
The algebra of non local neutrino gravity

M. D. Sheppeard
Te Atatu Peninsula Community Centre

Waitakere 0610, New Zealand

December 2017

Abstract

The elementary algebra underlying the non local neutrino hypothesis is
used to explain discrepancies in the value of Hubble’s constant in terms of
other physical constants, in the approximation of the Rh = ct semiclassical
cosmology with Mach’s principle. It is assumed that quantum gravity
breaks the equivalence principle, in conjunction with a quantum Higgs
mechanism, and this new view of the electroweak vacuum indicates an
absence of dark matter and dark energy. We introduce mass quantisation
in the Brannen-Koide scheme in this context.

1 A new cosmology

The failure of the ΛCDM paradigm, for both dark energy and dark matter,
forces theorists to consider gravity beyond general relativity. General relativity
occurs as an emergent property of a deeper quantum theory of gravity, which
presumably has applications that break the restrictions of the classical theory.
Since Lorentz invariance underpins all the successes of 20th century physics,
it is clear that we must instead break the equivalence principle, mildly. The
dualities of M theory suggest a search for a maximally non local cosmological
principle, closely associated to the quantisation of rest mass.

The hypothesis of non local neutrinos is sufficient to solve all cosmological
conundrums.[1] The history of this discovery goes as follows. The cosmology
for the mirror neutrino hypothesis was developed in [1] immediately after the
2010 discovery in [2], [3] and [4] of the exact correspondence between a (mirror)
neutrino rest mass and TC , the present day temperature of the CMB. Successful
predictions included a computation of the observable mass MU of our universe.
The possible identification of non local mirror neutrinos and antineutrinos re-
mained unclear until recently, when connections to holography were discussed
in [5], based on older work on quantum inertia [6]. Non local neutrinos were
originally designed to recover the successful MOND paradigm of [7] for galactic
rotation curves. The concept of quantum inertia has been properly developed by
McCulloch and Gine [8][9][10][11][12] The specialness of neutrinos follows from
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the ribbon spectrum of [13] and [14], for Standard Model states, which is justi-
fied by applications of category theory in quantum gravity. In 2006, the author
used category theory to invent polytopes for scattering amplitudes in [15], and
Brannen showed in [16] and [17] how Koide’s formula [18][19] for the low energy
charged lepton masses could be applied to neutrino masses. Over this decade,
there were many online discussions about the cosmology between the author,
Brannen and the originator of the Rh = ct solution, Riofrio [20]. Overwhelming
observational evidence selecting Rh = ct over ΛCDM is summarised in [21].

In all of this, twistor geometry T = CP3 is the proper setting for compactified
Minkowski space M = S3×S1 = SU(2)×U(1) [22][23]. The gauge group SU(2)
properly emerges with non local effects, crucial to electroweak CP violation.
This is well motivated by universality in quantum computation. Similarly, a
U(1) emerges in the string net condensation picture [24].

In contrast to the common habit of tripling sets of solutions to the Dirac
equation, we insist there is only one copy of the Dirac and Klein-Gordon equa-
tions. As is well known, massless solutions are H1 cohomology classes on a
suitable restriction of T. A massive solution was first defined as an H2 class in
[25], the components being massless Dirac spinors. Over the last decade, the
massless solutions have been successfully employed in scattering amplitudes in
QFT, under the assumption that locality is central. For mass, however, the non
local inversion of operators is absolutely essential, as we will show. This inver-
sion, meant to address the so called googly problem, is rooted in a T duality for
M theory, which discards the supersymmetry of strings in favour of the super-
symmetry of the quantum Fourier transform.[14]. Such dualities are well studied
in the context of entanglement measures for Jordan algebras [26][27][28]. The
categorical language has been well developed for spin foam models [29][30][31].

By definition, an operator is maximally non local if it can be described by
two distinct local operators: a standard UV local operator and a cosmological
scale IR operator. This is the key to dual quantum inertia, which associates
non local states to cosmological boundaries in a new form of the holographic
principle [32]. The TC correspondence identifies non local (once thought to be
mirror states) neutrinos and CMB photons, applying the Fourier supersymmetry
to map neutrinos to photons. This identification requires nothing more than
Wien’s constant and T duality.

Astonishingly, we find that non local neutrinos are antineutrinos, implying
that the non locality of neutrino mass underpins the true electroweak vacuum,
for which the Higgs mass is roughly mH ∼

√
mνmP with mP a Planck (or

GUT) scale mass. In other words, although our semiclassical intuition puts
the cosmological boundary far away, pair production everywhere is a form of
Hawking radiation. Every time we observe an antineutrino in the laboratory,
its true state is the cosmological right handed state. The remaining task is to
see how charged lepton pair production e−e+ also arises from this mechanism,
and how color is included in the ribbon scheme.

On the local side, the Hawking event horizon is replaced with a causal Rindler
horizon, whose Unruh temperature decreases an inertial mass mi by a factor of
λ/4Rh.[9] That is, Unruh wavelengths only fit into twice the Hubble diameter at
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any cosmological time t. Quantum inertia easily recovers the MOND description
of [7] for galactic rotation curves, and dark energy is eliminated by the FLRW
Rh = ct theory.

