psi_{n,1}(x_1) \) and \(x_\Psi \triangleq x_1 \). We note that any collection \(\mathcal{F}_{\Psi_1} = \langle \Psi_{n,k}(x) \rangle_{n,k \in \mathbb{N}}, k = 1,2,\ldots \) such as mentioned above, defines an unique set \(x_{\Psi_1}, \text{i.e. } \mathcal{F}_{\Psi_1} \cap \mathcal{F}_{\Psi_2} = \emptyset \) iff \(x_{\Psi_1} \neq x_{\Psi_2} \). We note that collections \(\mathcal{F}_{\Psi_1}, k = 1,2,\ldots \) are not a part of the \(ZFC^\#_\omega \), i.e. collection \(\mathcal{F}_{\Psi_1} \) is not a set in the sense of \(ZFC_2 \). However that is not a problem, because by using G"odel numbering one can to replace any collection \(\mathcal{F}_{\Psi_1}, k = 1,2,\ldots \) by collection \(\Theta_k = g(\mathcal{F}_{\Psi_1}) \) of the corresponding G"odel numbers such that

\[\Theta_k = g(\mathcal{F}_{\Psi_1}) = \{ g(\Psi_{n,k}(x_k)) \}_{n,k \in \mathbb{N}}, k = 1,2,\ldots . \]

(2.87)

It is easy to prove that any collection \(\Theta_k = g(\mathcal{F}_{\Psi_1}), k = 1,2,\ldots \) is a \(\text{Th}^\#_{\omega,1} \)-set. This is done by G"odel encoding [7],[10] (2.87), by the statement (2.85) and by the axiom schema of separation [7]. Let \(g_{n,k} = g(\Psi_{n,k}(x_k)), k = 1,2,\ldots \) be a G"odel number of the wff
\(\Psi_{n,k}(x_k) \). Therefore \(g(\mathcal{F}_k) = \langle g_{n,k} \rangle_{n \in \mathbb{N}} \), where we have set \(\mathcal{F}_k = \mathcal{F}_{\Psi_k}, k = 1,2, \ldots \) and
\[
\forall k \forall k_2 [\langle g_{n,k} \rangle_{n \in \mathbb{N}} \cap \langle g_{n,k_2} \rangle_{n \in \mathbb{N}} = \emptyset \iff x_k \neq x_{k_2}].
\] (2.88)

Let \(\langle \langle g_{n,k} \rangle_{n \in \mathbb{N}} \rangle_{k \in \mathbb{N}} \) be a family of the sets \(\langle g_{n,k} \rangle_{n \in \mathbb{N}} \), \(k = 1,2, \ldots \). By the axiom of choice \([7]\) one obtains an unique set \(\mathcal{A}_1 = \{ g_k \}_{k \in \mathbb{N}} \) such that \(\forall k \in \{ g_k \}_{n \in \mathbb{N}} \). Finally one obtains a set \(\mathcal{A}_2 \) from the set \(\mathcal{A}_3 \) by the axiom schema of replacement \([7]\).

Proposition 2.16. Any collection \(\Theta_k = g(\mathcal{F}_{\Psi_k}), k = 1,2, \ldots \) is a \(\text{Th}_{\text{ao},1}^* \)-set.

Proof. We define \(g_{n,k} = g(\Psi_{n,k}(x_k)) = [\Psi_{n,k}(x_k)]^c, v_k = [x_k]^c \). Therefore \(g_{n,k} = g(\Psi_{n,k}(x_k)) \iff \text{Fr}(g_{n,k}, v_k) \) (see \([10]\)). Let us define now predicate \(\Pi(g_{n,k}, v_k) \)
\[
\Pi(g_{n,k}, v_k) \iff \text{Pr}_{\text{Th}_{\text{ao},1}^*}([\exists! x_k[\Psi_{1,k}(x_1)]^c]) \land
\land \exists! x_k (v_k = [x_k]^c) [\forall n(n \in \mathbb{N}) \text{[Pr}_{\text{Th}_{\text{ao},1}^*}([\Psi_{1,k}(x_k)]^c) \iff \text{Pr}_{\text{Th}_{\text{ao},1}^*}([\text{Fr}(g_{n,k}, v_k)])].
\] (2.89)

We define now a set \(\Theta_k \) such that
\[
\Theta_k = \Theta_k^* \cup \{ g_k \},
\]
\[
\forall n(n \in \mathbb{N}) \{ g_{n,k} \in \Theta_k \iff \Pi(g_{n,k}, v_k) \}
\] (2.90)

Obviously definitions (2.85) and (2.90) are equivalent.

Definition 2.20. We define now the following \(\text{Th}_{\text{ao},1}^* \)-set \(R_{\text{ao},1} \subseteq \mathcal{A}_{\text{ao},1} : \)
\[
\forall x \left[x \in R_{\text{ao},1} \iff (x \in \mathcal{A}_{\text{ao},1}) \land \text{Pr}_{\text{Th}_{\text{ao},1}^*}([\exists! x \in \mathcal{A}_{\text{ao},1}]^c) \right].
\] (2.91)

Proposition 2.17. (i) \(\text{Th}_{\text{ao},1}^* \models \exists R_{\text{ao},1}, \) (ii) \(\exists R_{\text{ao},1} \) is a countable \(\text{Th}_{\text{ao},1}^* \)-set.

Proof. (i) Statement \(\text{Th}_{\text{ao},1}^* \models \exists R_{\text{ao},1} \) follows immediately from the statement \(\exists \mathcal{A}_{\text{ao},1} \) and axiom schema of separation \([7]\). (ii) follows immediately from countability of the set \(\mathcal{A}_{\text{ao},1} \).

Proposition 2.18. A set \(R_{\text{ao},1} \) is inconsistent.

Proof. From formula (2.87) we obtain
\[
\text{Th}_{\text{ao},1}^* \models R_{\text{ao},1} \in R_{\text{ao},1} \iff \text{Pr}_{\text{Th}_{\text{ao},1}^*}([R_{\text{ao},1} \not\in R_{\text{ao},1}]^c). \] (2.92)

From (2.92) we obtain
\[
\text{Th}_{\text{ao},1}^* \models R_{\text{ao},1} \in R_{\text{ao},1} \iff R_{\text{ao},1} \not\in R_{\text{ao},1}
\] (2.93)

and therefore
\[
\text{Th}_{\text{ao},1}^* \models (R_{\text{ao},1} \in R_{\text{ao},1}) \land (R_{\text{ao},1} \not\in R_{\text{ao},1}). \] (2.94)

But this is a contradiction.

Definition 2.21. Let \(\Psi = \Psi(x) \) be one-place open \(\text{Th} \)-wff such that the following condition:
\[
\text{Th}_{\text{ao},1}^* \models \exists! x \Psi[\Psi(x)]
\] (2.95)

is satisfied.

Remark 2.19. We rewrite now the condition (2.95) using only the language of the theory \(\text{Th}_{\text{ao},1}^* : \)
\[
\{ \text{Th}_{\text{ao},1}^* \models \exists! x \Psi[\Psi(x)] \} \iff \text{Pr}_{\text{Th}_{\text{ao},1}^*}([\exists! x \Psi[\Psi(x)]])^c. \] (2.96)
Definition 2.22. We will say that a set y is a $\text{Th}^\#_{\alpha,\beta}$-set if there exist one-place open wff $\Psi(x)$ such that $y = x_\Psi$. We write $y[\text{Th}^\#_{\alpha,\beta}]$ iff y is a $\text{Th}^\#_{\alpha,\beta}$-set.

Remark 2.20. Note that

$$y[\text{Th}^\#_{\alpha,\beta}] \iff \exists \Psi\left[(y = x_\Psi) \land \Pr_{\text{Th}^\#_{\alpha,\beta}}(\exists! x_\Psi[\Psi(x_\Psi)])^c \right]. \quad (2.97)$$

Definition 2.23. Let $\mathcal{I}_{\alpha,\beta}$ be a collection such that:

$$\forall x \left[x \in \mathcal{I}_{\alpha,\beta} \iff x \text{ is a } \text{Th}^\#_{\alpha,\beta}-\text{set} \right]. \quad (2.98)$$

Proposition 2.19. Collection $\mathcal{I}_{\alpha,\beta}$ is a $\text{Th}^\#_{\alpha,\beta}$-set.

