Abstract: Main results are:

(i) \(\neg \text{Con}(ZF + \exists M_{st}^{ZFC}) \),

(ii) let \(k \) be an inaccessible cardinal then \(\neg \text{Con}(ZF + \exists \kappa) \) \cite{10}-\cite{11}.

Keywords: Gödel encoding, Russell’s paradox, standard model, Henkin semantics, strongly inaccessible cardinal.

I. Introduction.

1.1. Main results.

Let us remind that accordingly to naive set theory, any definable collection is a set. Let \(R \) be the set of all sets that are not members of themselves. If \(R \) qualifies as a member of itself, it would contradict its own definition as a set containing all sets that are not members of themselves. On the other hand, if such a set is not a member of itself, it would qualify as a member of itself by the same definition. This contradiction is Russell’s paradox. In 1908, two ways of avoiding the paradox were proposed, Russell’s type theory and Zermelo set theory, the first constructed axiomatic set theory. Zermelo’s axioms went well beyond Frege’s axioms of extensionality and unlimited set abstraction, and evolved into the now-canonical Zermelo–Fraenkel set theory ZFC. "But how do we know that ZFC is a consistent theory, free of contradictions? The short answer is that we don’t; it is a matter of faith (or of skepticism)"— E.Nelson wrote in his paper \cite{1}. However, it is deemed unlikely that even ZFC \(_2\), which is significantly stronger than ZFC harbors an unsuspected contradiction; it is widely believed that if ZFC and ZFC \(_2\) were inconsistent, that fact would have been uncovered by now. This much is certain — ZFC and ZFC \(_2\) is immune to the classic paradoxes of naive set theory: Russell’s paradox, the Burali-Forti paradox, and Cantor’s paradox.

Remark 1.1.1. Note that in this paper we view (i) the first order set theory ZFC under the canonical first order semantics (ii) the second order set theory ZFC \(_2\) under the Henkin
Remark 1.1.2. Second-order logic essentially differs from the usual first-order predicate calculus in that it has variables and quantifiers not only for individuals but also for subsets of the universe and variables for \(n \)-ary relations as well [2],[6]. The deductive calculus \(\text{DED}_2 \) of second order logic is based on rules and axioms which guarantee that the quantifiers range at least over definable subsets [6]. As to the semantics, there are two types of models: (i) Suppose \(U \) is an ordinary first-order structure and \(S \) is a set of subsets of the domain \(A \) of \(U \). The main idea is that the set-variables range over \(S \), i.e. \(\langle U, S \rangle \models \exists X \Phi(X) \iff \exists S(S \in S)[\langle U, S \rangle \models \Phi(S)] \).

We call \(\langle U, S \rangle \) a Henkin model, if \(\langle U, S \rangle \) satisfies the axioms of \(\text{DED}_2 \) and truth in \(\langle U, S \rangle \) is preserved by the rules of \(\text{DED}_2 \). We call this semantics of second-order logic the Henkin semantics and second-order logic with the Henkin semantics the Henkin second-order logic. There is a special class of Henkin models, namely those \(\langle U, S \rangle \) where \(S \) is the set of all subsets of \(A \).

We call these full models. We call this semantics of second-order logic the full semantics and second-order logic with the full semantics the full second-order logic.

Remark 1.1.3. We emphasize that the following facts are the main features of second-order logic:

1. **The Completeness Theorem**: A sentence is provable in \(\text{DED}_2 \) if and only if it holds in all Henkin models [2],[6].

2. **The Löwenheim-Skolem Theorem**: A sentence with an infinite Henkin model has a countable Henkin model.

3. **The Compactness Theorem**: A set of sentences, every finite subset of which has a Henkin model, has itself a Henkin model.

4. **The Incompleteness Theorem**: Neither \(\text{DED}_2 \) nor any other effectively given deductive calculus is complete for full models, that is, there are always sentences which are true in all full models but which are unprovable.

5. **Failure of the Compactness Theorem** for full models.

6. **Failure of the Löwenheim-Skolem Theorem** for full models.

7. There is a finite second-order axiom system \(\mathbb{Z}_2 \) such that the semiring \(\mathbb{N} \) of natural numbers is the only full model (up to isomorphism) of \(\mathbb{Z}_2 \).

8. There is a finite second-order axiom system \(\text{RCF}_2 \) such that the field \(\mathbb{R} \) of real numbers is the only (up to isomorphism) full model of \(\text{RCF}_2 \).

Remark 1.1.4. For let second-order \(\text{ZFC} \) be, as usual, the theory that results obtained from \(\text{ZFC} \) when the axiom schema of replacement is replaced by its second-order universal closure, i.e.
∀X[Func(X) ⇒ ∀u∃v∀r[r ∈ v ⇔ ∃s(s ∈ u ∧ (s,r) ∈ X)]]},

where X is a second-order variable, and where Func(X) abbreviates "X is a functional relation", see [7].

Designation 1.1.1. We will denote (i) by ZFC₂ᴴₛ set theory ZFC₂ with the Henkin semantics, (ii) by ZFCᴴₛ set theory ZFCᴴₛ + ∃Mᴴₛ and (iii) by ZFC set theory ZFC with an omega-model of the theory Th.

Axiom ∃M[ZFC]. There is a set M[ZFC] and a binary relation ∈ ⊆ M[ZFC] × M[ZFC] which makes M[ZFC] a model for ZFC.

Remark 1.1.3. (i) We emphasize that it is well known that axiom ∃M[ZFC] a single statement in ZFC see [8], Ch.II, section 7. We denote this statement through all this paper by Con(ZFC; M[ZFC]). The completeness theorem says that ∃M[ZFC] ⇔ Con(ZFC).

(ii) Obviously there exists a single statement in ZFCᴴₛ such that ∃M[ZFC] ⇔ Con(ZFCᴴₛ).

We denote this statement through all this paper by symbol Con(ZFCᴴₛ; M[ZFC]ᴴₛ) and there exists a single statement ∃M[ZFC] in Z_HC. We denote this statement through all this paper by symbol Con(Z_HC; M[ZFC]_HC).

Axiom ∃M[ZFC]. There is a set M[ZFC] such that if R is

\[\{(x, y)|x \in y \land x \in M[ZFC] \land y \in M[ZFC]\}\]

then M[ZFC] is a model for ZFC under the relation R.