It is impossible to overestimate the importance of maximal non locality.
Planck’s black body spectrum is based on Wien’s law, and it now follows that
energies away from Wien’s peak are associated to the uncertainty of non local
mass energy, for short lived virtual states in the true vacuum. This manifestation
of the uncertainty principle, like the Higgs mechanism, is deeply rooted in the
arithmetic properties of the quantum Fourier transform. Bosonic and fermionic
statistics are related by Fourier supersymmetry, and the T dual confinement of
fermions to our observable universe resolves the black hole information paradox,
improving on Penrose’s classical cyclic cosmology [33].

Bulk boundary correspondences for general relativity are known to come
from entanglement renormalisation in tensor networks. Mathematically, cate-
gory theory is the correct setting for discussing multistate entanglement and
quantum computation, since algorithmic processes transcend the limitations of
set theory. The ribbon particle spectrum of Standard Model states has a natural
setting in modular tensor categories, which arise as representation categories for
quantum Hopf algebras, and notably underlie the rational conformal field the-
ories that one expects to appear in a finite, arithmetic quantum gravity theory.

Here a ribbon twist represents electromagnetic charge, which naturally ap-
pears when we attempt to localise a neutral neutrino ribbon strand. Each par-
ticle is a three stranded ribbon diagram. For charged leptons, all three strands
are twisted, while quarks have some twisted and some untwisted strands, leav-
ing quarks in the non local domain. Quark confinement is a property of three
dimensional categories, as shown in [34] and [15], which allow the cyclic 3 + 1D
ribbon pictures used for amplitudes. Now leptons and quarks are transformed
into one another through composition of a particle with a triplet of ribbon twists.
Fermions are braided in B3, while bosons represent the identity in B3. (Recall
that B3 covers the modular group PSL(2,Z)).

The right handed singlets required for Yukawa couplings are not mirror
states, but occur already in the SM ribbon spectrum, along with all the an-
tiparticle states, including the neutrinos and antineutrinos. Only the neutrinos
have the property that (i) no right handed local states exist and (ii) ν masses
may be slightly different from ν masses, due to the presence of a fundamental
arithmetic π/12 phase in the Brannen-Koide rest mass phenomenology. Mirror
fermion braids, namely the crossing swapped B3 braids, do not appear in nature
except in the non local mass generation mechanism, perhaps as information on
the cosmological boundary, ensuring strict chirality for Standard Model parti-
cles. Photons are the only massless electroweak bosons because every strand in
the ribbon diagram is neutral, whereas the Z boson utilises a more subtle color
structure, dictated by some form of color gravity [35][36].

Here, IR (and UV) unification will rely crucially on the monster moonshine
of bosonic string theory, but we do not approach this using stringy techniques.
Rather, the Leech lattice should come from color gravity, with its automor-
phisms neatly wrapped up in the 27 dimensions of the exceptional Jordan alge-
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bra over the octonions.

2 Basic algebra

2.1 Mutually unbiased information

The quantum measurement of spin is characterised not so much by the three
Pauli matrices

X = i

(
0 1
1 0

)
, Y = i

(
0 i
−i 0

)
, Z = i

(
1 0
0 −1

)
, (1)

but by the unitary sets of normed eigenvectors of these operators,

F2 =
1√
2

(
1 1
1 −1

)
, R2 =

1√
2

(
1 i
i 1

)
, I2 =

(
1 0
0 1

)
. (2)

Here F2 is the 2× 2 quantum Fourier transform. Let ω be the primitive cubed
root of unity exp(2πi/3). For three outcome measurements, the four bases are

F =
1√
3

1 1 1
1 ω ω
1 ω ω

 , R =
1√
3

1 ω 1
1 1 ω
ω 1 1

 , R−1 =
1√
3

1 1 ω
ω 1 1
1 ω 1

 , I.

(3)
In these sets, every pair of eigenvectors v and w from two distinct bases is
mutually unbiased [37][38], meaning that |v · w| = 1/

√
d for d the dimension.

Observe that R2 is a representation of the eigth root of unity π/4, and R of the
twelfth root π/6, so that a six dimensional system that combines one qubit with
one qutrit picks up a phase factor of π/12, the difference between π/6 and π/4.
This essential arithmetic phase is crucial in everything that follows, appearing
in the neutrino mass matrices of section 2.3.

In any prime power dimension d = pr there exist d + 1 mutually unbi-
ased bases, and these may be represented by the matrices Fd, Id and Rjd
(j ∈ 1, · · · , d−1) [39]. The matrix Rd is always a 1-circulant, for which each row
is a one step cyclic permutation of the row above. 1-circulants are diagonalised
by the Fourier transform Fd [40]. For example,

p1 ≡

1 0 0
0 ω 0
0 0 ω

 = F

0 1 0
0 0 1
1 0 0

F †. (4)

Omitting Fd from the basis set, the remaining d circulant mutually unbiased
bases represent the abelian cyclic group Cd. Thus any finite abelian group is
built out of such bases. For d = 3, we define three spatial points

x1 =

0 1 0
0 0 1
1 0 0

 , x2 =

0 0 1
1 0 0
0 1 0

 , x3 = I, (5)
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in the fundamental representation of C3 ⊂ S3. The Fourier transform F gives
the momentum points p1, p2 and p3. These six points will play a key role in
section 4.1.

In d = 3 there are only 1-circulants and 2-circulants, which are the two step
permutations. A general 3 × 3 circulant matrix over C is a linear combination
of the six permutations in S3. Section 4.2 defines the Hopf algebra structure
for such circulants. Circulant parameterisations for unitary matrices are used
below to analyse the CKM and PMNS mixing matrices [6][17].