Proof. Let us consider an one-place open wff $\Psi(x)$ such that conditions (2.95) is satisfied, i.e. $\text{Th}^\#_{\alpha,\beta} \vdash \exists! x_\Psi[\Psi(x_\Psi)]$. We note that there exists countable collection \mathcal{F}_Ψ of the one-place open wff’s $\mathcal{F}_\Psi = \{\Psi(x)\}_{x \in \mathbb{N}}$ such that: (i) $\Psi(x) \in \mathcal{F}_\Psi$ and (ii) $\text{Th}^\#_{\alpha,\beta} \vdash \exists! x_\Psi[\Psi(x_\Psi)] \land \{\forall n \in \mathbb{N}[\Psi(x_\Psi) \leftrightarrow \Psi_n(x_\Psi)]\}^c$ or in the equivalent form

$$\text{Th}^\#_{\alpha,\beta} \vdash \Pr_{\text{Th}^\#_{\alpha,\beta}}(\exists! x_\Psi[\Psi(x_\Psi)])^c \land \left[\Pr_{\text{Th}^\#_{\alpha,\beta}}(\forall n \in \mathbb{N}[\Psi(x_\Psi) \leftrightarrow \Psi_n(x_\Psi)])^c \right]. \quad (2.99)$$

or in the following equivalent form

$$\text{Th}^\#_{\alpha,\beta} \vdash \exists! x_1[\Psi_1(x_1)] \land \{\forall n \in \mathbb{N}[\Psi_1(x_1) \leftrightarrow \Psi_n(x_1)]\}^c$$

$$\text{Th}^\#_{\alpha,\beta} \vdash \Pr_{\text{Th}^\#_{\alpha,\beta}}(\exists! x_1[\Psi_1(x_1)])^c \land \left[\Pr_{\text{Th}^\#_{\alpha,\beta}}(\forall n \in \mathbb{N}[\Psi_1(x_1) \leftrightarrow \Psi_n(x_1)])^c \right]. \quad (2.100)$$

where we have set $\Psi(x) \triangleq \Psi_1(x_1), \Psi_n(x_1) \triangleq \Psi_n(x_1)$ and $x_\Psi \triangleq x_1$. We note that any collection $\mathcal{F}_\Psi = \{\Psi_n(x)\}_{x \in \mathbb{N}}$, $k = 1, 2, \ldots$ such as mentioned above, defines an unique set x_Ψ, i.e. $\mathcal{F}_{\Psi_1} \cap \mathcal{F}_{\Psi_2} = \emptyset$ iff $x_{\Psi_1} \neq x_{\Psi_2}$. We note that collections $\mathcal{F}_{\Psi_k}, k = 1, 2, \ldots$ is not a part of the ZFC, i.e. collection \mathcal{F}_{Ψ_k} is not a set in the sense of ZFC. However that is not a problem, because by using Gödel numbering one can to replace any collection $\mathcal{F}_{\Psi_k}, k = 1, 2, \ldots$ by collection $\Theta_k = g(\mathcal{F}_{\Psi_k})$ of the corresponding Gödel numbers such that

$$\Theta_k = g(\mathcal{F}_{\Psi_k}) = \{g(\Psi_n(x))\}_{x \in \mathbb{N}}$$

It is easy to prove that any collection $\Theta_k = g(\mathcal{F}_{\Psi_k}), k = 1, 2, \ldots$ is a $\text{Th}^\#_{\alpha,\beta}$-set. This is done by Gödel encoding [8],[10] (2.101) by the statement (2.95) and by axiom scheme of separation [9]. Let $g_n = g(\Psi_n(x_k)), k = 1, 2, \ldots$ be a Gödel number of the wff $\Psi_n(x_k)$. Therefore $g_n(\mathcal{F}_k) = \{g_n(x_k)\}_{x_k \in \mathbb{N}}$ where we have set $\mathcal{F}_k \triangleq \mathcal{F}_{\Psi_k}, k = 1, 2, \ldots$

$$\forall k \forall k_1 \forall k_2 \left[\{g_n(x_k)\}_{x \in \mathbb{N}} \cap \{g_n(x_k)\}_{x \in \mathbb{N}} = \emptyset \iff x_k \neq x_k \right]. \quad (2.101)$$

Let $\{\{g_n(x_k)\}_{x \in \mathbb{N}}\}_{x \in \mathbb{N}}$ be the family of the sets $\{g_n(x_k)\}_{x \in \mathbb{N}}$. By axiom of choice [9] one obtains an unique set $\mathcal{I}' = \{g_k\}_{x \in \mathbb{N}}$ such that $\forall k \forall k_1 [g_k \in \{g_n(x_k)\}_{x \in \mathbb{N}}]$. Finally one obtains a set $\mathcal{I}'_{\alpha,\beta}$ from the set $\mathcal{I}'_{\alpha,\beta}$ by axiom schema of replacement [9].

Proposition 2.20. Any collection $\Theta_k = g(\mathcal{F}_{\Psi_k}), k = 1, 2, \ldots$ is a $\text{Th}^\#_{\alpha,\beta}$-set.

Proof. We define $g_n = g(\Psi_n(x_k)) \left[[\Psi_n(x_k)]^c, v_k = [x_k]^c \right]$. Therefore $g_n = g(\Psi_n(x_k)) \leftrightarrow \mathfrak{F}(g_n, v_k)$ (see [10]). Let us define now predicate $\Pi_{\alpha,\beta}(g_n, v_k)$
\[\Pi_{\alpha,l}(g_{n,k}, v_k) \leftrightarrow \text{Pr}_{\text{Th}_{\alpha,l}^t}([\exists!x_k[\Psi_{l,k}(x_k)]]^c) \land \\exists!x_k(v_k = [x_k]^c) \forall n(n \in \mathbb{N})[\text{Pr}_{\text{Th}_{\alpha,l}^t}([\Psi_{l,k}(x_k)]]^c) \leftrightarrow \text{Pr}_{\text{Th}_{\alpha,l}^t}([\text{Fr}(g_{n,k}, v_k)]^c)]] \] \tag{2.103}

We define now a set \(\Theta_k \) such that

\[\Theta_k = \Theta_k' \cup \{g_k\}, \forall n(n \in \mathbb{N})[g_{n,k} \in \Theta_k' \leftrightarrow \Pi_{\alpha,l}(g_{n,k}, v_k)]. \] \tag{2.104}

Obviously definitions (2.95) and (2.104) are equivalent.

Definition 2.24. We define now the following \(\text{Th}_{\alpha,l}^t \)-set \(R_{\alpha,l} \subseteq \mathcal{I}_{\alpha,l} : \)

\[\forall x \left[x \in R_{\alpha,l} \iff (x \in \mathcal{I}_{\alpha,l}) \land \text{Pr}_{\text{Th}_{\alpha,l}^t}([x \not\in x]^c) \right]. \] \tag{2.105}

Proposition 2.21. (i) \(\text{Th}_{\alpha,l}^t \vdash \exists R_{\alpha,l} \), (ii) \(R_{\alpha,l} \) is a countable \(\text{Th}_{\alpha,l}^t \)-set, \(i \in \mathbb{N} \).

Proof. (i) Statement \(\text{Th}_{\alpha,l}^t \vdash \exists R_{\alpha,l} \) follows immediately by using statement \(\exists \mathcal{I}_{\alpha,l} \) and axiom schema of separation [9]. (ii) follows immediately from countability of a set \(\mathcal{I}_{\alpha,l} \).

Proposition 2.22. Any set \(R_{\alpha,l}, i \in \mathbb{N} \) is inconsistent.

Proof. From formula (2.105) we obtain

\[\text{Th}_{\alpha,l}^t \vdash R_{\alpha,l} \in R_{\alpha,l} \iff \text{Pr}_{\text{Th}_{\alpha,l}^t}([R_{\alpha,l} \not\in R_{\alpha,l}]^c). \] \tag{2.106}

From (2.106) we obtain

\[\text{Th}_{\alpha,l}^t \vdash R_{\alpha,l} \in R_{\alpha,l} \iff R_{\alpha,l} \not\in R_{\alpha,l} \] \tag{2.107}

and therefore

\[\text{Th}_{\alpha,l}^t \vdash (R_{\alpha,l} \in R_{\alpha,l}) \land (R_{\alpha,l} \not\in R_{\alpha,l}). \] \tag{2.108}

But this is a contradiction.

