What is Fundamental ? NOTHING is Fundamental !!!

Frank Dodd (Tony) Smith, Jr. - 2017

Fundamental = Starting Point of a Process Describing Realistic Physics including Lagrangian and Algebraic Quantum Field Theory (AQFT). The Starting Point of Our Universe was a Fundamental Spinor Void Void = NOTHING so NOTHING is Fundamental

This paper explores the Process,
which allows calculation of Standard Model Particle Masses and Force Strengths.

Page 2 is a Graphic Overview.

Pages 3-13 What is Fundamental? NOTHING is Fundamental !!!

Pages 14-117 are my 2018-2019 Calendar with Red Book appendix.

Pages 118-121 are about Leonardo DaVinci's Salvator Mundi and E8.
Void $->\mathrm{Cl}($ Void $)->\mathrm{Cl}(0)->\mathrm{Cl}(1)->\mathrm{Cl}(2)->\mathrm{Cl}(4)->\mathrm{Cl}(16)$

What is Fundamental ? NOTHING

Frank Dodd (Tony) Smith, Jr. - 2017
Fundamental = Starting Point of a Process Describing Realistic Physics including Lagrangian and Algebraic Quantum Field Theory (AQFT). This paper explores the Process through detailed worked examples.
(for further details and calculations see Smith references)
The Starting Point of Our Universe was a Fundamental Spinor Void
Void = NOTHING so NOTHING is Fundamental
Fundamental Spinor Void
based on 0-dim Real Clifford Algebra $\mathbf{C l}($ Void $)$
from which emerged by Finkelstein's process of Iterating Clifford Algebra Formation
(Finkelstein, Int. J. Theor. Phys. 201756 : 2-39)

$$
\mathrm{Cl}(0)=2^{\wedge} 0=1-\mathrm{dim}
$$

$$
\mathrm{Cl}(1)=2^{\wedge} 1=2-\mathrm{dim}
$$

$\mathrm{Cl}(2)=2^{\wedge} 2=4$-dim with $2^{\wedge} 1=1+1$ half-spinor fermions/antifermions

$\mathrm{Cl}(4)=2^{\wedge} 4=16$-dim with $2^{\wedge} 2=2+2$ half-spinor fermions/antifermions

$\mathrm{Cl}(16)=2^{\wedge} 16=65,536$-dim with $2^{\wedge} 8=128+128$ half-spinor fermions/antifermions
128-dim CI(16) Half-Spinors $=\mathbf{2}$ copies of Geoffrey Dixon's 64-dim RxCxHxO
where $\mathrm{R}=$ Real, $\mathrm{C}=$ Complex, $\mathrm{H}=$ Quaternion, $\mathrm{O}=$ Octonion Division Algebras
(Dixon, Division Algebras ($\mathrm{O}, \mathrm{H}, \mathrm{C}$, and R) and Windmill Tilting)
248-dim E8 = 128-dim Cl(16) Half-Spinors $+\mathbf{1 2 0 - d i m ~ C l}(16)$ BiVectors
By 8 -Periodicity of Real Clifford Algebras
$\mathrm{Cl}(8) \times \ldots(\mathrm{N}$ times tensor product $) \ldots \times \mathrm{Cl}(8)=\mathrm{Cl}(8 \mathrm{~N})$
$\mathrm{Cl}(16)$ can be factored into the tensor product $\mathrm{Cl}(8) \times \mathrm{Cl}(8)$
Each of the $\mathrm{Cl}(8)=2^{\wedge} 8=256-\mathrm{dim}$ with $2^{\wedge} 4=8+8 \mathrm{Cl}(8)$ half-spinor fermions/antifermions

By Triality half-spinors (8 fermions and 8 antifermions) are isomorphic to each other and to 8 vectors

By 8-Periodicity $\mathrm{Cl}(8)$ and $\mathrm{Cl}(16)$ have basic structure underlying all Real Clifford Algebras.