Definition 1.1.1. [8]. The model M[ZFC] and M[ZFC] is called a standard model since the relation ∈ used is merely the standard ∈-relation.

Remark 1.1.4. [8]. Note that axiom ∃M[ZFC] doesn't imply axiom ∃M[ZFC] in Z_HC.

Remark 1.1.6. Note that in order to deduce: (i) ~Con(ZFCᴴₛ) from Con(ZFCᴴₛ), and (ii) ~Con(ZFC) from Con(ZFC), by using Gödel encoding, one needs something more than the consistency of ZFCᴴₛ, e.g., that ZFCᴴₛ has an omega-model M[ZFC] or a standard model M[ZFC] i.e., a model in which the integers are the standard integers. To put it another way, why should we believe a statement just because there’s a ZFCᴴₛ-proof of it? It’s clear that if ZFCᴴₛ is inconsistent, then we won’t believe ZFCᴴₛ-proofs. What’s slightly more subtle is that the mere consistency of ZFC isn't quite enough to get us to believe arithmetical theorems of ZFCᴴₛ; we must also believe that these arithmetical theorems are asserting something about the standard naturals. It is "conceivable" that ZFCᴴₛ might be consistent but that the only nonstandard models M[ZFC] it has are those in which the integers are nonstandard, in which case we might not "believe" an arithmetical statement such as "ZFCᴴₛ is
inconsistent" even if there is a ZFC_{2}^{Hs}-proof of it.

2. Derivation of the inconsistent definable set in set theory $\overline{\text{ZFC}}_{2}^{Hs}$ and in set theory ZFC_{st}.

2.1. Derivation of the inconsistent definable set in set theory $\overline{\text{ZFC}}_{2}^{Hs}$.

We assume now that $\text{Con}(\text{ZFC}_{2}^{Hs}, \text{Mst}_{\text{ZFC}_{2}^{Hs}})$.

Designation 2.1.1. Let Γ_{X} be the collection of the all 1-place open wff of the set theory $\overline{\text{ZFC}}_{2}^{Hs}$.

Definition 2.1.1. Let $\Psi_{1}(X), \Psi_{2}(X)$ be 1-place open wff's of the set theory $\overline{\text{ZFC}}_{2}^{Hs}$.

(i) We define now the equivalence relation $(\cdot \sim_{X} \cdot) \subset \Gamma_{X} \times \Gamma_{X}$ by

$$\Psi_{1}(X) \sim \Psi_{2}(X) \iff \forall X[\Psi_{1}(X) \iff \Psi_{2}(X)] \quad (2.1.1)$$

(ii) A subset Λ_{X}^{Hs} of $\Gamma(X)$ such that $\Psi_{1}(X) \sim \Psi_{2}(X)$ holds for all $\Psi_{1}(X)$ and $\Psi_{2}(X)$ in $\Lambda(X)$,

and never for $\Psi_{1}(X)$ in $\Lambda(X)$ and $\Psi_{2}(X)$ outside $\Lambda(X)$, is called an equivalence class of $\Gamma(X)$.

(iii) The collection of all possible equivalence classes of $\Gamma(X)$ by \sim, denoted $\Gamma(X)/\sim_{X}$

$$\Gamma_{X}/\sim_{X} \triangleq \{[\Psi(X)]_{Hs} | \Psi(X) \in \Gamma(X)\}. \quad (2.1.2)$$

(iv) For any $\Psi(X) \in \Gamma(X)$ let $[\Psi(X)] \triangleq \{\Phi(X) \in \Gamma(X) | \Psi(X) \sim \Phi(X)\}$. denote the equivalence class to which $\Psi(X)$ belongs. All elements of $\Gamma(X)$ equivalent to each other are also elements of the same equivalence class.

Definition 2.1.2.[9]. Let Th be any theory in the recursive language $\mathcal{L}_{Th} \supset \mathcal{L}_{\text{PA}}$, where \mathcal{L}_{PA} is a language of Peano arithmetic. We say that a number-theoretic relation $R(x_{1}, \ldots, x_{n})$ of n arguments is expressible in Th if and only if there is a wff $\hat{R}(x_{1}, \ldots, x_{n})$ of Th with the free variables x_{1}, \ldots, x_{n} such that, for any natural numbers k_{1}, \ldots, k_{n} the following hold:

(i) If $R(k_{1}, \ldots, k_{n})$ is true, then $\vdash_{\text{Th}} \hat{R}(\bar{k}_{1}, \ldots, \bar{k}_{n})$.

(ii) If $R(k_{1}, \ldots, k_{n})$ is false, then $\vdash_{\text{Th}} \neg \hat{R}(\bar{k}_{1}, \ldots, \bar{k}_{n})$.

Designation 2.1.2.(i) Let $g_{\text{ZFC}_{2}^{Hs}}(u)$ be a Gödel number of given an expression u of the set theory $\overline{\text{ZFC}}_{2}^{Hs} \triangleq \text{ZFC}_{2}^{Hs} + \exists M_{st}^{\text{ZFC}_{2}^{Hs}}$.

(ii) Let \(Fr^H_s(y, v) \) be the relation: \(y \) is the Gödel number of a wff of the set theory \(ZFC^H_s \) that contains free occurrences of the variable \(X \) with Gödel number \(v \) [8]-[9].

(iii) Note that the relation \(Fr^H_s(y, v) \) is expressible in \(ZFC^H_s \) by a wff \(\overline{Fr^H_s}(y, v) \).

(iv) Note that for any \(y, v \in \mathbb{N} \) by definition of the relation \(Fr^H_s(y, v) \) follows that

\[
\overline{Fr^H_s}(y, v) \iff \exists ! \Psi(X) \left[\left(g_{ZFC^H_s}(\Psi(X)) = y \right) \land \left(g_{ZFC^H_s}(X) = v \right) \right],
\]

where \(\Psi(X) \) is a unique wff of \(ZFC^H_s \) which contains free occurrences of the variable \(X \) with Gödel number \(v \). We denote a unique wff \(\Psi(X) \) defined by using equivalence (1.2.3)

by symbol \(\Psi_v(X) \), i.e.

\[
\overline{Fr^H_s}(y, v) \iff \exists ! \Psi_v(X) \left[\left(g_{ZFC^H_s}(\Psi_v(X)) = y \right) \land \left(g_{ZFC^H_s}(X) = v \right) \right],
\]

(v) Let \(\phi^H_s(y, v, v_1) \) be a Gödel number of the following wff:

\[
\exists ! \chi[\Psi(X) \land Y = X],
\]

where

\[
g_{ZFC^H_s}(\Psi(X)) = y, g_{ZFC^H_s}(X) = v, g_{ZFC^H_s}(Y) = v_1.
\]

(vi) Let \(Pr_{ZFC^H_s}(z) \) be a predicate asserting provability in \(ZFC^H_s \), which defined by formula

(2.6) in section 2, see Remark 2.2 and Designation 2.3,(see also [9]-[10]).