Definition 2.25. Let \(\Psi = \Psi(x) \) be one-place open \(\text{Th}_{x,\alpha}^t \)-wff such that the following condition:

\[\text{Th}_{x,\alpha}^t \vdash \exists!x_{\Psi}[\Psi(x_{\Psi})] \] \tag{2.109}

is satisfied.

Remark 2.20. We rewrite now the condition (2.109) using only the language of the theory \(\text{Th}_{x,\alpha}^t \) in the following equivalent form

1. \[\text{Th}_{x,\alpha}^t \vdash \exists!x_{\Psi}[\Psi(x_{\Psi})] \iff \text{Th}_{x,\alpha}^t \vdash \text{Pr}_{\text{Th}_{x,\alpha}^t}([\exists!x_{\Psi}[\Psi(x_{\Psi})]]^c) \] or

2. \[\text{Th}_{x,\alpha}^t \vdash \exists!x_{\Psi}[\Psi(x_{\Psi})] \iff \text{Th}_{x,\alpha}^t \vdash \text{Pr}_{\text{Th}_{x,\alpha}^t}([\exists!x_{\Psi}[\Psi(x_{\Psi})]]^c) \land \text{Pr}_{\text{Th}_{x,\alpha}^t}([\exists!x_{\Psi}[\Psi(x_{\Psi})]]^c) \Rightarrow \exists!x_{\Psi}[\Psi(x_{\Psi})]) \] \tag{2.110}

Definition 2.26. We will say that: (i) a set \(y \) is a \(\text{Th}_{x,\alpha}^t \)-set if there exist one-place open wff \(\Psi(x) \) such that \(y = x_{\Psi} \), i.e. \(\text{Th}_{x,\alpha}^t \vdash \text{Pr}_{\text{Th}_{x,\alpha}^t}([\exists!x_{\Psi}[\Psi(x_{\Psi})]]^c) \land (y = x_{\Psi}); \)

(ii) a set \(y \) is a \(\text{Th}_{x,\alpha}^t \)-set if there exist one-place open wff

We write \(y[\text{Th}_{x,\alpha}^t] \) iff \(y \) is a \(\text{Th}_{x,\alpha}^t \)-set.
Definition 2.27. Let $\mathcal{I}_{x,\alpha}$ be a collection such that: $\forall x \in \mathcal{I}_{x,\alpha} \iff x \in [\text{Th}_{\alpha}^x]$.

Proposition 2.23. Collection $\mathcal{I}_{x,\alpha}$ is a Th_{α}^x-set.

Proof. Let us consider an one-place open wff $\Psi(x)$ such that condition (2.109) is satisfied, i.e. $\text{Th}_{x,\alpha}^x \vdash \exists x \Psi(x)$. We note that there exists countable collection \mathcal{F}_Ψ of the one-place open wff's $\mathcal{F}_\Psi = \{\Psi_n(x)\}_{n \in \mathbb{N}}$ such that: (i) $\Psi(x) \in \mathcal{F}_\Psi$ and (ii)

$$\text{Th}_{x,\alpha}^x \vdash \exists x \Psi([\Psi(x)]') \land \{\text{Pr}_{\text{Th}_{x,\alpha}^x}([\Psi_n(x)\in \mathcal{F}_\Psi]')\}.$$

or in the equivalent form

$$(2.111)$$

$$\text{Th}_{x,\alpha}^x \vdash \exists x \Psi([\Psi(x)]') \land \{\text{Pr}_{\text{Th}_{x,\alpha}^x}([\Psi_n(x)\in \mathcal{F}_\Psi]')\}.$$

or in the following equivalent form

$$(2.112)$$

$$\text{Th}_{x,\alpha}^x \vdash \exists x \psi_1([\psi_1(x_1)]') \land \{\text{Pr}_{\text{Th}_{x,\alpha}^x}([\psi_n(x_1)\in \mathcal{F}_\psi]')\}.$$

where we set $\psi(x) = \psi_1(x_1)$, $\psi_n(x_1) = \psi_{n,1}(x_1)$ and $x_\psi = x_1$. We note that any collection $\mathcal{F}_\psi = \{\psi_{k}(x_1)\}_{k \in \mathbb{N}}$, $k = 1, 2, \ldots$ such as mentioned above defines unique set x_ψ, i.e. $\mathcal{F}_\psi \cap \mathcal{F}_\psi' = \emptyset$ iff $x_\psi_1 \neq x_\psi_2$. We note that the collections $\mathcal{F}_\psi, k = 1, 2, \ldots$ is not a part of the ZFC, i.e. collection \mathcal{F}_ψ is not a set in the sense of ZFC. However that is not a problem, because by using Gödel numbering one can to replace any collection $\mathcal{F}_\psi, k = 1, 2, \ldots$ by collection $\Theta_k = g(\mathcal{F}_\psi)$ of the corresponding Gödel numbers such that

$$(2.113)$$

$$\Theta_k = g(\mathcal{F}_\psi) = \langle g(\Psi_{n,k}(x_1))\rangle_{n \in \mathbb{N}}, k = 1, 2, \ldots.$$

It is easy to prove that any collection $\Theta_k = g(\mathcal{F}_\psi), k = 1, 2, \ldots$ is a Th_{α}^x-set.

This is done by Gödel encoding [8], [10] by the statement (2.109) and by axiom schema of separation [9]. Let $g_{n,k} = g(\Psi_{n,k}(x_1)), k = 1, 2, \ldots$ be a Gödel number of the wff $\Psi_{n,k}(x_1)$. Therefore $g(\mathcal{F}_k) = \{g_{n,k}\}_{n \in \mathbb{N}}$, where we have set $\mathcal{F}_k = \mathcal{F}_\psi$, $k = 1, 2, \ldots$ and

$$(2.114)$$

$$\forall k_1 \forall k_2 \{\{g_{n,k_1}\}_{n \in \mathbb{N}} \cap \{g_{n,k_2}\}_{n \in \mathbb{N}} = \emptyset \iff x_{k_1} \neq x_{k_2}\}.$$

Let $\{\{g_{n,k}\}_{n \in \mathbb{N}}\}_{k \in \mathbb{N}}$ be the family of the sets $\{g_{n,k}\}_{n \in \mathbb{N}}$. By axiom of choice [9] one obtains unique set $\mathcal{I}' = \{g_k\}_{k \in \mathbb{N}}$ such that $\forall k[g_k \in \{g_{n,k}\}_{n \in \mathbb{N}}]$. Finally one obtains a set $\mathcal{I}_{x,\alpha}$ from the set $\mathcal{I}'_{x,\alpha}$ by axiom schema of replacement [9]. Thus one can define $\text{Th}_{x,\alpha}^x$-set

$$(2.115)$$

$$\forall x \in \mathcal{R}_{x,\alpha} \iff (x \in \mathcal{I}_{x,\alpha}) \land \text{Pr}_{\text{Th}_{x,\alpha}^x}([x \notin x]).$$
Proposition 2.24. Any collection \(\Theta_k = g(F_{\psi_k}), k = 1, 2, \ldots \) is a \(Th^{\theta}_{\chi_{\varphi 0}} \)-set.

Proof. We define \(g_{n,k} = g(\psi_{n,k}(x_{i})) = [\psi_{n,k}(x_{i})]' \), \(v_k = [x_k]' \). Therefore \(g_{n,k} = g(\psi_{n,k}(x_{i})) \Leftrightarrow Fr(g_{n,k}, v_k) \) (see [7]). Let us define now predicate \(\Pi_{\chi_{\varphi 0}}(g_{n,k}, v_k) \)

\[
\Pi_{\chi_{\varphi 0}}(g_{n,k}, v_k) \iff Pr_{Th^{\theta}_{\psi_{n,k}}}(\exists! x_k[\psi_{1,k}(x_{1})]' \land \
\forall n \in \mathbb{N} \exists! x_k(v_k = [x_k]')
\]

(2.116)

We define now a set \(\Theta_k \) such that

\[
\Theta_k = \Theta_k \cup \{g_k\}, \quad \forall n \in \mathbb{N} \exists! x_n(v_n \in \Theta_k) \iff \Pi_{\chi_{\varphi 0}}(g_{n,k}, v_k)
\]

(2.117)

Obviously definitions (2.114) and (2.117) is equivalent by Proposition 2.1.