The Iterated Clifford Algebra Creation Sequence begins with

 a Compact Quantum Fluctuation in a Parent Universe (Real Form E8(-248)) that Unfolds into an Octonionic Inflation of Our Universe (Real Form E8(8))(Smith, viXra 1709.0265)
The Creation Sequence can also be seen in terms of Spinor/Clifford Algebra Doubling
Cl(0,0) -> Cl(0,2) -> Cl(0,4) -> Cl(0,6) -> Cl(0,8) ->
that goes to $\mathrm{Cl}(0,8)$ which has Vector-Half-Spinor Triality and by 8 -Periodicity is the Basic Building Block of Real Clifford Algebras. The Creation Sequence continues by Tensor Product

$$
->\mathrm{Cl}(0,8) \times \mathrm{Cl}(0,8)=\mathrm{Cl}(0,16)->\mathrm{Cl}(0,16) \times \mathrm{Cl}(0,8)=\mathrm{Cl}(0,24)->
$$

$\mathrm{Cl}(0,16)$ contains the Maximal Exceptional E8 Lie Algebra

$\mathrm{Cl}(0,24)$ contains the Vector Space of the 24 -dim Leech Lattice $/ 24$ that is composed of 3 copies of E8 Lattices (2 being Integral Domains and 1 not Algebraically closed)
The Creation Sequence continues by constructing the Conformal Structure of 2×2 matrices with entries in $\mathrm{Cl}(0,24)=\mathrm{M}(2, \mathrm{Cl}(0,24))$
(Porteous, Clifford Algebras and the Classical Groups and Lounesto and Porteous, Lectures on Clifford (Geometric) Algebras and Applications)
-> M(2,Cl(0,24)) = CI(1,25) ->

Since all the matrix entries are $\mathrm{Cl}(0,24)=$ tensor product of 3 copies of $\mathrm{Cl}(0,8)$ 8 -Periodicity allows formation of the tensor products of copies of $\mathrm{Cl}(1,25)$
$->$ Completion of Union of All Tensor Products of $\mathrm{Cl}(1,25)=$ hyperfinite AQFT
The hyperfinite AQFT has Real / Octonionic structure inherited from $\mathrm{Cl}(0,8)$ and
it also has Quaternionic structure due to
$\mathrm{Cl}(1,25)=\mathrm{Cl}(1,9) \times \mathrm{Cl}(0,8) \times \mathrm{Cl}(0,8)$ and $\mathrm{Cl}(1,9)=\mathrm{Cl}(1,5) \times \mathrm{Cl}(0,4)=\mathrm{Cl}(2,4) \times \mathrm{Cl}(0,4)$ where
the vector space of $\mathrm{Cl}(2,4)$ is 6 -dim Conformal Spacetime which contains 4 -dim Minkowski Spacetime M4 of $\mathrm{Cl}(1,3)$
and
the vector space of $\mathrm{Cl}(0,4)$ corresponds to $\mathrm{CP} 2=\mathrm{SU}(3) / \mathrm{SU}(2) \times \mathrm{X}(1)$
so that before breaking Octonionic symmetry non-unitarity of Octonion Quantum
Processes allows particle creation during the Inflation Era
(Adler, Quaternionic Quantum Mechanics and Quantum Fields, pages 50-52, 561)
and after breaking non-unitary Octonionic 8-dim Spacetime
to unitary Quaternionic Spacetime, thus ending the Inflation Era, the Spacetime of the hyperfinite AQFT is (4+4)-dim M4 x CP2 Kaluza-Klein
(Real Form E8(-24))

The E8 contained in $\mathrm{Cl}(0,16)$ is not a conventional Gauge Group but
is a Recipe for a Realistic Physics Lagrangian:

Fermion Terms:

E8 / D8 = 128-dim = 8-dim Spacetime Components of 8 Fermion Particles $+$ 8-dim Spacetime Components of 8 Fermion AntiParticles

Spacetime Base Manifold Terms:

D8 / D4 x D4 = 64-dim = 8-dim Spacetime Position x 8-dim Spacetime Momentum

Gauge Boson and Ghost Terms:

The two 28-dim D4 correspond to the M4 and CP2 of M4 x CP2 Kaluza-Klein
D4_M4 = 16-dim $U(2,2)$ containing $S U(2,2)=$ Spin $(2,4)$ Conformal Gravity and 12 Standard Model Ghosts

D4_CP2 = 8-dim SU(3) Color Force plus 4 Translation Gravity Ghosts and 12 Conformal Gravity Ghosts
Electroweak $S U(2) \times U(1)$ come from Little Group of $C P 2=S U(3) / S U(2) \times U(1)$
(Batakis, Class. Quantum Grav. 3 (1986) L99-L105)
This E8 Structure can be seen in terms of its 240 Root Vectors

each of which has a realistic Physics Interpretation:

$\mathrm{E}=$ electron, $\mathrm{UQr}=$ red up quark, $\mathrm{UQg}=$ green up quark, $\mathrm{UQb}=$ blue up quark
$\mathrm{Nu}=$ neutrino, $\mathrm{DQr}=$ red down quark, $\mathrm{DQg}=$ green down quark, $\mathrm{DQb}=$ blue down quark
$\mathrm{P}=$ positron, aUQar = anti-red up antiquark,
aUQag $=$ anti-green up antiquark, aUQab $=$ anti-blue up antiquark
$\mathrm{aNu}=$ antineutrino, $\mathrm{aDQar}=$ anti-red down antiquark,
$\mathrm{aDQag}=$ anti-green down antiquark, $\mathrm{aDQab}=$ anti-blue down antiquark
Each Lepton and Quark has 8 components with respect to $4+4$ dim Kaluza-Klein 6 orange $\operatorname{SU}(3)$ and 2 orange $\operatorname{SU}(2)$ represent Standard Model root vectors
$24-6-2=16$ orange represent $U(2,2)$ Conformal Gravity Ghosts 12 yellow $\operatorname{SU}(2,2)$ represent Conformal Gravity $\operatorname{SU}(2,2)$ root vectors 24-12 = 12 yellow represent Standard Model Ghosts
$32+32=64$ blue represent $4+4$ dim Kaluza-Klein M4 x CP2 Spacetime Base Manifold 32 for M4 position x 8 momentum and 32 for CP2 position x 8 momentum

Higgs and Second and Third Generation Fermions emerge from breaking Octonionic Symmetry of the Inflation Era to Quaternionic Symmetry of Present Era.
(Mayer, Acta Physica Austriaca, Suppl. XXIII (1981))

The Higgs is a Condensate of Tquark and Tantiquark resulting in
3 mass states for the Higgs and the Tquark
(Smith, viXra 1701.0496)
As to the unconventional mass states other than 125 GeV Higgs and 174 GeV Tquark: ATLAS, for the Full $201636.1 \mathrm{fb}-1$ of 2016 data in the Higgs $->Z^{*}$-> 41 channel, on 5 July 2017 released ATLAS-CONF-2017-058 saying:
"... A search for heavy resonances ...[in the Higgs \rightarrow ZZ $^{*}->41$ channel]... uses proton-proton collision data at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of $36.1 \mathrm{fb}-1$ collected with the ATLAS detector during 2015 and 2016 at the Large Hadron Collider ...
excess ...[is]... observed in the data for m4I around 240 ... GeV ... with a local significance of 3.6 sigma ...".
It will be interesting to see whether the 2017 ATLAS data of over 45 fb-1 will confirm or refute the excess at 240 GeV as a Higgs mass state.

Here is a chart showing the 3 Mass States for Higgs and Tquark (viXra 1701.0496): green dot in the Stable region (green) has 125 GeV Higgs and 130 GeV Tquark cyan dot on the Non-perturbativity Boundary has 190 GeV Higgs and 174 GeV Tquark magenta dot at the Critical Point has 250 GeV Higgs and 220 GeV Tquark

CMS, for their Full 35.9 fb-1 of 2016 data in the Higgs -> ZZ** -> 41 channel, in CMS-PAS-HIG-16-041 has bins of 4 GeV width and shows all 3 Higgs mass states:
low-mass Higgs state (green) with mass 125 GeV
middle-mass Higgs state (cyan) with mass 201 GeV (close to 190 GeV) high-mass Higgs state (magenta) with mass 261 GeV (close to 240 and 250 GeV)