2.2 Spacetime and Jordan algebras

A study of black holes and entanglement in [28] relates division algebras to the
symmetries of (supersymmetric) Yang-Mills theories. We are interested in the
application of 3×3 matrix algebras to canonical mass energy spectra. There are
only four division algebras, namely R, C, H and the octonions O, which are all
used to define matrix algebras. The connection of the division algebras C and
O to the particle spectrum has been studied by Furey in [41], and this scheme
is directly related to the ribbon spectrum below.

In order to generalise to higher dimensions, a complex number is written
in the form Z = z0 + z1e1, where e1 = i satisfies e1

2 = −1. A quaternion
h0 + h1e1 + h2e2 + h3e3 in H is instead written in terms of the Pauli matrices
of (1),

Q = tI + xX + yY + zZ = i

(
t+ z x+ iy
x− iy t− z

)
, (6)

because the matrix Q encodes the Lorentzian metric of spacetime

det(Q) = −t2 + x2 + y2 + z2. (7)

A vector Q in spacetime transforms to a 2× 2 circulant under the conjugation
action of the Lorentz group SL(2,C),

−iQ =

(
n m
p q

)(
a b
b a

)(
q −m
−p n

)
(8)

with

t = a, z = b(qm− pn), x =
b(q2 + n2 − p2 −m2)

2
, y =

b(p2 + n2 − q2 −m2)

2
.

(9)
In twistor geometry one usually complexifies spacetime, but we see here that
this won’t put three degrees of freedom into a circulant, for which x, y and z
are all multiples of b. What we need are three copies of Q, embedded in three
ways in a 3× 3 matrix. This is the natural way to account for three dimensions
of space.

The octonions are a little like two copies of H. An octonion in O requires 7
units ei for i ∈ 1, · · · , 7, such that ei

2 = −1.[42] If we write

K = k0 + k1e1 + k2e2 + k3e3 + · · ·+ k7e7, (10)
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then conjugation in O is defined by

K ≡ k0 − k1e1 − k2e2 − k3e3 − · · · − k7e7, (11)

so that the norm is given by

N(K) ≡ KK =

7∑
i=0

ki
2. (12)

The seven units ei are related by the Fano plane diagram, which we omit for
now. By definition, a commutative but not necessarily associative Jordan matrix
algebra [43][44] has a product

x ◦ y =
1

2
(AB +BA) (13)

for two matrices A and B. We are especially interested in the algebras J3(A)
of 3× 3 Hermitian matrices over a division algebra A. The exceptional Jordan
algebra is the case J3(O). Let a, b and c be real variables and X, Y , Z three
octonions. A Hermitian element H of J3(O) is written

H =

 a X Y
X b Z
Y Z c

 . (14)

As with J3(C), which we will use often, H is a 1-circulant when X = Y = Z.
Three directions appear properly when 2-circulants are included.

Since O is often used to analyse color symmetry, one expects matrix Jordan
algebras to feature prominently in color gravity. For now, we focus on the
complex case J3(C).

2.3 Koide rest mass triplets

In QFT one often studies running masses at special pole values away from the
expected low energy value for the rest mass. However, the Standard Model has
nothing to say about the actual rest masses that we observe, and the behaviour
of electroweak couplings suggests a link between low energy and pole masses. If
rest mass is generated by a duality between the smallest and the largest possible
scales, it would not be surprising if the low energy masses took a simple form.
Indeed, they do.

Observe that a 3× 3 complex Hermitian circulant requires only two real pa-
rameters. Our basic physical degree of freedom is the square root of mass energy√
M , which introduces a third parameter, the mass scale. Such a circulant is

conveniently expressed in the form

√
M =

√
µ

r

r δ δ

δ r δ

δ δ r

 (15)
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for a dimensionful scale µ and complex phase δ. In the 1980s, Koide found in
[18] and [19] a relation between the three charged lepton masses at low energy,
which later turned out to be remarkably accurate. It corresponds to the choice
r =

√
2. Brannen later found that r =

√
2 also works for the conjectured

neutrino masses of the normal hierarchy [16].
Why is

√
2 special? As usual, ω is the primitive cubed root of unity. Setting

µ = 1 for the moment, let λj for j = 1, 2, 3 be the three eigenvalues

λj = 1 +
2

r
cos(δ + ωj) (16)

of
√
M . Since the Fourier transform F diagonalises

√
M , the determinant is

defined by the cubic

det(
√
M) = λ1λ2λ3 = r3 − 3r + 2 cos(3δ). (17)

At δ = π/6, the determinant vanishes at r =
√

3. When δ = π/12, it vanishes
at r =

√
2. These are our basic two values of r. All lepton masses are of the

form
mi = µλi

2. (18)

Empirically, for the charged leptons, µl = mp/3, where mp is the proton mass,
and µν ' 0.01eV for the neutrinos and antineutrinos. The charged lepton phase
is δl = 2/9 + ε for some very small quantity ε, while the neutrino phase δν =
2/9+π/12. We associate this special π/12 phase with the improper localisation
of neutrinos in the charged lepton spacetime, because it turns out that the ν
phase is δν = 2/9−π/12. It is the charged leptons that are fundamental, in the
sense that the adjoint Cayley permutation representation of S3 in S6 looks like
a three stranded ribbon diagram with twisted strands, which is the e± diagram.