Proposition 2.25. (i) \(Th^{\theta}_{\chi_{\varphi 0}} \vdash \exists! R_{\chi_{\varphi 0}} \), (ii) \(R_{\chi_{\varphi 0}} \) is a countable \(Th^{\theta}_{\chi_{\varphi 0}} \)-set.

Proof. (i) Statement \(Th^{\theta}_{\chi_{\varphi 0}} \vdash \exists! R_{\chi_{\varphi 0}} \) follows immediately from the statement \(\exists \exists \) and axiom schema of separation [9], (ii) follows immediately from countability of the set \(\mathbb{I}_{\chi_{\varphi}} \).

Proposition 2.26. Set \(R_{\chi_{\varphi 0}} \) is inconsistent.

Proof. From the formula (2.119) we obtain

\[
Th^{\theta}_{\chi_{\varphi 0}} \vdash R_{\chi_{\varphi 0}} \in R_{\chi_{\varphi 0}} \iff Pr_{Th^{\theta}_{\psi_{n,k}}}(\exists! R_{\chi_{\varphi 0}} \in R_{\chi_{\varphi 0}}').
\]

(2.118)

From the formula (2.118) and Proposition 2.1 we obtain

\[
Th^{\theta}_{\chi_{\varphi 0}} \vdash R_{\chi_{\varphi 0}} \in R_{\chi_{\varphi 0}} \iff R_{\chi_{\varphi 0}} \not\in R_{\chi_{\varphi 0}}
\]

(2.115)

and therefore

\[
Th^{\theta}_{\chi_{\varphi 0}} \vdash (R_{\chi_{\varphi 0}} \in R_{\chi_{\varphi 0}}) \land (R_{\chi_{\varphi 0}} \not\in R_{\chi_{\varphi 0}}).
\]

(2.116)

But this is a contradiction.

Proposition 2.26. Assume that (i) \(Con(Th) \) and (ii) \(Th \) has an nonstandard model \(M_{\mathbb{N}} \) and \(M_{\mathbb{N}} \subset M_{Th} \). Then theory \(Th \) can be extended to a maximally consistent nice theory \(Th^{\theta} \cong Th^{\theta}_{[M_{\mathbb{N}}]} \).

Proof. Let \(\Phi_1, \ldots, \Phi_i, \ldots \) be an enumeration of all wff’s of the theory \(Th \) (this can be achieved if the set of propositional variables can be enumerated). Define a chain \(g = \{Th^{\theta}_{N_{\mathbb{N}}}, i \in \mathbb{N}\}, Th^{\theta}_{N_{\mathbb{N}}}, i = Th \) of consistent theories inductively as follows: assume that theory \(Th_i \) is defined. (i) Suppose that a statement (2.117) is satisfied

\[
Th^{\theta}_{N_{\mathbb{N}}}, i \vdash Pr_{Th^{\theta}_{N_{\mathbb{N}}}}((\Phi_i)' \land [Th^{\theta}_{N_{\mathbb{N}}}, i \not\models \Phi_i] \land [M_{Th} \models \Phi_i]).
\]

(2.117)

Then we define a theory \(Th^{\theta}_{N_{\mathbb{N}}, i+1} \) as follows \(Th^{\theta}_{N_{\mathbb{N}}, i+1} \Delta Th_{N_{\mathbb{N}}} \cup \{\Phi_i\} \). Using Lemma 2.1 we will rewrite the condition (2.117) symbolically as follows

\[
\left\{ Th^{\theta}_{N_{\mathbb{N}}}, i \vdash Pr_{Th^{\theta}_{N_{\mathbb{N}}}}((\Phi_i)'), Pr_{Th^{\theta}_{N_{\mathbb{N}}}}((\Phi_i)'), Pr_{Th^{\theta}_{N_{\mathbb{N}}}}((\Phi_i)'), \land [M_{Th} \models \Phi_i].
\right\}
\]

(2.118)

(ii) Suppose that the statement (2.119) is satisfied

\[
Th^{\theta}_{N_{\mathbb{N}}}, i \vdash Pr_{Th^{\theta}_{N_{\mathbb{N}}}}((\neg\Phi_i)'), \land [Th^{\theta}_{N_{\mathbb{N}}}, i \not\models \neg\Phi_i] \land [M_{Th} \models \neg\Phi_i].
\]

(2.119)

Then we define theory \(Th_{i+1} \) as follows: \(Th_{i+1} \Delta Th_i \cup \{\neg\Phi_i\} \). Using Lemma 2.2 we will rewrite the condition (2.119) symbolically as follows
\[
\begin{align*}
\text{Then its deductive closure } & \text{ all wff's. Therefore for any } i.
\end{align*}
\]

We will rewrite the condition (2.121) symbolically as follows
\[
\text{Th}^\#_{N_{it},i} \vdash \text{Pr}^\#_{\text{Th}^\#_{N_{it},i}}([\neg \Phi_j]^c),
\]

The statement (2.123) is satisfied, i.e.
\[
\text{Th}^\#_{N_{it},i} \vdash \text{Pr}^\#_{\text{Th}^\#_{N_{it},i}}([-\Phi_j]^c) \land [M^\#_{N_{it}} \models -\Phi_j].
\]

(iii) Suppose that a statement (2.121) is satisfied
\[
\text{Th}^\#_{N_{it},i} \vdash \text{Pr}^\#_{\text{Th}^\#_{N_{it},i}}([\Phi_j]^c) \text{ and } \text{Th}^\#_{N_{it},i} \vdash \text{Pr}^\#_{\text{Th}^\#_{N_{it},i}}([-\Phi_j]^c) \Rightarrow \Phi_i.
\]

We will rewrite the condition (2.121) symbolically as follows
\[
\begin{align*}
\text{Th}^\#_{N_{it},i} \vdash \text{Pr}^\#_{\text{Th}^\#_{N_{it},i}}([\Phi_j]^c),
\end{align*}
\]

Then we define a theory \(\text{Th}^\#_{N_{it},i+1} \) as follows: \(\text{Th}^\#_{N_{it},i+1} \triangleq \text{Th}^\#_{N_{it},i} \).

(iv) Suppose that the statement (2.123) is satisfied
\[
\text{Th}^\#_{N_{it},i+1} \vdash \text{Pr}^\#_{\text{Th}^\#_{N_{it},i+1}}([-\Phi_j]^c) \text{ and } \text{Th}^\#_{N_{it},i+1} \vdash \text{Pr}^\#_{\text{Th}^\#_{N_{it},i+1}}([-\Phi_j]^c) \Rightarrow -\Phi_i.
\]

We will rewrite the condition (2.123) symbolically as follows
\[
\begin{align*}
\text{Th}^\#_{N_{it},i+1} \vdash \text{Pr}^\#_{\text{Th}^\#_{N_{it},i+1}}([-\Phi_j]^c),
\end{align*}
\]

Then we define a theory \(\text{Th}^\#_{N_{it},i+1} \) as follows: \(\text{Th}^\#_{N_{it},i+1} \triangleq \text{Th}^\#_{N_{it},i} \). We define now a theory \(\text{Th}^\#_{\omega,N_{it}} \) as follows:
\[
\text{Th}^\#_{\omega,N_{it}} \triangleq \bigcup_{i \in \mathbb{N}} \text{Th}^\#_{N_{it},i}.
\]

First, notice that each \(\text{Th}^\#_{N_{it},i} \) is consistent. This is done by induction on \(i \) and by Lemmas 2.1-2.2. By assumption, the case is true when \(i = 1 \). Now, suppose \(\text{Th}^\#_{N_{it},i} \) is consistent.