Definition 2.1.3. Let \(\Gamma^H_s \) be the countable collection of the all 1-place open wff’s of the set theory \(ZFC^H_s \) that contains free occurrences of the variable \(X \).

Definition 2.1.4. Let \(g_{ZFC^H_s}(X) = v \). Let \(\Gamma^H_s \) be a set of the all Gödel numbers of the 1-place open wff’s of the set theory \(ZFC^H_s \) that contains free occurrences of the variable \(X \) with Gödel number \(v \), i.e.

\[
\Gamma^H_s = \{ y \in \mathbb{N} | (y, v) \in Fr^H_s(y, v) \},
\]

or in the following equivalent form:

\[
\forall y (y \in \mathbb{N}) \left[y \in \Gamma_v \iff (y \in \mathbb{N}) \land \overline{Fr^H_s}(y, v) \right].
\]

Remark 2.1.1. Note that from the axiom of separation it follows directly that \(\Gamma^H_s \) is a set in the sense of the set theory \(ZFC^H_s \).

Definition 2.1.5. (i) We define now the equivalence relation \((\cdot \sim_X \cdot) \subset \Gamma^H_s \times \Gamma^H_s \) by

\[
\Psi_1(X) \sim_X \Psi_2(X) \iff (\forall X[\Psi_1(X) \Rightarrow \Psi_2(X)])
\]

(ii) A subcollection \(\Lambda^H_s \) of \(\Gamma^H_s \) such that \(\Psi_1(X) \sim_X \Psi_2(X) \) holds for all \(\Psi_1(X) \) and \(\Psi_2(X) \) in \(\Lambda^H_s \), and never for \(\Psi_1(X) \) in \(\Lambda^H_s \) and \(\Psi_2(X) \) outside \(\Lambda^H_s \), is an equivalence class of
\(\Gamma^{Hs}_X \).

(iii) For any \(\Psi(X) \in \Gamma^{Hs}_X \) let \([\Psi(X)]_{Hs} \triangleq \{ \Phi(X) \in \Gamma^{Hs}_X | \Psi(X) \sim_X \Phi(X) \} \) denote the equivalence class to which \(\Psi(X) \) belongs. All elements of \(\Gamma^{Hs}_X \) equivalent to each other are also elements of the same equivalence class.

(iv) The collection of all possible equivalence classes of \(\Gamma^{Hs}_X \) by \(\sim_X \), denoted \(\Gamma^{Hs}_X / \sim_X \)

\[\Gamma^{Hs}_X / \sim_X \triangleq \{ [\Psi(X)]_{Hs} | \Psi(X) \in \Gamma^{Hs}_X \} . \]

(2.1.7)

Definition 2.1.6. (i) We define now the equivalence relation \((\sim_v \cdot) \subset \Gamma^{Hs}_v \times \Gamma^{Hs}_v \) in the sense of the set theory \(ZFC^{Hs}_2 \) by

\[y_1 \sim_v y_2 \iff (\forall X [\Psi_{y_1,v}(X) \Leftrightarrow \Psi_{y_2,v}(X)]) \]

(2.1.8)

Note that from the axiom of separation it follows directly that the equivalence relation \((\sim_v \cdot) \) is a relation in the sense of the set theory \(ZFC^{Hs}_2 \).

(ii) A subset \(\Lambda^{Hs}_v \) of \(\Gamma^{Hs}_v \) such that \(y_1 \sim_v y_2 \) holds for all \(y_1 \) and \(y_2 \) in \(\Lambda^{Hs}_v \), and never for \(y_1 \) in \(\Lambda^{Hs}_v \) and \(y_2 \) outside \(\Lambda^{Hs}_v \), is an equivalence class of \(\Gamma^{Hs}_v \).

(iii) For any \(y \in \Gamma^{Hs}_v \) let \([y]_{Hs} \triangleq \{ z \in \Gamma^{Hs}_v | y \sim_v z \} \) denote the equivalence class to which \(y \)

belongs. All elements of \(\Gamma^{Hs}_v \) equivalent to each other are also elements of the same equivalence class.

(iv) The collection of all possible equivalence classes of \(\Gamma^{Hs}_v \) by \(\sim_v \), denoted \(\Gamma^{Hs}_v / \sim_v \)

\[\Gamma^{Hs}_v / \sim_v \triangleq \{ [y]_{Hs} | y \in \Gamma^{Hs}_v \} . \]

(2.1.9)

Remark 2.1.2. Note that from the axiom of separation it follows directly that \(\Gamma^{Hs}_v / \sim_v \)

is a

set in the sense of the set theory \(ZFC^{Hs}_2 \).