At π/6 = δν − δν and r =
√

2, we find a new rule

√
m1m2m3 =

1

27
(
√
m1 +

√
m2 ±

√
m3)3 (19)

for the triplet of masses. A similar rule holds in general. The rest masses within
a triplet may be expressed in terms of a representative dimensionless mass m0

using the differences mi −mj as a function of δ. We compute

∆ω =
3

2
cos2 δ − 3

2
sin2 δ −

√
3 cos δ sin δ + 3

√
2 cos δ +

√
6 sin δ (20)

∆ω =
3

2
cos2 δ − 3

2
sin2 δ +

√
3 cos δ sin δ + 3

√
2 cos δ −

√
6 sin δ

so that
det(M) = m0(m0 −∆ω)(m0 −∆ω) (21)

= m0
3 −m0

2(∆ω + ∆ω) +m0(∆ω∆ω).

Weierstrass cubic coefficients for a mass triplet are defined as usual by

g3 = 0, g2 = −∆ω∆ω, (22)
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in which case we define
y2 = x3 −∆ω∆ωx. (23)

At r =
√

2, a mass cubic is only in this form for δ = 45◦ + 38.71◦, but we now
consider arbitrary triplets. For pair production γ → e−e+ the basic triplet is
(0, λ,−λ). The Weierstrass coefficient g3 in a cubic is a multiple of the Eisenstein
series E6 from (73). When E6 = 0 in (22), g3 is fixed by the phase z = i. Taking
E4(i) and solving g2 = 4∆ω∆ω, we obtain the special phase 30◦ − 8.49◦, which
we will see later on.

Consider the ν phase δν = 2/9 − π/12. In this case, the dimensionless
eigenvalues are written as

m1 = 0.1169 + 5.7062, m0 ≡ m2 = 0.1169, m3 = 0.1169− 0.0569, (24)

where µνm0 = 0.00117eV is the present day CMB temperature.
A value of r =

√
3 works for the down quark (d, s, b) triplet, with δd = 4/27

[6]. When the lepton triangle is inscribed inside the quark triangle, simple
trigonometry suggests a value of r = 1.76 for (u, c, t), when δu = 2/27. Clearly,
these rational phases have something to do with charge! Neutrinos lose their
charge because ν and ν cannot combine to form a standard Dirac spinor, since
they have distinct masses.

Viewing the complex phase δ as a restricted choice of norm 1 octonion, M
belongs to J3(O). Since 1-circulants commute, the Jordan product is simply the
ordinary matrix product.

2.4 The cosmological Higgs mass

Our Higgs particle has a mass mH ∼
√
µνmP for µν a neutrino scale and mP

the Planck mass. This is written in the form

µν =
m2
H

mP
, (25)

known as a see-saw relation. The local neutrino see-saw traditionally uses a
right handed neutrino mass in place of mP , but we don’t have right handed
neutrinos. The Higgs mass replaces the Dirac mass of a neutrino. Given a
formula for µν , along with the definition

mP =

√
ch

2πG
, (26)

we would have an estimate of mH from quantum gravity.

3 Non local structure

3.1 Note on the Dirac equation

The smallest simple, nonabelian finite group is A4 ⊂ S4 in dimension 4. Unlike
for d = 3, where there were only left and right non identity 1-circulant permu-
tations, the subgroup C4 contains a third one, known as γ5 [45]. In d = 4, the

8



Fourier transform

F2 ⊗ F2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (27)

lists the eigenvectors of

γ5 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (28)

and the Dirac representation gives the other four measurement matrices,

γi =

(
0 σi
−σi 0

)
, γ0 =

(
I2 0
0 −I2

)
. (29)

We consider the measurement perspective to be more fundamental than the
Dirac representation, which hinges largely on a pre-existing Lorentz group. In
quantum gravity, classical spacetime should emerge from the underlying topo-
logical information.

B3 representations are used in the theory of quantum computation to gener-
ate a dense subset of SU(2), with a finite set of operators that are computation-
ally universal. The canonical example is the system of three Fibonacci anyons
(to appear in the next paper) with precisely the charge 1/3 that we need for a
ribbon strand. A qutrit uses four anyons, and the minimal naive Hopf algebra
dimension for both together is of course 24.

Our version of supersymmetry uses the six real dimensions ofB3 in its adjoint
Cayley representation. Section 4.1 gives the Standard Model particle spectrum
in terms of 3×3 complex matrices, while section 2.2 suggests that 27 dimensions
can be packaged into the 3× 3 matrices over O. In J3(O), the 24 dimensions sit
in the triplet of off diagonal octonion entries. An interesting duality between
(the real part of) C and O is studied using ribbon graphs in [46]. Note also that
the integral octonions ZO ∼ Z8 can be embedded densely in C using golden
ratio parameters associated to a pentagon tiling. That is, if we do not require
nonassociativity for the leptons, the algebra over C should do everything for us.

3.2 Quantum inertia

If quantum gravity subsumes general relativity, one should not be afraid to
break the equivalence principle in domains outside solar system physics, where
GR is a stunning success. The hypothesis of quantum inertia will immediately
rid us of dark matter and dark energy, which have failed every observational
test.

To every energy is associated a wavelength,

E =
hc

2πλ
. (30)
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A minimal uncertainty satisfies the constraint

Et =
h

4π
. (31)

The maximum possible interval of time t is t0, the present age of the universe,
which defines a classical radius Rh = ct0 called the Hubble radius.[20, 21] The
Rh = ct0 ansatz follows from a universal form of Kepler’s law when Mach’s
principle for inertia is implemented classically using Sciama’s rule [12]

mi = mg
GMU

c2RU
(32)

for MU the mass of the universe, where the equivalence principle only holds if
GMU = c2RU .