Then its deductive closure \(\text{Ded}(\text{Th}^\#_{N_{it},i}) \triangleq \{ A | \text{Th}^\#_{N_{it},i} \vdash A \} \) is also consistent. If a statement (2.121) is satisfied, i.e. \(\text{Th}^\#_{N_{it},i} \vdash \text{Pr}^\#_{\text{Th}^\#_{N_{it},i}}([\Phi_j]^c) \) and \(\text{Th}^\#_{N_{it},i} \vdash -\Phi_i \), then clearly \(\text{Th}^\#_{N_{it},i+1} \triangleq \text{Th}^\#_{N_{it},i} \cup \{ \Phi_i \} \) is consistent since it is a subset of closure \(\text{Ded}(\text{Th}^\#_{N_{it},i}) \). If a statement (2.123) is satisfied, i.e. \(\text{Th}^\#_{N_{it},i} \vdash \text{Pr}^\#_{\text{Th}^\#_{N_{it},i}}([-\Phi_j]^c) \) and \(\text{Th}^\#_{N_{it},i} \vdash -\Phi_i \), then clearly \(\text{Th}^\#_{N_{it},i+1} \triangleq \text{Th}^\#_{N_{it},i} \cup \{ -\Phi_i \} \) is consistent since it is a subset of closure \(\text{Ded}(\text{Th}^\#_{N_{it},i}) \). If a statement (2.117) is satisfied, i.e. \(\text{Th}^\#_{N_{it},i} \vdash \text{Pr}^\#_{\text{Th}^\#_{N_{it},i}}([\Phi_j]^c) \) and \(\text{Th}^\#_{N_{it},i} \vdash -\Phi_j \), then clearly \(\text{Th}^\#_{N_{it},i+1} \triangleq \text{Th}^\#_{N_{it},i} \cup \{ -\Phi_j \} \) is consistent by Lemma 2.1 and by one of the standard properties of consistency: \(\Delta \cup \{ \Phi_i \} \) is consistent iff \(\Delta \not\models -\Phi_i \). If a statement (2.119) is satisfied, i.e. \(\text{Th}^\#_{N_{it},i} \vdash \text{Pr}^\#_{\text{Th}^\#_{N_{it},i}}([-\Phi_j]^c) \) and \(\text{Th}^\#_{N_{it},i} \vdash -\Phi_j \), then clearly \(\text{Th}^\#_{N_{it},i+1} \triangleq \text{Th}^\#_{N_{it},i} \cup \{ -\Phi_j \} \) is consistent by Lemma 2.2 and by one of the standard properties of consistency: \(\Delta \cup \{ -\Phi_j \} \) is consistent iff \(\Delta \not\models A \). Next, notice \(\text{Ded}(\text{Th}^\#_{\omega,N_{it}}) \) is maximally consistent nice extension of the \(\text{Ded}(\text{Th}) \). \(\text{Ded}(\text{Th}^\#_{\omega,N_{it}}) \) is consistent because, by the standard Lemma 2.3 above, it is the union of a chain of consistent sets. To see that \(\text{Ded}(\text{Th}^\#_{\omega,N_{it}}) \) is maximal, pick any wff \(\Phi \). Then \(\Phi \) is some \(\Phi_j \) in the enumerated list of all wff's. Therefore for any \(\Phi \) such that \(\text{Th}^\#_{N_{it},i} \vdash \text{Pr}^\#_{\text{Th}^\#_{N_{it},i}}([\Phi_j]^c) \) or \(\text{Th}^\#_{N_{it},i} \vdash \text{Pr}^\#_{\text{Th}^\#_{N_{it},i}}([-\Phi_j]^c) \), either \(\Phi \in \text{Th}^\#_{\omega,N_{it}} \) or \(-\Phi \in \text{Th}^\#_{\omega,N_{it}} \). Since \(\text{Ded}(\text{Th}^\#_{N_{it},i+1}) \subseteq \text{Ded}(\text{Th}^\#_{\omega,N_{it}}) \), we have \(\Phi \in \text{Ded}(\text{Th}^\#_{\omega,N_{it}}) \) or \(-\Phi \in \text{Ded}(\text{Th}^\#_{\omega,N_{it}}) \), which implies that \(\text{Ded}(\text{Th}^\#_{\omega,N_{it}}) \) is maximally
consistent nice extension of the $\text{Ded}(\text{Th})$.

Definition 2.28. We define now predicate $\text{Pr}_{\text{Th}_2}(\{\Phi_i\}^c)$ asserting provability in $\text{Th}_{\omega,N}^#$:

\[
\text{Pr}_{\text{Th}_2}(\Phi_i)^c = \left[\text{Pr}_{\text{Th}_2}(\Phi_i)^c \right] \lor \left[\text{Pr}_{\text{Th}_2}(\Phi_i)^c \right].
\]

Definition 2.29. Let $\Psi = \Psi(x)$ be one-place open wff such that the conditions:

(\ast) $\text{Th}_{\omega,N}^# \vdash \exists x \Psi(x)$ or

$(\ast \ast)$ $\text{Th}_{\omega,N}^# \vdash \text{Pr}_{\text{Th}_2}(\exists x \Psi(x))^c$ and $M_{\text{Th}_{\omega,N}^#} \models \exists x \Psi(x)$ is satisfied.

Then we said that, a set y is a $\text{Th}^#$-set iff there is exist one-place open wff $\Psi(x)$ such that $y = x_\Psi$. We write $[\text{Th}_{\omega,N}^#]$ iff y is a $\text{Th}_{\omega,N}^#$-set.

Remark 2.21. Note that $[(\ast) \lor (\ast \ast)] \Rightarrow \text{Th}_{\omega,N}^# \vdash \exists x \Psi(x)$.

Remark 2.22. Note that $y[\text{Th}_{\omega,N}^#] \iff \exists \Psi [(x = x_\Psi) \land \text{Pr}_{\text{Th}_2}(\exists x \Psi(x))^c]$.

Definition 2.30. Let $\mathcal{A}_{\omega,N}^#$ be a collection such that: $\forall x [x \in \mathcal{A}_{\omega,N}^# \iff x$ is a $\text{Th}^#$-set].

Proposition 2.27. Collection $\mathcal{A}_{\omega,N}^#$ is a $\text{Th}_{\omega,N}^#$-set.

Proof. Let us consider an one-place open wff $\Psi(x)$ such that conditions (\ast) or $(\ast \ast)$ is satisfied, i.e. $\text{Th}_{\omega}^# \vdash \exists x \Psi(x)$. We note that there exists countable collection \mathcal{F}_{Ψ} of the one-place open wff’s $\mathcal{F}_{\Psi} = \{\Psi_n(x)\}_{n \in \mathbb{N}}$ such that: (i) $\Psi(x) \in \mathcal{F}_{\Psi}$ and (ii)

\[
\text{Th}_{\omega,N}^# \vdash \exists x \Psi(x) \left(\exists \forall n \left(n \in M_{\omega}^{\text{Th}_{\omega,N}^#} \right) \left(\Psi(x) \iff \Psi_n(x) \right) \right)
\]

or

\[
\text{Th}_{\omega,N}^# \vdash \exists x \Psi(x) \left(\exists \forall n \left(n \in M_{\omega}^{\text{Th}_{\omega,N}^#} \right) \left(\text{Pr}_{\text{Th}_2}(\Psi(x))^c \right) \right)
\]

and

\[
M_{\text{Th}_{\omega,N}^#} \models \exists x \Psi(x) \iff \Psi_n(x),
\]

or of the equivalent form

\[
\text{Th}_{\omega,N}^# \vdash \exists x \left(\Psi_1(x_1) \right) \left(\exists \forall n \left(n \in M_{\omega}^{\text{Th}_{\omega,N}^#} \right) \left(\Psi_1(x_1) \iff \Psi_n(x_1) \right) \right)
\]

or

\[
\text{Th}_{\omega,N}^# \vdash \exists x \left(\text{Pr}_{\text{Th}_2}(\Psi_1(x_1))^c \right) \left(\exists \forall n \left(n \in M_{\omega}^{\text{Th}_{\omega,N}^#} \right) \left(\text{Pr}_{\text{Th}_2}(\Psi_1(x_1))^c \right) \right)
\]

where we set $\Psi(x) = \Psi_1(x_1), \Psi_n(x) = \Psi_n(x_1)$ and $x_{\Psi} = x_1$. We note that any collection $\mathcal{F}_{\Psi} = \{\Psi_{n,k}(x)\}_{n \in \mathbb{N}}, k = 1, 2, \ldots$ such above defines an unique set x_{Ψ_k}, i.e.