Definition 2.1.7. Let \(\mathcal{I}^{Hs}_2 \) be the countable collection of the all sets definable by 1-place open wff of the set theory \(ZFC^{Hs}_2 \), i.e.

\[\forall Y \{ Y \in \mathcal{I}^{Hs}_2 \iff \exists \Psi(X) \{ ([\Psi(X)]_{Hs} \in \Gamma^{Hs}_X / \sim_X) \land [\exists ! X [\Psi(X) \land Y = X]] \} \}. \]

(2.1.10)

Definition 2.1.8. We rewrite now (2.1.10) in the following equivalent form

\[\forall Y \{ Y \in \mathcal{I}^{Hs}_2 \iff \exists \Psi(X) \{ ([\Psi(X)]_{Hs} \in \Gamma^{Hs}_X / \sim_X) \land (Y = X) \} \}, \]

(2.1.11)

where the countable collection \(\Gamma^{Hs}_X / \sim_X \) is defined by

\[\forall \Psi(X) \{ [\Psi(X)] \in \Gamma^{Hs}_X / \sim_X \iff ([\Psi(X)] \in \Gamma^{Hs}_X / \sim_X) \land [\exists ! X \Psi(X)] \} \]

(2.1.12)

Definition 2.1.9. Let \(\mathcal{R}^{Hs}_2 \) be the countable collection of the all sets such that

\[\forall X (X \in \mathcal{I}^{Hs}_2) [X \in \mathcal{R}^{Hs}_2 \iff X \not\in X]. \]

(2.1.13)

Remark 2.1.3. Note that \(\mathcal{R}^{Hs}_2 \in \mathcal{I}^{Hs}_2 \) since \(\mathcal{R}^{Hs}_2 \) is a collection definable by 1-place
open wff

\[\Psi(Z, \mathcal{H}_s) \triangleq \forall X(X \in \mathcal{H}_s)[X \in Z \iff X \notin X]. \]

From (2.1.13) one obtains

\[\mathcal{H}_s \in \mathcal{H}_s \iff \mathcal{H}_s \notin \mathcal{H}_s. \quad (2.1.14) \]

But (2.1.14) gives a contradiction

\[(\mathcal{H}_s \in \mathcal{H}_s) \land (\mathcal{H}_s \notin \mathcal{H}_s). \quad (2.1.15) \]

However contradiction (2.1.15) it is not a contradiction inside \(ZFC^H_2 \) for the reason that

the countable collection \(\mathcal{H}_s \) is not a set in the sense of the set theory \(ZFC^H_2 \).

In order to obtain a contradiction inside \(ZFC^H_2 \) we introduce the following definitions.

Definition 2.1.10. We define now the countable set \(\Gamma^H_2/ \sim_\nu \) by

\[\forall y \left\{ [y]_{\mathcal{H}_s} \in \Gamma^H_2/ \sim_\nu \iff ([y]_{\mathcal{H}_s} \in \Gamma^H_2/ \sim_\nu) \land \mathcal{H}^{\mathcal{H}_2}(y, \nu) \land \exists X \Psi_{y, \nu}(X) \right\}. \quad (2.1.16) \]

Remark 2.1.4. Note that from the axiom of separation it follows directly that \(\Gamma^H_2/ \sim_\nu \) is a set in the sense of the set theory \(ZFC^H_2 \).

Definition 2.1.11. We define now the countable set \(\mathcal{I}^H_2 \) by formula

\[\forall Y\{ Y \in \mathcal{I}^H_2 \iff \exists y\left(([y]_{\mathcal{H}_s} \in \Gamma^H_2/ \sim_\nu) \land \mathcal{H}^{\mathcal{H}_2}(\nu, y) \land Y = X \right) \}. \quad (2.1.17) \]

Note that from the axiom schema of replacement (1.1.1) it follows directly that \(\mathcal{I}^H_2 \) is a set in the sense of the set theory \(ZFC^H_2 \).

Definition 2.1.12. We define now the countable set \(\mathcal{R}^{H_2}_s \) by formula

\[\forall X(X \in \mathcal{I}^H_2) \iff X \in \mathcal{R}^{H_2}_s \iff X \notin X. \quad (2.1.18) \]

Note that from the axiom schema of separation it follows directly that \(\mathcal{R}^{H_2}_s \) is a set in the sense of the set theory \(ZFC^H_2 \).

Remark 2.1.5. Note that \(\mathcal{R}^{H_2}_s \in \mathcal{I}^{H_2} \) since \(\mathcal{R}^{H_2}_s \) is a definable by the following formula

\[\Psi^{\ast}(Z) \triangleq \forall X(X \in \mathcal{I}^{H_2}) \iff X \in Z \iff X \notin X. \quad (2.1.19) \]

Theorem 2.1.1. Set theory \(ZFC^H_2 \) is inconsistent.

Proof. From (2.1.18) and Remark 2.1.5 we obtain \(\mathcal{R}^{H_2}_s \in \mathcal{R}^{H_2}_s \iff \mathcal{R}^{H_2}_s \notin \mathcal{R}^{H_2}_s \) from which immediately one obtains a contradiction \((\mathcal{R}^{H_2}_s \in \mathcal{R}^{H_2}_s) \land (\mathcal{R}^{H_2}_s \notin \mathcal{R}^{H_2}_s)\).

2.2. Derivation of the inconsistent definable set in set
theory \(ZFC_{st} \).

Designation 2.2.1. (i) Let \(g_{ZFC_u}(u) \) be a Gödel number of given an expression \(u \) of the set theory \(ZFC_{st} \equiv ZFC + \exists M_{st}^{ZFC} \).

(ii) Let \(Fr_{st}(y,v) \) be the relation : \(y \) is the Gödel number of a wff of the set theory \(ZFC_{st} \) that contains free occurrences of the variable \(X \) with Gödel number \(v \) [9].

(iii) Note that the relation \(Fr_{st}(y,v) \) is expressible in \(ZFC_{st} \) by a wff \(\hat{Fr}_{st}(y,v) \)

(iv) Note that for any \(y,v \in \mathbb{N} \) by definition of the relation \(Fr_{st}(y,v) \) follows that

\[
\hat{Fr}_{st}(y,v) \iff \exists! \Psi(X)[(g_{ZFC_u}(\Psi(X)) = y) \land (g_{ZFC_u}(X) = v)],
\]

(2.2.1)

where \(\Psi(X) \) is a unique wff of \(ZFC_{st} \) which contains free occurrences of the variable \(X \) with Gödel number \(v \).

We denote a unique wff \(\Psi(X) \) defined by using equivalence (2.2.1) by symbol \(\Psi_y(X) \), i.e.

\[
\hat{Fr}_{st}(y,v) \iff \exists! \Psi_y(X)[(g_{ZFC_u}(\Psi_y(X)) = y) \land (g_{ZFC_u}(X) = v)],
\]

(2.2.2)

(v) Let \(\phi_{st}(y,v,v_1) \) be a Gödel number of the following wff: \(\exists!Y[\Psi(X) \land Y = X] \), where \(g_{ZFC_u}(\Psi(X)) = y, g_{ZFC_u}(X) = v, g_{ZFC_u}(Y) = v_1 \).