Quantum wavelengths are restricted to λ ≤ 4Rh, since a quarter wavelength
can fit inside the Hubble radius [8][9]. The minimal uncertainty defines a com-
plementary energy 2E0 = h/4πt0 so that

h

8πE0t0
= 1 =

λ0
4ct0

=
λ0

4Rh
. (33)

In other words, λ0 = 4Rh is the limiting wavelength, and as in [8] and [9] we
write

mi = mg(1−
λ

4Rh
). (34)

Combining this rule with (32), we see that the equivalence principle is only
satisfied when λ = 0, and the Machian condition becomes

4Rh
λ

(1− GMU

c2RU
) = 1. (35)

When Rh = RU , we get

Rh = ct0 +
λ

4
. (36)

Black hole physics teaches us that quantum mass energy is thermodynamic in
nature. Each energy is associated to a temperature through Wien’s displacement
law

E ≡ hc

2πλ
= βkT, (37)

where Wien’s constant β = 4.965 was originally used by Planck to derive the
black body spectrum. For a local accelerating mass, the Unruh temperature TU
depends on the magnitude aU of the acceleration,

kTU =
haU
4π2c

. (38)

Using Wien’s law to define EU and the Unruh wavelength λU , it follows that
a maximal Unruh wavelength in (34) corresponds to the minimal acceleration
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a0, which agrees with the MOND hypothesis of [7] for galactic rotation curves.
The connection between quantum inertia and holography is discussed in [10]
and [11].

Employing T and S dualities, we now consider seriously [6] the inversion of
mass in the Hawking temperature

kTH =
hc3

16π2GM
. (39)

When TH is the CMB temperature TC , corresponding to a neutrino mass under
Wien’s law, the black hole mass M ∼ 1044kg is about the size of the largest
gravitationally bound system in our universe. Elsewhere we find a Hawking mass
M of 1052kg, the correct mass MU for the observed universe. CMB photons are
a kind of Hawking radiation for the matter in the universe.

Using only (37), we find a mass m = E/c2 for a CMB photon, m0 =
0.00117eV, which is precisely the ν rest mass [2]. The CMB is the observable
boundary to the universe, unifying the long range mediators: photons, neutri-
nos, and associated gravitons. Section 4.1 defines the associated supersymmetry
that turns Standard Model fermions into Standard Model bosons.

When z0 is the universal CMB redshift, the redshifted mass z0m0 = 1.29eV
is an effective non local (sterile) ν mass.

With an Unruh wavelength for TC , a CMB fermion has a characteristic
acceleration aC related to the Planck length L,

m =
L2βaC
G

. (40)

The minimal temperature at the maximum wavelength defines a minimal mass
of 10−54kg, or minimal energy of 10−37J.

Allowing TH in (39) to define a reference mass Mh from Wien’s law, for the
Riofrio Kepler law GMU = c3t0, we find a possible expression

c =
hβ

16π2MhRh
(41)

for the speed of light in terms of other fundamental constants. Observe that
c grows smaller as the universe expands, starting at a large value in the CMB
epoch. A cosmologically varying c in the Rh = ct0 picture (see also [47]) was
used by Riofrio in [20] to explain the horizon problem. Here however, quantum
inertia truncates the blowup at small Rh, leaving Fourier supersymmetry as
the solution to the horizon problem. The corresponding formula for Hubble’s
parameter is

H0 ≡
c

Rh
=

16π2c2Mh

hβ
. (42)

For large Rh, whatever the relation to c, we correct H0 by a λ dependent term,
to obtain the approximation

H = H0(1− λ

4Rh
). (43)
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This allows for corrections to the generic H0, which are observed in the dis-
crepancy between low z and Planck values for H. When λ is appreciable, on
large scales, H is reduced. Future astrophysical measurements of H should be
compared to masses in the neutrino gravity spectrum.

3.3 Quantitative results

Table 1 lists both ±π/12 neutrino masses, assuming that the δν phase does in
fact correspond to ν. There are no right handed neutrinos. The CMB tem-
perature TC = 2.725K was found to coincide with the central 0.00117eV in
2010, when the MINOS experiment first observed in [48] a difference in ν and ν
masses through neutrino oscillations. Resulting initial developments in the new
cosmology soon appeared [2][3][4].

Table 1: neutrino masses (eV)
ν 0.0507 0.0089 0.0004
ν 0.0582 0.00117 0.0006

Anomalies in oscillation experiments remain to be clarified, but a local 3 + s
scenario with steriles now seems highly unlikely (see [49]) because active sterile
mixing is tightly constrained. With non local neutrinos, there is the option of
ignoring the old LSND result while still taking seriously the reactor ν anomaly
and MiniBooNe low energy excess.