Semileptonic histograms of CDF and D0 show all 3 Truth Quark Mass States

low-mass Tquark state (green) with mass 130 GeV middle-mass Tquark state (cyan) with mass 174 GeV
high-mass Tquark state (magenta) with mass 220 GeV

The Completion of Union of All Tensor Products of $\mathbf{C l}(\mathbf{1 , 2 5})=$ hyperfinite AQFT
(Smith, viXra 1701.0495)
containing the Realistic Physics of the Lagrangian. It also contains, due to its $\mathrm{Cl}(1,25)$ components, the structure of $\mathbf{2 6 - d i m}$ String Theory in which Strings are seen as Particle World-Lines, the massless spin 2 state is the carrier of the Bohm Quantum Potential, and the $\mathbf{S O}(24)$ little group is related to the Monster automorphism group that is the symmetry of each cell of Planck-scale local lattice structure.
(Green, Schwartz, and Witten, "Superstring Theory" vol. 1)
10-dim String Spacetime is Kaluza-Klein 6-dim Conformal x 4-dim CP2 giving M4 x CP2
8-dim K-K Classical Lagrangian Spacetime as an NJL condensate of Dixon's
64-dim Particle spinor T = RxCxHxO and the 64-dim AntiParticle spinor Tbar
Each cell of E8 Classical Lagrangian Spacetime corresponds to 65,536-dim $\mathrm{Cl}(16)$
which contains 248-dim E8 = 120-dim D8 bivectors +128-dim D8 half-spinors
Human Brain Microtubules 40 microns long have 65,536 Tubulin Dimers

(image adapted from 12biophys.blogspot.com Lecture 11)
and so can have Bohm Quantum Resonance with $\mathrm{Cl}(16)$ Spacetime cells so that the State of Consciousness of a Human is in exact resonant correspondence with a subset of the cells of E8 Classical Lagrangian Spacetime Therefore E8 Classical Lagrangian Spacetime NJL Condensate is effectively the Spirit World in which the Human States of Consciousness = Souls exist.

What happens to a Fundamental Fermion Particle whose World-Line string intersects a Single Cell ?
The Fundamental Fermion Particle does not remain a single Planck-scale entity. Tachyons create clouds of particles/antiparticles. (Schroer, hep-th/9908021)
The Fundamental Fermion Cloud looks like a Kerr-Newman Black Hole.
(Arcos and Pereira, hep-th/0210103)
What is the size of the Fundamental Fermion Kerr-Newman Cloud ?
The Cloud is one Planck-scale Fundamental Fermion Valence Particle plus an effectively neutral cloud of particle/antiparticle pairs. The symmetry of the cloud is governed by the 24-dimensional Leech lattice by which the Single Cell was formed. According to the ATLAS at brauer.maths.qmul.ac.uk/Atlas/v3/spor/M/ the maximal subgroup of the Monster M involving Co1 is $2^{\wedge}(1+24)$.Co1 of order $139511839126336328171520000=1.4 \times 10^{\wedge} 26$ As 2.Co1 is the Automorphism group of the Leech Lattice modulo to which the Single Cell was formed, and as the 26 -dim String Theory Leech Lattice is a superposition of 8 Leech Lattices, $8 \times 2^{\wedge}(1+24)$.Co1 describes the structure of the Cloud. Therefore, the volume of the Cloud should be on the order of $10^{\wedge} 27 \times$ Planck scale containing $10^{\wedge} 27$ particle/antiparticle pairs with size $10^{\wedge}(27 / 3) \times 1.6 \times 10^{\wedge}(-33) \mathrm{cm}=10^{\wedge}(-24) \mathrm{cm}$.

Fundamental Fermion Clouds are Schwinger Sources.