(vi) Let \(Fr_{ZFC_u}(z) \) be a predicate asserting provability in \(ZFC_{st} \), which defined by formula

(2.6) in section 2, see Remark 2.2 and Designation 2.3.(see also [8]-[9]).

Definition 2.2.1. Let \(\Gamma_{\Psi}^y \) be the countable collection of the all 1-place open wff's of the set theory \(ZFC_{st} \) that contains free occurrences of the variable \(X \).

Definition 2.2.2. Let \(g_{ZFC_u}(X) = v \). Let \(\Gamma_{\Psi}^v \) be a set of the all Gödel numbers of the 1-place open wff's of the set theory \(ZFC_{st} \) that contains free occurrences of the variable \(X \) with Gödel number \(v \), i.e.

\[
\Gamma_{\Psi}^v = \{y \in \mathbb{N} | (y,v) \in Fr_{st}(y,v)\},
\]

(2.2.3)

or in the following equivalent form:

\[
\forall y(y \in \mathbb{N}) \left[y \in \Gamma_{\Psi}^v \iff (y \in \mathbb{N}) \land \hat{Fr}_{st}(y,v) \right].
\]

Remark 2.2.1. Note that from the axiom of separation it follows directly that \(\Gamma_{\Psi}^v \) is a set in the sense of the set theory \(ZFC_{st} \).

Definition 2.2.3. (i) We define now the equivalence relation \(\cdot \sim_{\Psi} \cdot \subset \Gamma_{\Psi}^v \times \Gamma_{\Psi}^v \) by

\[
\Psi_1(X) \sim_{\Psi} \Psi_2(X) \iff (\forall X[\Psi_1(X) \iff \Psi_2(X)])
\]

(2.2.4)

(ii) A subcollection \(\Lambda_{\Psi}^v \) of \(\Gamma_{\Psi}^v \) such that \(\Psi_1(X) \sim_{\Psi} \Psi_2(X) \) holds for all \(\Psi_1(X) \) and \(\Psi_2(X) \) in
\[\Lambda^\Phi \subseteq, \text{ and never for } \Psi_1(X) \text{ in } \Lambda^\Phi \text{ and } \Psi_2(X) \text{ outside } \Lambda^\Phi, \text{ is an equivalence class of } \Gamma^\Phi
\]

(iii) For any \(\Psi(X) \in \Gamma^\Phi \) let \([\Psi(X)]_{st} \triangleq \{ \Phi(X) \in \Gamma^\Phi | \Psi(X) \sim_X \Phi(X) \}\) denote the equivalence class to which \(\Psi(X) \) belongs. All elements of \(\Gamma^\Phi \) equivalent to each other are also elements of the same equivalence class.

(iv) The collection of all possible equivalence classes of \(\Gamma^\Phi \) by \(\sim_X \), denoted \(\Gamma^\Phi/\sim_X \)

\[\Gamma^\Phi/\sim_X \triangleq \{ [\Psi(X)]_{st} | \Psi(X) \in \Gamma^\Phi \}. \]

(2.2.5)

Definition 2.2.4. (i) We define now the equivalence relation \((\cdot \sim_v \cdot) \subset \Gamma^v \times \Gamma^v\) in the sense of the set theory ZFC_st by

\[y_1 \sim_v y_2 \iff (\forall X[\Psi_{y_1,v}(X) \iff \Psi_{y_2,v}(X)]) \]

(2.2.6)

Note that from the axiom of separation it follows directly that the equivalence relation \((\cdot \sim_v \cdot)\) is a relation in the sense of the set theory ZFC_st.

(ii) A subset \(\Lambda^v \) of \(\Gamma^v \) such that \(y_1 \sim_v y_2 \) holds for all \(y_1 \) and \(y_2 \) in \(\Lambda^v \), and never for \(y_1 \) in \(\Lambda^v \) and \(y_2 \) outside \(\Lambda^v \), is an equivalence class of \(\Gamma^v \).

(iii) For any \(y \in \Gamma^v \) let \([y]_{st} \triangleq \{ z \in \Gamma^v | y \sim_v z \}\) denote the equivalence class to which \(y \) belongs. All elements of \(\Gamma^v \) equivalent to each other are also elements of the same equivalence class.

(iv) The collection of all possible equivalence classes of \(\Gamma^v \) by \(\sim_v \), denoted \(\Gamma^v/\sim_v \)

\[\Gamma^v/\sim_v \triangleq \{ [y]_{st} | y \in \Gamma^v \}. \]

(2.2.7)

Remark 2.2.2. Note that from the axiom of separation it follows directly that \(\Gamma^v/\sim_v \) is a set in the sense of the set theory ZFC_st.

Definition 2.2.5. Let \(\mathfrak{I}_{st} \) be the countable collection of the all sets definable by 1-place open wff of the set theory ZFC_st, i.e.

\[\forall Y \{ Y \in \mathfrak{I}_{st} \iff \exists \Psi(X)[([\Psi(X)]_{st} \in \Gamma^st/\sim_X) \land [\exists \exists \exists X[\Psi(X) \land Y = X]]] \}. \]

(2.2.8)

Definition 2.2.6. We rewrite now (2.2.8) in the following equivalent form

\[\forall Y \{ Y \in \mathfrak{I}_{st} \iff \exists \Psi(X)[([\Psi(X)]_{st} \in \Gamma^st/\sim_X) \land (Y = X)] \}, \]

(2.2.9)

where the countable collection \(\Gamma^st/\sim_X \) is defined by

\[\forall \Psi(X) \{ [\Psi(X)]_{st} \in \Gamma^st/\sim_X \iff ([\Psi(X)]_{st} \in \Gamma^st/\sim_X) \land \exists ! X \Psi(X) \}. \]

(2.2.10)

Definition 2.2.7. Let \(\mathfrak{R}_{st} \) be the countable collection of the all sets such that

\[\forall X(X \in \mathfrak{I}_{st})[X \in \mathfrak{R}_{st} \iff X \notin X]. \]

(2.2.11)

Remark 2.2.3. Note that \(\mathfrak{R}_{st} \in \mathfrak{I}_{st} \) since \(\mathfrak{R}_{st} \) is a collection definable by 1-place open wff
\[\Psi(Z, \mathcal{I}_{st}) \triangleq \forall X(X \in \mathcal{I}_{st})[X \in Z \iff X \notin X]. \]

From (2.2.11) and Remark 2.2.3 one obtains directly
\[\mathcal{R}_{st} \in \mathcal{R}_{st} \iff \mathcal{R}_{st} \notin \mathcal{R}_{st}. \] (2.2.12)

But (2.2.12) immediately gives a contradiction
\[(\mathcal{R}_{st} \in \mathcal{R}_{st}) \land (\mathcal{R}_{st} \notin \mathcal{R}_{st}). \] (2.2.13)

However contradiction (2.2.13) it is not a true contradiction inside \(ZFC_{st} \) for the reason
that the countable collection \(\mathcal{I}_{st} \) is not a set in the sense of the set theory \(ZFC_{st} \).