The Koide phases are closely related to the Euler angles of the PMNS [50][51]
and CKM [52][53] mixing matrices for leptons and quarks. Table 2 shows the
best bet to date for mixing angles, all close to the experimental values. Let us
start with the 4/27. Triality acts on the X, Y and Z octonions of (14) with a
phase θ in such a way that the complex circulant a X X

X a X
X X a

 (44)

satisfies θX = θ2X. For the charged lepton phase X = 2/9, the solution is
θ = 4/27. The phase π/6− 4/27 also answers a second question: which δ solves

Table 2: mixing matrix phases (◦)
2(π/12− 4/27) 1/24− 1/27 1/24

CKM 13.02 0.26 2.40

π/4− 5/27 4/27 π/4− 2/27
PMNS 34.4 8.5 40.8

g2 = 4∆ω∆ω when g2(q) depends on the cubic q parameter for m1m2m3 = g3 =
0.
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A unitary mixing matrix U of the form (59) has a maximal CP phase of
∼ 3π/2, in rough agreement with current experimental hints [49].

To summarise, the basic physical consequences of non local quantum gravity
include

• distinct ν and ν masses in the Brannen-Koide scheme

• a resolution of the horizon problem

• no dark matter: a minimal acceleration accounts for MOND

• no dark energy:
√

Λ ∼ 1060 is the ratio MU/mP of maximal and minimal
spacetime masses

• a calculation of MU ∼ 1052kg

• more astrophysical structure at high z due to an increase in t0

• an effective sterile ν mass of 1.29eV = m0z0

• a formula for c in terms of other constants, (41)

• a clarification of the variability in Hubble constant H

• a possible e+ excess at high energy due to non local vacuum creation

3.4 The mass gap and other questions

When observation is bounded by the limits of measurement, the singularities of
classical cosmology are removed. Cosmic censorship follows from T duality and
quantum inertia. In fact, one can view quantum inertia as a result of a cosmic
censorship principle.

The natural neutrino mass gap, and related cosmological masses, introduces
a quantisation of mass energy to (supersymmetric) Yang-Mills theories. Given
the importance of Fourier supersymmetry in this construction, it seems clear
that a rigorous definition of a 3+1D field theory only exists when the mass gap is
in place. This is one of the famous Millenium Problems, asking for an axiomatic
scheme for Yang-Mills theory, which we presume to be fully categorical, like the
polytopes of scattering theory [15].

Quantum gravity is expected to illuminate a number of Millenium Problems,
a second one of note being the Riemann hypothesis. The zeta function ζ(s)
is often interpreted as a partition function summing over a canonical energy
spectrum. Looking at the terms of ζ2(s), which are written as divisor functions,
we see that the underlying q-numbers all lie on the unit circle precisely when the
real part of s equals 1/2. Such q-numbers are a part of the structure of modular
ribbon categories, which we use here to analyse Standard Model states. They
occur also for rational conformal field theories, which we imagine being related
to the true fractal dimensions of ribbons in the quantum chaos of the spacetime
foam.
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The geometry of cubics underlies modern methods in classical cryptography,
while protocols for quantum computation are most easily described using di-
agram techniques. Entanglement entropy in tensor networks is used to study
general relativity. Surely the dualities and trialities of quantum gravity will
extend such successes to new heights.

4 Modular tensor categories

4.1 Chiral ribbon states and supersymmetry

This section should really have pictures, but for now we stick to the associated
matrices. Supersymmetry in non local quantum gravity transforms Standard
Model fermions into Standard Model bosons, without exception. A fully chiral
spectrum uses braid crossings, but every state is distinguished on projection to
the underlying permutation groups. In other words, there is a 3 × 3 matrix
representation for each state.

In the scheme of [13] and [14], there is only one generation and the neutrinos
are massless, so that ν and ν annihilate to a photon identity

γ =

1 0 0
0 1 0
0 0 1

 . (45)

It is important to understand that we look at electroweak symmetry breaking
in reverse. Physical states are natural in the ribbon scheme, which creates an
emergent spacetime. The neutrinos are the cyclic permutations

ν =

0 1 0
0 0 1
1 0 0

 , ν =

0 0 1
1 0 0
0 1 0

 . (46)

Electromagnetic charge is a set of twists in the three ribbon strands, where dis-
tinct twists may be assigned to each strand. We can represent this by replacing
the ones in the matrices by one of three phases: 1 for neutral, ω for +1/3, or ω
for −1/3. Then the charged leptons are

e−L = ω

0 1 0
0 0 1
1 0 0

 , e+R = ω

0 0 1
1 0 0
0 1 0

 , (47)

which indeed compose to the identity. Similarly,

e+L = ω

0 1 0
0 0 1
1 0 0

 , e−R = ω

0 0 1
1 0 0
0 1 0

 . (48)
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For the quarks, just put the charges onto individual strands, as in the colored
matrices

uL(1) =

0 ω 0
0 0 ω
1 0 0

 , uL(2) =

0 1 0
0 0 ω
ω 0 0

 , uL(3) =

0 ω 0
0 0 1
ω 0 0

 (49)

for left handed up quarks. We leave it to you to write out the remaining fermion
states. Observe that leptons are circulants while quarks are not. TheW± bosons
are simply

W− = ω

1 0 0
0 1 0
0 0 1

 , W+ = ω

1 0 0
0 1 0
0 0 1

 . (50)

The only tricky particle is the Z boson. There are six remaining possible neutral
boson matrices, namely1 0 0

0 ω 0
0 0 ω

 ,

ω 0 0
0 1 0
0 0 ω

 ,

ω 0 0
0 ω 0
0 0 1

 (51)

and their three conjugates. In order to be color neutral, the low energy Z boson
must be a mixture of these states.