$\mathcal{F}_{\Psi_1} \cap \mathcal{F}_{\Psi_2} = \emptyset$ if $x_{\Psi_1} \neq x_{\Psi_2}$. We note that collections $\mathcal{F}_{\Psi_k}, k = 1, 2, \ldots$ is no part of the $ZFC_{\omega,N}^H$, i.e. collection \mathcal{F}_{Ψ} there is no set in sense of $ZFC_{\omega,N}^H$. However that is no problem, because by using Gödel numbering one can to replace any collection $\mathcal{F}_{\Psi_k}, k = 1, 2, \ldots$ by collection $\Theta_k = g(\mathcal{F}_{\Psi_k})$ of the corresponding Gödel numbers such that

\[
\Theta_k = g(\mathcal{F}_{\Psi_k}) = \{g(\Psi_{n,k}(x_1))\}_{n \in \mathbb{N}}, k = 1, 2, \ldots.
\]

It is easy to prove that any collection $\Theta_k = g(\mathcal{F}_{\Psi_k}), k = 1, 2, \ldots$ is a $\text{Th}_{\omega,N}^#$-set. This is done
by Gödel encoding [8],[10] (2.129) and by axiom schema of separation [9]. Let
\[g_{n,k} = g(\Psi_{n,k}(x_k)), k = 1, 2, \ldots \] be a Gödel number of the wff \(\Psi_{n,k}(x_k) \). Therefore
\[g(F_k) = \{g_{n,k}\}_{n \in \mathbb{N}} \] where we set \(F_k = F_{\Psi_k}, k = 1, 2, \ldots \) and
\[\forall k_1 \forall k_2 \{g_{n,k_1}\}_{n \in \mathbb{N}} \bigcap \{g_{n,k_2}\}_{n \in \mathbb{N}} = \emptyset \iff x_{k_1} \neq x_{k_2}. \] (2.130)

Let \(\{g_{n,k}\}_{n \in \mathbb{N}} \) be a family of the all sets \(\{g_{n,k}\}_{n \in \mathbb{N}} \). By axiom of choice [9] one obtain
unique set \(\mathcal{I}_{\aleph_0} = \{g_k\}_{k \in \mathbb{N}} \) such that \(\forall k \in \{g_{n,k}\}_{n \in \mathbb{N}} \}. Finally one obtain a set \(\mathcal{I}_{\aleph_0} \) by axiom schema of replacement [9]. Thus we can define a \(\text{Th}_{\aleph_0} \)-set
\[\forall x \left[x \in \mathcal{R}_{\aleph_0} \iff \left(x \in \mathcal{I}_{\aleph_0} \right) \wedge \exists \mathcal{R}_{\aleph_0} \left([x \neq x] \right) \wedge \exists \mathcal{R}_{\aleph_0} \left([x \neq x] \Rightarrow x \neq x \right) \right]. \] (2.131)

Proposition 2.28. Any collection \(\Theta_k = g(F_{\Psi_k}), k = 1, 2, \ldots \) is a \(\text{Th}_{\aleph_0} \)-set.

Proof. We define \(g_{n,k} = g(\Psi_{n,k}(x_k)) = [\Psi_{n,k}(x_k)]^c, v_k = [x_k]^c \). Therefore
\[g_{n,k} = g(\Psi_{n,k}(x_k)) \iff H_k(g_{n,k}, v_k) \text{ (see [10])}. \] Let us define now predicate \(\Pi_\infty(g_{n,k}, v_k) \)
\[\Pi_\infty(g_{n,k}, v_k) \iff \exists \mathcal{R}_{\aleph_0} \left(\exists x_k [\Psi_{1,k}(x_1)]^c \right) \wedge \exists x_k (v_k = [x_k]^c) \]
\[\forall n \left(n \in M_{\aleph_0} \right) \left(\exists \mathcal{R}_{\aleph_0} \left([\Psi_{1,k}(x_1)]^c \Rightarrow \exists \mathcal{R}_{\aleph_0} \left(H_k(g_{n,k}, v_k) \right) \right) \right] \] (2.132)

We define now a set \(\Theta_k \) such that
\[\Theta_k = \Theta_k \cup \{g_k\}, \]
\[\forall n \left(n \in \mathbb{N} \right) \left(g_{n,k} \in \Theta_k \iff \Pi_\infty(g_{n,k}, v_k) \right] \] (2.133)

But obviously definitions (2.29) and (2.133) is equivalent by Proposition 2.26.

Proposition 2.28. (i) \(\text{Th}_{\aleph_0} \vdash \exists \mathcal{R}_{\aleph_0} \), (ii) \(\mathcal{R}_{\aleph_0} \) is a countable \(\text{Th}_{\aleph_0} \)-set.

Proof. (i) Statement \(\text{Th} \vdash \exists \mathcal{R}_{\aleph_0} \) follows immediately from the statement \(\exists \mathcal{R}_{\aleph_0} \) and
axiom schema of separation [9]. (ii) follows immediately from countability of the set \(\mathcal{I}_{\aleph_0} \).

Proposition 2.29. A set \(\mathcal{R}_{\aleph_0} \) is inconsistent.

Proof. From formula (2.131) we obtain
\[\text{Th}_{\aleph_0} \vdash \mathcal{R}_{\aleph_0} \in \mathcal{R}_{\aleph_0} \iff \mathcal{R}_{\aleph_0} \in \mathcal{R}_{\aleph_0}. \] (2.134)

From formula (2.41) and Proposition 2.6 one obtains
\[\text{Th}_{\aleph_0} \vdash \mathcal{R}_{\aleph_0} \in \mathcal{R}_{\aleph_0} \iff \mathcal{R}_{\aleph_0} \in \mathcal{R}_{\aleph_0}. \] (2.135)

and therefore
\[\text{Th}_{\aleph_0} \vdash \left(\mathcal{R}_{\aleph_0} \in \mathcal{R}_{\aleph_0} \right) \land \left(\mathcal{R}_{\aleph_0} \in \mathcal{R}_{\aleph_0} \right). \] (2.136)

But this is a contradiction.

2.3. Proof of the inconsistency of the set theory \(\text{ZFC}^{H_k} + \exists M^{\text{ZFC}^{H_k}} \) using Generalized Tarski’s undefinability theorem.

In this section we will prove that a set theory \(\text{ZFC}^{H_k} + \exists M^{\text{ZFC}^{H_k}} \) is inconsistent, without
any reference to the set \Im_∞ and inconsistent set \Re_∞.

Proposition 2.30. (Generalized Tarski's undefinability theorem) Let Th^{H}_2 be second order

theory with Henkin semantics and with formal language \mathcal{L}, which includes negation and

has a Gödel encoding $g(\cdot)$ such that for every \mathcal{L}-formula $A(x)$ there is a formula B

such

that $B \iff A(g(B)) \land [A(g(B) \implies B]$ holds. Assume that Th^{H}_2 has an standard Model M.

Then there is no \mathcal{L}-formula $\text{True}(n)$ such that for every \mathcal{L}-formula A such that $M \models A$, the

following equivalence

$$A \iff \text{True}(g(A)) \land [\text{True}(g(A)) \implies A] \tag{2.137}$$

holds.

Proof. The diagonal lemma yields a counterexample to this equivalence, by giving a

"Liar" sentence S such that $S \iff \neg \text{True}(g(S))$ holds.

Remark 2.23. Above we defined the set \Im_∞ (see Definition 2.10) in fact using

generalized "truth predicate" $\text{True}^\#_\infty([\Phi]^\#, \Phi)$ such that

$$\text{True}^\#_\infty([\Phi]^\#, \Phi) \iff \text{Pr}_{\text{Th}^\#_\infty}([\Phi]^\#) \land \{\text{Pr}_{\text{Th}^\#_\infty}([\Phi]^\#) \implies \Phi\}. \tag{2.138}$$

In order to prove that set theory $\text{ZFC}^{H}_2 \cup \exists M^{\text{ZFC}^{H}_2}$ is inconsistent without any reference to

the set \Im_∞, notice that by the properties of the nice extension $\text{Th}^\#_\infty$ follows that definition
given by (2.138) is correct, i.e., for every ZFC^{H}_2-formula Φ such that $M^{\text{ZFC}^{H}_2} \models \Phi$ the

following equivalence

$$\Phi \iff \text{Pr}_{\text{Th}^\#_\infty}([\Phi]^\#) \land \{\text{Pr}_{\text{Th}^\#_\infty}([\Phi]^\#) \implies \Phi\}. \tag{2.139}$$

holds.

Proposition 2.31. Set theory $\text{Th}^\#_1 = \text{ZFC}^{H}_2 \cup \exists M^{\text{ZFC}^{H}_2}$ is inconsistent.