In order to obtain a true contradiction inside \(ZFC_{st} \) we introduce the following definitions.

Definition 2.2.8. We define now the countable set \(\Gamma_{v}^{st}/ \sim_{v} \) by formula
\[\forall y \left\{ [y]_{st} \in \Gamma_{v}^{st}/ \sim_{v} \iff ([y]_{st} \in \Gamma_{v}^{st}/ \sim_{v}) \land \biglor_{\mathcal{R}_{st}(y, v)} \land [\exists ! \Psi_{y,v}(X)] \right\}. \] (2.2.14)

Remark 2.2.4. Note that from the axiom of separation it follows directly that \(\Gamma_{v}^{st}/ \sim_{v} \) is a set in the sense of the set theory \(ZFC_{st} \).

Definition 2.2.9. We define now the countable set \(\mathcal{I}_{st}^{*} \) by formula
\[\forall Y \{ Y \in \mathcal{I}_{st}^{*} \iff \exists v([y]_{st} \in \Gamma_{v}^{st}/ \sim_{v}) \land (g_{ZFC_{st}}(X) = v) \land Y = X \}. \] (2.2.15)

Note that from the axiom schema of replacement it follows directly that \(\mathcal{I}_{st}^{*} \) is a set in the sense of the set theory \(ZFC_{st} \).

Definition 2.2.10. We define now the countable set \(\mathcal{R}_{v}^{*} \) by formula
\[\forall X(X \in \mathcal{I}_{st}^{*})[X \in \mathcal{R}_{v}^{*} \iff X \notin X]. \] (2.2.16)

Note that from the axiom schema of separation it follows directly that \(\mathcal{R}_{v}^{*} \) is a set in the sense of the set theory \(ZFC_{st} \).

Remark 2.2.5. Note that \(\mathcal{R}_{v}^{*} \in \mathcal{I}_{st}^{*} \) since \(\mathcal{R}_{v}^{*} \) is a definable by the following formula
\[\Psi^{*}(Z) \triangleq \forall X(X \in \mathcal{I}_{st}^{*})[X \in Z \iff X \notin X]. \] (2.2.17)

Theorem 2.2.1. Set theory \(ZFC_{st} \) is inconsistent.

Proof. From (2.2.17) and Remark 2.2.5 we obtain \(\mathcal{R}_{v}^{*} \in \mathcal{R}_{st}^{*} \iff \mathcal{R}_{v}^{*} \notin \mathcal{R}_{st}^{*} \) from which immediately one obtains a contradiction \((\mathcal{R}_{st}^{*} \in \mathcal{R}_{st}^{*}) \land (\mathcal{R}_{st}^{*} \notin \mathcal{R}_{st}^{*}) \).

2.3. Derivation of the inconsistent definable set in \(ZFC_{Nst} \).

Definition 2.3.1. Let \(PA \) be a first order theory which contain usual postulates of Peano...
arithmetic [9] and recursive defining equations for every primitive recursive function as desired. So for any \((n + 1)\)-place function \(f\) defined by primitive recursion over any \(n\)-place base function \(g\) and \((n + 2)\)-place iteration function \(h\) there would be the defining equations:

\[(i) f(0, y_1, \ldots, y_n) = g(y_1, \ldots, y_n), \quad (ii) f(x + 1, y_1, \ldots, y_n) = h(x, f(x, y_1, \ldots, y_n), y_1, \ldots, y_n).\]

Designation 2.3.1. (i) Let \(M_{\text{Nat}}^{ZFC}\) be a nonstandard model of \(ZFC\) and let \(M_{\text{Nat}}^{\overline{PA}}\) be a standard model of the set theory \(ZFC\) by \(M_{\text{Nat}}^{ZFC} = ZFC + \exists M_{\text{Nat}}^{\overline{PA}}\).

(ii) Let \(ZFC_{\text{Nat}}\) be the theory \(ZFC_{\text{Nat}} = ZFC + \exists M_{\text{Nat}}^{ZFC} [\overline{PA}].\)

Designation 2.3.2. (i) Let \(g_{ZFC_{\text{Nat}}} (u)\) be a Gödel number of given an expression \(u\) of the set theory \(ZFC_{\text{Nat}}\) by \(g_{ZFC_{\text{Nat}}} = ZFC + \exists M_{\text{Nat}}^{ZFC} [\overline{PA}].\)

(ii) Let \(F_{\text{Fr}_{\text{Nat}}} (y, v)\) be the relation \(y\) is the Gödel number of a wff of the set theory \(ZFC_{\text{Nat}}\) which contains free occurrences of the variable \(X\) with Gödel number \(v\).

(iii) Note that the relation \(F_{\text{Fr}_{\text{Nat}}} (y, v)\) is expressible in \(ZFC_{\text{Nat}}\) by a wff \(\overline{F_{\text{Fr}_{\text{Nat}}} (y, v)}\).