Although simple, this scheme permits a natural supersymmetry, including
also a triality.[14] The twisted Fourier transform F is defined on e−L by

F(e−L ) ≡ 1

3

1 0 0
0 ω 0
0 0 ω

1 1 1
1 ω ω
1 ω ω

0 ω 0
0 0 ω
ω 0 0

1 1 1
1 ω ω
1 ω ω

 = W−. (52)

For right handed states we replace the mixed diagonal by its complex conjugate,

F(e−R) ≡ 1

3

1 0 0
0 ω 0
0 0 ω

1 1 1
1 ω ω
1 ω ω

0 0 ω
ω 0 0
0 ω 0

1 1 1
1 ω ω
1 ω ω

 = W−. (53)

In this way, circulant leptons map to electroweak bosons

e± 7→W±, ν, ν 7→ γ. (54)

Naming the diagonals in F, respectively, ZL and ZR, there are many relations
like

F(e−) = W− = F(ZL)F(ZR) (55)

that construct all particles out of pieces of the Z boson.
Since quarks are not circulant, the corresponding bosons are mixed phase

non diagonals, presumably associated to the confinement of color. If we had
chosen a different Fourier matrix F , another Z boson diagonal would be needed
in F.
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The braid group B3 extends the underlying permutations of S3, and this im-
portant group, which covers the modular group, turns up in the construction of
gates that are universal for quantum computation [54]. In particular, Fibonacci
anyons give a natural model for braided particles. It is also well known that
the string net condensation of [24], using modular tensor categories, can recover
QED and QCD. Here SU(2) emerges from the B3 braids in a 2× 2 representa-
tion, ignoring ribbon twists, while U(1) emerges from the B2 information. This
is spacetime. Wen et al have described the Anderson-Higgs mechanism from
this point of view.

For completeness, we now include a summary of salient algebraic facts about
Hopf algebras and modular forms.

4.2 Quantum Hopf algebras

Let G be a finite group, such as the permutation group S3. Its group algebra
A(G) [55][56] over a field F is the set of all sums

∑
g∈G cgg over the group, where

cg ∈ F. For example, the set of 3 × 3 complex circulant matrices is the group
algebra for S3 over C, with a basis of permutations.

The product in A(G) is the usual product of polynomials, where we are
careful not to mix up the ordering since G may be noncommutative. It is clear
that 1 ∈ G acts as a unit in A(G). There is also a coalgebra structure on the
group algebra, given by a canonical coproduct ∆, which on group elements is
given by

∆(g) = g ⊗ g. (56)

This coproduct is obviously cocommutative. The counit map g 7→ 1 sends
g ∈ G to 1 ∈ F. Finally, A(G) is actually a Hopf algebra, with an antipode map
S : A → A that uses the group inverse,

S(g) ≡ g−1. (57)

There is one natural Hopf axiom relating all these maps, but we won’t worry
about it here.

Take A(S3). An element has the form

C =

a+ x b+ y c+ z
c+ y a+ z b+ x
b+ z c+ x a+ y

 (58)

for six complex variables. A unitary matrix in the algebra must look like

U =

r1 i 0
i r1 0
0 0 r + i

r2 + i 0 0
0 r2 i
0 i r2

r3 0 i
0 r3 + i 0
i 0 r3

 (59)

for three real variables ri, up to normalisation. Each factor defines an Euler
angle for a 3× 3 mixing matrix. The variables in (58) are recovered under the
change of variables

−ia = r1r2, −ib = r2r3, −ic = r1r3 − 1, (60)
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x = −r1 − r3, y = −r2, z = r1r2r3.

A quantum Hopf algebra for A(G), which is neither commutative nor cocom-
mutative, is built from two factors: the cocommutative group algebra and the
Hopf algebra F(G) of F valued functions on G. The latter is commutative for
pointwise multiplication of function values, but not necessarily cocommutative,
since

∆f(g, h) ≡ f(gh) (61)

depends on the order of g and h. However, for the abelian group C3 ⊂ S3, ev-
erything is cocommutative. By construction, these Hopf algebras are associative
and coassociative, but in general we are interested in breaking the associativity
in three dimensional categories.

The quantum double algebra A(G) ⊗ F(G) is defined as follows. Let δg,k
denote the delta function on G, and fg the function that is 1 on g and otherwise
zero. The product is

(fg ⊗ u)(fh ⊗ v) = δgu,uhfg ⊗ uv, (62)

the coproduct

∆(fg ⊗ u) =
∑
k∈G

(fk ⊗ u)⊗ (fk−1g ⊗ u), (63)

and the counit map is given by fg 7→ δg,1. This double algebra comes with a
canonical braiding R-matrix,

R ≡
∑
g∈G

(fg ⊗ 1)⊗ (1⊗ g). (64)

Most importantly, the representation category for the double is a modular
braided tensor category of ribbon diagrams.