Proof. Notice that by the properties of the nice extension $\text{Th}^\#_1$ of the $\text{Th}^\#_1$ follows that

$$M^{\text{ZFC}^{H}_2} \models \Phi \implies \text{Th}^\#_\infty \vdash \Phi. \tag{2.140}$$

Therefore (2.138) gives generalized "truth predicate" for set theory $\text{Th}^\#_1$. By Proposition

2.30 one obtains a contradiction.

Remark 2.24. A cardinal κ is inaccessible if and only if κ has the following reflection property: for all subsets $U \subset V_\kappa$, there exists $\alpha < \kappa$ such that $(V_\alpha, \in, U \cap V_\alpha)$ is an elementary substructure of (V_κ, \in, U). (In fact, the set of such α is closed unbounded in κ.) Equivalently, κ is Π^0_n-indescribable for all $n \geq 0$.

Remark 2.25. Under ZFC it can be shown that κ is inaccessible if and only if (V_κ, \in) is a model of second order ZFC.[5]

Remark 2.26. By the reflection property, there exists $\alpha < \kappa$ such that (V_α, \in) is a standard model of (first order) ZFC. Hence, the existence of an inaccessible cardinal is a stronger hypothesis than the existence of the standard model of ZFC^{H}_2.
3. Derivation inconsistent countable set in set theory ZFC_2 with the full semantics.

Let $\text{Th} = \text{Th}^{\text{fs}}$ be an second order theory with the full second order semantics. We assume now that Th contains ZFC_2^{fs}. We will write for short Th instead Th^{fs}.

Remark 3.1. Notice that \mathcal{M} is a model of ZFC_2^{fs} if and only if it is isomorphic to a model of the form $\mathcal{V}_\kappa \cap (\mathcal{V}_\kappa \times \mathcal{V}_\kappa)$, for κ a strongly inaccessible ordinal.

Remark 3.2. Notice that a standard model for the language of first-order set theory is an ordered pair $\langle D, I \rangle$. Its domain, D, is a nonempty set and its interpretation function, I, assigns a set of ordered pairs to the two-place predicate "\in". A sentence is true in $\langle D, I \rangle$ just in case it is satisfied by all assignments of first-order variables to members of D and second-order variables to subsets of D: a sentence is satisfiable just in case it is true in some standard model; finally, a sentence is valid just in case it is true in all standard models.

Remark 3.3. Notice that:

(I) The assumption that D and I be sets is not without consequence. An immediate effect of this stipulation is that no standard model provides the language of set theory with its intended interpretation. In other words, there is no standard model $\langle D, I \rangle$ in which D consists of all sets and I assigns the standard element-set relation to "\in". For it is a theorem of ZFC that there is no set of all sets and that there is no set of ordered-pairs $\langle x, y \rangle$ for x an element of y.

(II) Thus, on the standard definition of model:

1. it is not at all obvious that the validity of a sentence is a guarantee of its truth;
2. similarly, it is far from evident that the truth of a sentence is a guarantee of its satisfiability in some standard model.
3. If there is a connection between satisfiability, truth, and validity, it is not one that can be "read off" standard model theory.

(III) Nevertheless this is not a problem in the first-order case since set theory provides us with two reassuring results for the language of first-order set theory. One result is the first order completeness theorem according to which first-order sentences are provable, if true in all models. Granted the truth of the axioms of the first-order predicate calculus and the truth preserving character of its rules of inference, we know that a sentence of the first-order language of set theory is true, if it is provable. Thus, since valid sentences are provable and provable sentences are true, we know that valid sentences are true. The connection between truth and satisfiability immediately follows: if ϕ is unsatisfiable, then $\neg \phi$, its negation, is true in all models and hence valid. Therefore, $\neg \phi$ is true and ϕ is false.

Definition 3.1. The language of second order arithmetic Z_2 is a two-sorted language: there are two kinds of terms, numeric terms and set terms. 0 is a numeric term,

1. There are in nitely many numeric variables, $x_0, x_1, \ldots, x_n, \ldots$ each of which
is a numeric term;
2. If \(s \) is a numeric term then \(Ss \) is a numeric term;
3. If \(s, t \) are numeric terms then \(+st \) and \(\cdot st \) are numeric terms (abbreviated \(s + t \) and \(s \cdot t \));
3. There are infinitely many set variables, \(X_0, X_1, \ldots, X_n, \ldots \) each of which is a set term;
4. If \(t \) is a numeric term and \(S \) then \(\in tS \) is an atomic formula (abbreviated \(t \in S \));
5. If \(s \) and \(t \) are numeric terms then \(=st \) and \(<st \) are atomic formulas (abbreviated \(s = t \) and \(s < t \) correspondingly).

The formulas are built from the atomic formulas in the usual way.

As the examples in the definition suggest, we use upper case letters for set variables and lower case letters for numeric terms. (Note that the only set terms are the variables.) It will be more convenient to work with functions instead of sets, but within arithmetic, these are equivalent: one can use the pairing operation, and say that \(X \) represents a function if for each \(n \) there is exactly one \(m \) such that the pair \((n, m)\) belongs to \(X \).

We have to consider what we intend the semantics of this language to be. One possibility is the semantics of full second order logic: a model consists of a set \(M \), representing the numeric objects, and interpretations of the various functions and relations (probably with the requirement that equality be the genuine equality relation), and a statement \(\forall X \Phi(X) \) is satisfied by the model if for every possible subset of \(M \), the corresponding statement holds.

Remark 3.1. Full second order logic has no corresponding proof system. An easy way to see this is to observe that it has no compactness theorem. For example, the only model (up to isomorphism) of Peano arithmetic together with the second order induction

\[
\text{axiom: } \forall X(0 \in X \land \forall x(x \in X \Rightarrow Sx \in X) \Rightarrow \forall x(x \in X)) \text{ is the standard model } \mathbb{N}. This is easily seen: any model of Peano arithmetic has an initial segment isomorphic to \(\mathbb{N} \); applying the induction axiom to this set, we see that it must be the whole of the model.

Remark 3.2. There is no completeness theorem for second-order logic. Nor do the axioms of second-order ZFC imply a reflection principle which ensures that if a sentence of second-order set theory is true, then it is true in some standard model. Thus there may be sentences of the language of second-order set theory that are true but unsatisfiable, or sentences that are valid, but false. To make this possibility vivid, let \(Z \) be the conjunction of all the axioms of second-order ZFC. \(Z \) is surely true. But the existence of a model for \(Z \) requires the existence of strongly inaccessible cardinals. The axioms of second-order ZFC don’t entail the existence of strongly inaccessible cardinals, and hence the satisfiability of \(Z \) is independent of second-order ZFC. Thus, \(Z \) is true but its unsatisfiability is consistent with second-order ZFC [5].

Thus with respect to \(ZFC_{2}^{\omega} \), this is a semantically defined system and thus it is not standard to speak about it being contradictory if anything, one might attempt to prove that
it has no models, which to be what is being done in section 2 for \(ZFC_{2}^{fss} \).

Definition 3.2. Using formula (2.3) one can define predicate \(\Pr_{\text{Th}}^{f}(y) \) really asserting provability in \(\text{Th} = ZFC_{2}^{fss} \)

\[
\Pr_{\text{Th}}^{f}(y) \iff \Pr_{\text{Th}}(y) \land [\Pr_{\text{Th}}(y) \Rightarrow \Phi],
\]

\[
\Pr_{\text{Th}}(y) \iff \exists x \left(x \in M_{\text{Th}}^{fss} \right) \text{Prov}_{\text{Th}}(x, y), \tag{3.1}
\]

\[y = [\Phi]^{c}.
\]

Theorem 3.1. (Löb’s Theorem for \(ZFC_{2}^{fss} \)) Let \(\Phi \) be any closed formula with code \(y = [\Phi]^{c} \in M_{\text{Th}}^{fss} \), then \(\text{Th} \vdash \Pr_{\text{Th}}([\Phi]^{c}) \) implies \(\text{Th} \vdash \Phi \) (see [12] Theorem 5.1).

Proof. Assume that

(1) \(\text{Th} \not\vdash \neg \Phi \). Otherwise one obtains \(\text{Th} \vdash \Pr_{\text{Th}}([\neg \Phi]^{c}) \land \Pr_{\text{Th}}([\Phi]^{c}) \), but this is a contradiction.

(2) Assume now that (2.i) \(\text{Th} \vdash \Pr_{\text{Th}}([\Phi]^{c}) \) and (2.ii) \(\text{Th} \not\vdash \Phi \).