(iv) Note that for any \(y, v \in \mathbb{N}\) by definition of the relation \(F_{\text{Fr}_{\text{Nat}}} (y, v)\) follows that

\[
\overline{F_{\text{Fr}_{\text{Nat}}} (y, v)} \Leftrightarrow \exists! \Psi(X) \left(g_{ZFC_{\text{Nat}}} (\Psi(X)) = y \right) \land (g_{ZFC_{\text{Nat}}} (X) = v) \right],
\]

where \(\Psi(X)\) is a unique wff of \(ZFC_{\text{Nat}}\) which contains free occurrences of the variable \(X\) with Gödel number \(v\). We denote a unique wff \(\Psi(X)\) defined by using equivalence (2.3.1) by symbol \(\overline{F_{\text{Fr}_{\text{Nat}}} (y, v)}\), i.e.

\[
\overline{F_{\text{Fr}_{\text{Nat}}} (y, v)} \Leftrightarrow \exists! \Psi(y, v) \left(g_{ZFC_{\text{Nat}}} (\Psi(y, v)) = y \right) \land (g_{ZFC_{\text{Nat}}} (X) = v); \quad (2.3.2)
\]

(v) Let \(\varphi_{\text{Nat}} (y, v, v_1)\) be a Gödel number of the following wff:

\[
\exists X [\Psi(X) \land Y = X],
\]

where

\[
g_{ZFC_{\text{Nat}}} (\Psi(X)) = y, \quad g_{ZFC_{\text{Nat}}} (X) = v, \quad g_{ZFC_{\text{Nat}}} (Y) = v_1.
\]

(vi) Let \(P_{\text{Fr}_{\text{Nat}}} (z)\) be a predicate asserting provability in \(ZFC_{\text{Nat}}\), which defined by formula (2.6) in section 2, see Remark 2.2 and Designation 2.3 (see also [9]-[10]).

Definition 2.3.2. Let \(\Gamma_{X, \overline{\Psi}}\) be the countable collection of the all 1-place open wff’s of the set theory \(ZFC_{\text{Nat}}\) that contains free occurrences of the variable \(X\).

Definition 2.3.3. Let \(g_{ZFC_{\text{Nat}}} (X) = v\). Let \(\Gamma_{v, \overline{\Psi}}\) be a set of the all Gödel numbers of the 1-place open wff’s of the set theory \(ZFC_{\text{Nat}}\) that contains free occurrences of the variable \(X\) with Gödel number \(v\), i.e.
\[\Gamma_v^{\text{Nat}} = \{ y \in \mathbb{N} | \langle y, v \rangle \in \text{Fr}_{\text{Nat}}(y, v) \}, \]
\hspace{1cm} (2.3.3)

or in the following equivalent form:

\[\forall y(y \in \mathbb{N}) \left[y \in \Gamma_v^{\text{Nat}} \iff (y \in \mathbb{N}) \wedge \right] \text{Fr}_{\text{Nat}}(y, v) \right].

Remark 2.3.1. Note that from the axiom of separation it follows directly that \(\Gamma_v^{\text{Nat}} \) is a set in the sense of the set theory \(\text{ZFC}_{\text{Nat}} \).

Definition 2.3.3. (i) We define now the equivalence relation \((\cdot \sim_{\chi} \cdot) \subset \Gamma_v^{\text{Nat}} \times \Gamma_v^{\text{Nat}} \) by

\[\Psi_1(\chi) \sim_{\chi} \Psi_2(\chi) \iff (\forall \chi [\Psi_1(\chi) \iff \Psi_2(\chi)]) \]
\hspace{1cm} (2.3.4)

(ii) A subcollection \(\Lambda^v_{\chi} \) of \(\Gamma^v_{\chi} \) such that \(\Psi_1(\chi) \sim_{\chi} \Psi_2(\chi) \) holds for all \(\Psi_1(\chi) \) and \(\Psi_2(\chi) \) in \(\Lambda^v_{\chi} \), and never for \(\Psi_1(\chi) \) in \(\Lambda^v_{\chi} \) and \(\Psi_2(\chi) \) outside \(\Lambda^v_{\chi} \), is an equivalence class of \(\Gamma^v_{\chi} \).

(iii) For any \(\Psi(\chi) \in \Gamma^v_{\chi} \) let \([\Psi(\chi)]_{\text{Nat}} \triangleq \{ \Phi(\chi) \in \Gamma^v_{\chi} | \Psi(\chi) \sim_{\chi} \Phi(\chi) \} \) denote the equivalence class to which \(\Psi(\chi) \) belongs. All elements of \(\Gamma^v_{\chi} \) equivalent to each other are also elements of the same equivalence class.

(iv) The collection of all possible equivalence classes of \(\Gamma^v_{\chi} \) by \(\sim_{\chi} \), denoted \(\Gamma^v_{\chi} / \sim_{\chi} \)

\[\Gamma^v_{\chi} / \sim_{\chi} \triangleq \{ [\Psi(\chi)]_{\text{Nat}} \Psi(\chi) \in \Gamma^v_{\chi} \}. \]
\hspace{1cm} (2.3.5)

Definition 2.3.4. (i) We define now the equivalence relation \((\cdot \sim_v \cdot) \subset \Gamma^v_{\chi} \times \Gamma^v_{\chi} \) in the sense of the set theory \(\text{ZFC}_{\text{Nat}} \) by

\[y_1 \sim_v y_2 \iff (\forall \chi [\Psi_{y_1,v}(\chi) \iff \Psi_{y_2,v}(\chi)]) \]
\hspace{1cm} (2.3.6)

Note that from the axiom of separation it follows directly that the equivalence relation \((\cdot \sim_v \cdot) \) is a relation in the sense of the set theory \(\text{ZFC}_{\text{Nat}} \).

(ii) A subset \(\Lambda^v_{\chi} \) of \(\Gamma^v_{\chi} \) such that \(y_1 \sim_v y_2 \) holds for all \(y_1 \) and \(y_1 \) in \(\Lambda^v_{\chi} \), and never for \(y_1 \) in \(\Lambda^v_{\chi} \) and \(y_2 \) outside \(\Lambda^v_{\chi} \), is an equivalence class of \(\Gamma^v_{\chi} \).

(iii) For any \(y \in \Gamma^v_{\chi} \) let \([y]_{\text{Nat}} \triangleq \{ z \in \Gamma^v_{\chi} | y \sim_v z \} \) denote the equivalence class to which \(y \) belongs. All elements of \(\Gamma^v_{\chi} \) equivalent to each other are also elements of the same equivalence class.

(iv) The collection of all possible equivalence classes of \(\Gamma^v_{\chi} \) by \(\sim_v \), denoted \(\Gamma^v_{\chi} / \sim_v \)

\[\Gamma^v_{\chi} / \sim_v \triangleq \{ [y]_{\text{Nat}} | y \in \Gamma^v_{\chi} \}. \]
\hspace{1cm} (2.3.7)

Remark 2.3.2. Note that from the axiom of separation it follows directly that \(\Gamma^v_{\chi} / \sim_v \) is a set in the sense of the set theory \(\text{ZFC}_{\text{Nat}} \).