4.3 The modular group and Leech lattice

The modular group Γ = PSL(2,Z) is the set of 2× 2 integer matrices(
a b
c d

)
(65)

of determinant 1, up to a factor of ±1. Γ acts on a complex number z in the
upper half plane, as

z 7→ gz ≡ az + b

cz + d
. (66)

A modular form is a function f(z) that is almost invariant under the action
of Γ. We consider the general case of automorphic modular forms, which may
acquire a phase factor under the action. For example, the Dedekind η function

η(z) = eπi/12
∞∏
n=1

(1− e2πizn) (67)
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is automorphic of weight 1/2, since

η(gz) = φ(a, b, c, d)(cz + d)1/2η(z), (68)

where φ(a, b, c, d) is a known set of phases. The theta function

θ(z) =
∑
n∈Z

e2πin
2z (69)

is closely related to η(z) by

θ(2z − 1) =
η2(z)

η(2z)
. (70)

On the two generators of Γ, θ picks up the phases

θ

(
1 1
0 1

)
= eπi/12, θ

(
0 1
−1 0

)
= eπi/4. (71)

The modular function, or j invariant, is the essentially unique modular form
of weight zero for Γ [57][58]. It is given by the ratio of two weight 12 forms,
starting with the denominator

∆(z) = η24(z) = q

∞∏
n=1

(1− e2πizn)24. (72)

Forms are most easily expressed in terms of the variable q = exp(2πiz), so that
large powers of q vanish when z → i∞. Both numerator and denominator are
integral polynomials in the Eisenstein forms Gn(z) = 2ζ(n)En(z), where

E4 =
1

240
+ q + 9q2 + 28q3 + · · · (73)

E6 = − 1

504
+ q + 33q3 + 1057q4 + · · ·

have integer coefficients coming from, respectively, the divisor functions σ3(n)
and σ5(n). The canonical Weierstrass form for a cubic is

y2 = 4x3 − 60G4x− 140G6 = 4(x− r1)(x− r2)(x− r3). (74)

Then

j(q) ≡ 1728
(60G4)3

(60G3
4 − 27 · 140G2

6)
(75)

or more conveniently,

j(λ) = 1728(
4

27
)
(λ2 − λ+ 1)3

λ2(λ− 1)2
(76)
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where λ = (r3 − r2)/(r3 − r1) is a representative for z in the equivalence class
of cubics with the same value of j, such that (r1, r2, r3,∞) 7→ (∞, 0, λ, 1). The
q series for j

j(q) = q−1 + 744 + 196884q + 21493760q2 + · · · (77)

points to monstrous moonshine [59][60][61]. This is the observation that the in-
teger coefficents of j(q) come from an infinite dimensional module for the large,
finite group known as the monster. Moonshine mathematics is the construction
of such modules from an algebra associated to stringy tree diagrams, which are
copies of CP1 (the genus zero case) with marked points. This is a complexifi-
cation of the usual particle trees, built out of one dimensional edges. But we
would like instead to construct j(q) from quantum gravity, hoping eventually to
see how the classification of simple finite groups (or rather, their Hopf algebras)
dictates the quantisation of mass energy.

To this end, the 24 dimensional Leech lattice is neatly defined using octonion
triplets [62][63]. We start with the 8 dimensional root lattice L8 of the Lie group
E8, generated by a set of 240 unit octonions. These are the 112 octonions of
the form ±ei ± ej for any distinct units ei and ej of O, and the 128 octonions
of the form (±1± e1 ± · · · ± e7)/2 for an odd number of minus signs. E4 is the
lattice function for L8, with the q series counting the vectors of length 2n. Let
s = (−1 + e1 + e2 + · · · + e7)/2. The Leech lattice [62] is the set of all triplets
(X,Y, Z) ∈ O3 such that

1. X, Y , Z ∈ L8

2. X + Y , Y + Z, Z +X ∈ L8s

3. X + Y + Z ∈ L8s.

5 Future directions

Topological approaches to quantum gravity have long considered knot invariants
in 2 + 1D theories [64]. In 2 + 1D, mass often acts like a conical singularity,
reducing the 2π shift around a loop. The Chern-Simons field theory of [65]
recovers the Jones link polynomials, and this theory was used in 2007 to define
the Bekenstein-Hawking black hole entropy in terms of the j invariant [66].

The full emergence of general relativity is expected to come from entangle-
ment in tensor networks, which we would like to improve with categorical, non
local methods. Also relevant is the study of smooth structures for 4-manifolds
and the use of topology change in physics [67].

But perhaps the most startling aspect of non local cosmology is its potential
for material and condensed matter physics, once the non local nature of the
vacuum becomes clear. Superconductors, for instance, have long lacked a good
mathematical model, and display notable anomalies.
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6 Conclusions

From the single hypothesis of maximally non local mass generation, many ob-
servational dilemmas are effortlessly solved. There is no dark matter, no dark
energy and no unobservable early universe. Moreover, immediate predictions
of the theory, such as the mass MU of the universe or accurate values for the
neutrino masses, were later shown to be in good agreement with experiment.
In the search for a rigorous theory of quantum gravity using twistor methods,
nothing rivals the economy of these results.

For many years, the correspondence between ν masses and the CMB temper-
ature was widely considered lunacy, but the time for dual quantum inertia has
come. Our intuition puts the Anderson-Higgs mechanism back into the realm
of condensed matter physics, where it always belonged.

In the future, quantum inertia is expected to play an important role out-
side of particle physics, particularly in the design of new materials and the
development of quantum computers, where we crave a deeper understanding of
thermodynamic issues and protocol semantics. Our ribbon scheme already fits
neatly into the categorical workings of quantum information theory.

On the particle physics side, it is now well known that scattering amplitudes
in the Standard Model are computed using categorical diagram techniques. Mo-
tivic mathematics aims to compute every possible Feynman amplitude in terms
of cohomological combinatorics, based on Hopf algebras. But to date, such work
has neglected the problem of mass generation. Insights from non local quantum
gravity will certainly aid this program, bringing together categorical diagrams
and number theory.
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