From (1) and (2.i) follows that

(3) \(\text{Th} \not\vdash \neg \Phi \) and \(\text{Th} \not\vdash \Phi \).

Let \(\text{Th}_{\neg \Phi} \) be a theory

(4) \(\text{Th}_{\neg \Phi} \models \text{Th} \cup \{ \neg \Phi \} \).

From (3) follows that

(5) \(\text{Con}(\text{Th}_{\neg \Phi}) \).

From (4) and (5) follows that

(6) \(\text{Th}_{\neg \Phi} \vdash \Pr_{\text{Th}_{\neg \Phi}}([\neg \Phi]^{c}) \).

From (4) and (4) follows that

(7) \(\text{Th}_{\neg \Phi} \vdash \Pr_{\text{Th}_{\neg \Phi}}([\Phi]^{c}) \).

From (6) and (7) follows that

(8) \(\text{Th}_{\neg \Phi} \vdash \Pr_{\text{Th}_{\neg \Phi}}([\Phi]^{c}) \land \Pr_{\text{Th}_{\neg \Phi}}([\neg \Phi]^{c}) \), but this is a contradiction.

Definition 3.3. Let \(\Psi = \Psi(x) \) be one-place open wff such that:

\[\text{Th} \vdash \exists x [\text{Prov}_{\text{Th}}(\Psi(x))]\tag{3.2}\]

Then we will says that, a set \(y \) is a \(\text{Th} \)-set iff there is exist one-place open wff \(\Psi(x) \) such that \(y = x_{\Psi} \). We write \(y[\text{Th}] \) iff \(y \) is a \(\text{Th} \)-set.

Remark 3.2. Note that

\[y[\text{Th}] \iff \exists \Psi([y = x_{\Psi}] \land \Pr_{\text{Th}}([\exists x_{\Psi}[\Psi(x_{\Psi})]]^{c}) \land [\Pr_{\text{Th}}([\exists x_{\Psi}[\Psi(x_{\Psi})]]^{c}) \Rightarrow \exists x_{\Psi}[\Psi(x_{\Psi})]]])\]

\[\tag{3.3}\]

Definition 3.4. Let \(\mathcal{I} \) be a collection such that : \(\forall x \left[x \in \mathcal{I} \iff x \text{ is a Th-set} \right] \).

Proposition 3.1. Collection \(\mathcal{I} \) is a \(\text{Th} \)-set.

Definition 3.4. We define now a \(\text{Th} \)-set \(\mathcal{C} \subseteq \mathcal{I} :

\[\forall x [x \in \mathcal{C} \iff (x \in \mathcal{I}) \land \Pr_{\text{Th}}([x \not\in x]^{f}) \land [\Pr_{\text{Th}}([x \not\in x]^{f}) \Rightarrow x \not\in x]). \tag{3.4}\]

Proposition 3.2. (i) \(\text{Th} \vdash \exists \mathcal{C} \), (ii) \(\mathcal{C} \) is a countable \(\text{Th} \)-set.

Proof. (i) Statement \(\text{Th} \vdash \exists \mathcal{C} \) follows immediately by using statement \(\exists \mathcal{I} \) and axiom schema of separation [4], (ii) follows immediately from countability of a set \(\mathcal{I} \).

Proposition 3.3. A set \(\mathcal{C} \) is inconsistent.
Proof. From formula (3.2) one obtains
\[
\xc = \mathcal{R}_c \iff \mathcal{P}_{\text{Th}}(\mathcal{R}_c \not\in \mathcal{R}_c) \land \mathcal{P}_{\text{Th}}(\mathcal{R}_c \not\in \mathcal{R}_c) \Rightarrow \mathcal{R}_c \not\in \mathcal{R}_c. \tag{3.5}
\]
From formula (3.4) and definition 3.5 one obtains
\[
\xc \iff \mathcal{R}_c \not\in \mathcal{R}_c \Rightarrow \mathcal{R}_c \not\in \mathcal{R}_c \tag{3.6}
\]
and therefore
\[
\xc \iff (\mathcal{R}_c \not\in \mathcal{R}_c) \land (\mathcal{R}_c \not\in \mathcal{R}_c). \tag{3.7}
\]
But this is a contradiction.

Thus finally we obtain:

Theorem 3.2. \[\text{Con}(ZFC_{\omega_1}^{\text{fs}}).\]

It well known that under ZFC it can be shown that \(\kappa\) is inaccessible if and only if \((V_{\kappa}, \in)\) is a
model of \(ZFC_{\omega_1}[5],[11]\). Thus finally we obtain:

Theorem 3.3. \[\text{Con}(ZFC + \exists M_{\text{st}}(M_{\text{st}}^{ZFC} = H_\kappa)).\]

4. Consistency Results in Topology.

Definition 4.1. \[\text{A Lindelöf space is indestructible if it remains Lindelöf after forcing with any countably closed partial order.}\]

Theorem 4.1. \[\text{If it is consistent with ZFC that there is an inaccessible cardinal, then it is consistent with ZFC that every Lindelöf T}_3\text{ indestructible space of weight} \leq \aleph_1\text{ has size} \leq \aleph_1.\]

Corollary 4.1. \[\text{The existence of an inaccessible cardinal and the statement:} \mathcal{L}[T_3, \leq \aleph_1, \leq \aleph_1] \equiv \text{“every Lindelöf T}_3\text{ indestructible space of weight} \leq \aleph_1\text{ has size} \leq \aleph_1\text{” are equiconsistent.}\]

Theorem 4.2. \[\text{Con}(ZFC + \mathcal{L}[T_3, \leq \aleph_1, \leq \aleph_1]).\]

Proof. Theorem 4.2 immediately follows from Theorem 3.3 and Corollary 4.1.

Definition 4.2. \[\text{The} \aleph_1\text{-Borel Conjecture is the statement:} BC[\aleph_1] \equiv \text{“a Lindelöf space is indestructible if and only if all of its continuous images in [0; 1] have cardinality} \leq \aleph_1\text{”}.}\]

Theorem 4.3. \[\text{If it is consistent with ZFC that there is an inaccessible cardinal, then it is consistent with ZFC that the} \aleph_1\text{-Borel Conjecture holds.}\]

Corollary 4.2. \[\text{The} \aleph_1\text{-Borel Conjecture and the existence of an inaccessible cardinal are equiconsistent.}\]

Theorem 4.4. \[\text{Con}(ZFC + BC[\aleph_1]).\]

Proof. Theorem 4.4 immediately follows from Theorem 3.3 and Corollary 4.2.

Theorem 4.5. \[\text{If} \omega_2\text{ is not weakly compact in} L,\text{ then there is a Lindelöf T}_3\text{ indestructible space of pseudocharacter} \leq \aleph_1\text{ and size} \aleph_2.\]

Corollary 4.3. \[\text{The existence of a weakly compact cardinal and the statement:} \]
\[\mathcal{L}[T_3, \leq \aleph_1, \aleph_2] \triangleq \text{"there is no Lindelöf } T_3 \text{ indestructible space of pseudocharacter } \leq \aleph_1 \]

and size \(\aleph_2 \) are equiconsistent.

Theorem 4.6.[12]. There is a Lindelöf \(T_3 \) indestructible space of pseudocharacter \(\leq \aleph_1 \) and size \(\aleph_2 \) in \(L \).

Proof. Theorem 4.6 immediately follows from Theorem 3.3 and Theorem 4.5.

Theorem 4.7.[12]. \(\neg \text{Con} \left(ZFC + \mathcal{L}[T_3, \leq \aleph_1, \aleph_2] \right) \).

Proof. Theorem 3.7 immediately follows from Theorem 3.3 and Corollary 4.3.

5. Conclusion.

In this paper we have proved that the second order \(ZFC \) with the full second-order semantic is inconsistent, i.e. \(\neg \text{Con}(ZFC^{\mathcal{L}}_{\aleph_2}) \). Main result is: let \(k \) be an inaccessible cardinal and \(H_k \) is a set of all sets having hereditary size less then \(k \), then \(\neg \text{Con}(ZFC + (V = H_k)) \). This result also was obtained in [7],[12],[13] by using essentially another approach. For the first time this result has been declared to AMS in [14],[15]. An important applications in topology and homotopy theory are obtained in [16],[17],[18].

5. Acknowledgments

A reviewers provided important clarifications.

References.