Definition 2.3.5. Let \(\mathcal{S}_{\text{Nat}} \) be the countable collection of the all sets definable by
1-place open wff of the set theory ZFC_{Nst}, i.e.

$$\forall Y \{ Y \in \mathcal{N} \implies \exists \Psi(X) \left[\left[\Psi(X) \right]_{Nst} \in \Gamma_{X}^{Nst} \implies \sim X \right] \land \left[\exists ! X \left[\Psi(X) \land Y = X \right] \right] \}.$$ \hspace{1cm} (2.3.8)

Definition 2.3.6. We rewrite now (2.3.8) in the following equivalent form

$$\forall Y \{ Y \in \mathcal{N} \implies \exists \Psi(X) \left[\left[\Psi(X) \right]_{Nst} \in \Gamma_{X}^{Nst} \implies \sim X \right] \land \left(Y = X \right) \},$$ \hspace{1cm} (2.3.9)

where the countable collection $\Gamma_{X}^{Nst} / \sim X$ is defined by

$$\forall \Psi(X) \left[\left[\Psi(X) \right]_{Nst} \in \Gamma_{X}^{Nst} \implies \sim X \right] \iff \left[\left[\Psi(X) \right]_{Nst} \in \Gamma_{X}^{Nst} \implies \sim X \right] \land \exists ! X \Psi(X) \}.$$ \hspace{1cm} (2.3.10)

Definition 2.3.7. Let \mathcal{N} be the countable collection of all sets such that

$$\forall X \{ X \in \mathcal{N} \implies X \notin X \}. \hspace{1cm} (2.3.11)$$

Remark 2.3.3. Note that $\mathcal{N} \in \mathcal{N}$ since \mathcal{N} is a collection definable by 1-place open wff

$$\Psi(Z, \mathcal{N}) \triangleq \forall X \left(X \in \mathcal{N} \implies \exists X \in \mathcal{N} \right).$$

From (2.3.11) one obtains

$$\mathcal{N} \in \mathcal{N} \iff \mathcal{N} \notin \mathcal{N}. \hspace{1cm} (2.3.12)$$

But (2.3.12) gives a contradiction

$$(\mathcal{N} \in \mathcal{N}) \land (\mathcal{N} \notin \mathcal{N}). \hspace{1cm} (2.3.13)$$

However a contradiction (2.3.13) it is not a true contradiction inside ZFC_{Nst} for the reason that the countable collection \mathcal{N} is not a set in the sense of the set theory ZFC_{Nst}.

In order to obtain a true contradiction inside ZFC_{Nst} we introduce the following definitions.

Definition 2.3.8. We define now the countable set $\Gamma_{v}^{Nst} / \sim v$ by formula

$$\forall Y \left\{ \left[Y \right]_{Nst} \in \Gamma_{v}^{Nst} / \sim v \iff \left(\left[Y \right]_{Nst} \in \Gamma_{v}^{Nst} / \sim v \right) \land \left(\hat{g}_{Nst}(v) \land \left[\exists ! X \Psi(y, v) \right. \right) \right\}. \hspace{1cm} (2.3.14)$$

Remark 2.3.4. Note that from the axiom of separation it follows directly that $\Gamma_{v}^{Nst} / \sim v$ is a set in the sense of the set theory ZFC_{st}.

Definition 2.3.9. We define now the countable set $\mathcal{N}^{*} \in \mathcal{N}$ by formula

$$\forall Y \{ Y \in \mathcal{N}^{*} \iff \exists Y \left(\left[Y \right]_{Nst} \in \Gamma_{v}^{Nst} / \sim v \right) \land \left(\hat{g}_{ZFC_{Nst}}(X) = v \right) \land Y = X \}. \hspace{1cm} (2.3.15)$$

Note that from the axiom schema of replacement it follows directly that \mathcal{N}^{*} is a set in the sense of the set theory ZFC_{Nst}.

Definition 2.3.10. We define now the countable set \mathcal{R}_{Nst} by formula
\[\forall X(X \in \mathcal{I}_{\text{Nst}})[X \in \mathcal{R}_{\text{Nst}}^* \iff X \notin X]. \] \hfill (2.3.16)

Note that from the axiom schema of separation it follows directly that \(\mathcal{R}_{\text{Nst}}^* \) is a set in the sense of the set theory \(ZFC_{\text{Nst}} \).

Remark 2.3.5. Note that \(\mathcal{R}_{\text{Nst}}^* \in \mathcal{I}_{\text{Nst}}^* \) since \(\mathcal{R}_{\text{Nst}}^* \) is a definable by the following formula
\[\Psi^*(Z) \iff \forall X(X \in \mathcal{I}_{\text{Nst}}^* \iff X \in Z \iff X \notin X). \] \hfill (2.3.17)

Theorem 2.3.1. Set theory \(ZFC_{\text{Nst}} \) is inconsistent.

Proof. From (2.3.16) and Remark 2.3.5 we obtain \(\mathcal{R}_{\text{Nst}}^* \in \mathcal{R}_{\text{Nst}}^* \iff \mathcal{R}_{\text{Nst}}^* \notin \mathcal{R}_{\text{Nst}}^* \) from which one obtains a contradiction \((\mathcal{R}_{\text{Nst}}^* \in \mathcal{R}_{\text{Nst}}^*) \land (\mathcal{R}_{\text{Nst}}^* \notin \mathcal{R}_{\text{Nst}}^*) \).

3. Acknowledgments

A reviewers provided important clarifications.

References

The Bulletin of Symbolic Logic Vol. 23, No. 2 (JUNE 2017), pp. 213-266
J. Foukzon, Inconsistent countable set in second order ZFC and unexistence of the strongly inaccessible cardinals, pp.240.

the Strongly Inaccessible Cardinals, British Journal of Mathematics & Computer Science, ISSN: 2231-0851, Vol.: 9, Issue.: 5
http://www.sciencedomain.org/abstract/9622

http://arxiv.org/abs/1301.5340v10

http://dx.doi.org/10.4236/apm.2013.33053