Sources require Linear Operators
"... represented by a definite integral [of a]... kernel ... function ...".
(Fock, "Fundamental of Quantum Mechanics" (1931))
Kernel Functions for Complex Classical Domains were described by Hua.
(Hua, "Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains" (1958))
Schwinger in 1951 "... introduced a description in terms of Green's functions, what Feynman had called propagators ... The Green's functions are vacuum expectation values of time-ordered Heisenberg operators, and the field theory can be defined nonperturbatively in terms of these functions ...[which]... gave deep structural insights into QFTs; in particular ... the structure of the Green's functions when their variables are analytically continued to complex values ...".
(Schweber, PNAS 102, 7783-7788)
The Classical Domains (complete simply connected Riemannian symmetric spaces) representing 4-dim Spacetime with Quaternionic Structure are:
$\mathrm{S} 1 \times \mathrm{S} 1 \times \mathrm{S} 1 \times \mathrm{S} 1=4$ copies of $\mathrm{U}(1)$
S2 x S2 $=2$ copies of $\mathrm{SU}(2)$
CP2 $=\mathrm{SU}(3) / \mathrm{SU}(2) \mathrm{xU}(1)$
S4 = Spin(5) / Spin(4) = Euclidean version of Spin(2,3) / Spin(1,3)
(Wolf, J. Math. Mech 14 (1965) 1033-1047)
Wyler showed how to use Green's Functions = Kernel Functions of Classical Domain structures characterizing Sources = Leptons, Quarks, and Gauge Bosons, to calculate Particle Masses and Force Strengths
(Wyler, 1971 - C. R. Acad. Sc. Paris, t. 271, 186-188)
"... We introduce a quantitative description of the particle source in terms of a source function ... we do not have to claim that we can make the source arbitrarily small ... the experimeter... must detect the particles ...[by]... collision that annihilates the particle ... the source ... can be ... an abstraction of an annilhilation collision, with the source acting negatively, as a sink ... The basic things are ... the source functions ... describing the intermediate propagation of the particle ..."
(Schwinger, 1969 - see physics/0610054)

Schwinger Sources can be described by continuous manifold structures of Bounded Complex Domains and their Shilov Boundaries and

Wyler's techniques allow calculation of Particle Masses and Force Strengths
(Smith, viXra 1602.0319)

Results of such calculations are shown in the Technical Endnotes:

Technical Endnotes:

Results of Calculations:

Quark masses are constituent masses. Most of the calculations are tree-level. Fermions are Schwinger Sources with geometry of Complex Bounded Domains and Kerr-Newman Black Hole structure size about $10^{\wedge}(-24) \mathrm{cm}$.
Since ratios are calculated, values for one particle mass and one force strength are assumed.

Particle/Force
e-neutrino
mu-neutrino
tau-neutrino
electron
down quark
up quark
muon
strange quark
charm quark
tauon
beauty quark
truth quark (low state)

W+
W-
W0

Mplanck 1.217x10^19 GeV
Higgs VEV (assumed) 252.5 GeV

Higher-Order

0 for nu_1
$9 \times 10^{\wedge}(-3) \mathrm{eV}$ for $n u _2$
$5.4 \times 10^{\wedge}(-2)$ eV for nu_3
charged pion $=139 \mathrm{MeV}$
proton $=938.25 \mathrm{MeV}$ neutron - proton $=1.1 \mathrm{MeV}$ 106.2 MeV
(middle state) 174 GeV (high state) 218 GeV
80.326 GeV
80.326 GeV 98.379 GeV

$$
\mathrm{zO}=91.862 \mathrm{GeV}
$$

(middle state) 182 GeV (high state) 239 GeV

Gravity Gg (assumed) 1
(Gg) (Mproton^2 / Mplanck^2) $5 \times 10^{\wedge}(-39)$

EM fine structure $1 / 137.03608$
Weak Gw 0.2535
Gw(Mproton^2 / (Mw+^2 + Mw-^2 + Mz0^2)) $1.05 \times 10^{\wedge}(-5)$
Color Force at 0.245 GeV 0.6286

Kobayashi-Maskawa parameters for $W+$ and W - processes are:

d	s	b
u 0.975	0.222	$0.00249-0.00388 i$
c $-0.222-0.000161 i$	$0.974-0.0000365 i$	0.0423
t $0.00698-0.00378 i$	$-0.0418-0.00086 i$	0.999
The phase angle di3 is taken to be 1 radian.		

References:

Adler, Quaternionic Quantum Mechanics and Quantum Fields (1995), pages 50-52, 561
Arcos and Pereira, hep-th/0210103
Batakis, Class. Quantum Grav. 3 (1986) L99-L105
Dixon, Division Algebras (O, H, C, and R) and Windmill Tilting
Finkelstein, Int. J. Theor. Phys. 201756 : 2-39
Fock, Fundamental of Quantum Mechanics
Green, Schwartz, and Witten, Superstring Theory vol. 1
Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains

Lounesto and Porteous, Lectures on Clifford (Geometric) Algebras and Applications
Mayer, Acta Physica Austriaca, SuppI. XXIII (1981)
Porteous, Clifford Algebras and the Classical Groups
Schroer, hep-th/9908021
Schweber, PNAS 102, 7783-7788
Schwinger, 1969-see physics/0610054
Smith, viXra 1602.0319
Smith, viXra 1701.0495
Smith, viXra 1701.0496
Smith, viXra 1709.0265
Wolf, J. Math. Mech 14 (1965) 1033-1047
Wyler, 1971 - C. R. Acad. Sc. Paris, t. 271, 186-188

January 2018

Sunday	Monday	Tuessay	Wednesday	Thursday	Friday	Saturday
		2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

February 2018

${ }_{\text {Sunday }}$	Monday	${ }_{\text {Tuesday }}$	Wedessay	${ }^{\text {Thurstay }}$	${ }^{\text {Friday }}$	$3^{\text {Saturay }}$
				1		
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28			

Indra's Net of Schwinger Sources - Bohm Quantum Blockchain

The $\mathrm{Cl}(16)$-E8 AQFT inherits structure from the $\mathrm{C}(16)$-E8 Local Lagrangian

```
Standard Model Gauge Gravity + Fermion Particle-AntiParticle
``` 8-dim SpaceTime
the \(\mathrm{Cl}(16)\)-E8 model at the Planck Scale has spacetime condensing out of Clifford structures forming a Leech lattice underlying 26 -dim String Theory of Worid-Lines with \(8+8+8=24\)-dim of fermion particles and antiparticles and of spacetime.
Slices of 8 v SpaceTime are represented as D8 branes. Each D8 brane has Planck-Scale Lattice Structure superpositions of 8 types of E8 Lattice
denoted by 1E8, IE8. JE8. kE8. EE8. IE8. JE8. KE8
Stack D8 branes to get SpaceTime with Strings = World-Lines
Let Oct16 \(=\) discrete mutiplicative group \(\{+/-1 .+/-\mathrm{i} .+/-\mathrm{j} .+/\) -.\(+/-\mathrm{E} .+/-\mathrm{I} .+/-\mathrm{J} .+/\) K \(\}\). Orbifold by Oct16 the As, to get 8 Fermion Particle Types
Obifold by Oct16 the 8s- to get 8 Fermion AntiParticle Types
Gauge Bosons from \(1 \mathrm{E8}\) and EE8 parts of a D8 give U(2) Electroweak Force
Gauge Bosons from IE8. JE8. and KE8 parts of a D8 give SU(3) Color Force Gauge Bosons from \(1 E 8, \mathrm{iE8}, \mathrm{~J} E 8\), and \(\mathrm{k} E 8\) parts of a D 8 give \(U(2,2)\) Conformal Gravity
The \(8 \times 8\) matices for collective coordinates linking one D8 to the next D8 give Position x Momentum
The automorphism group of a single 26 -dim String Theory cell modulo the Leech lattice is the Monster Group of order about \(8 \times 10^{\wedge} 53\).
When a fermion particle/antiparticle appears Tachyons create a cloud of particles/antiparticles. The cloud is one Planck-scale Fundamental Fermion Valence Particle plus an effectively neutral cloud of particlelantiparticle pairs forming a Kerr-Newman black hole.
That cloud constitutes the Schwinger Source.
The Schwinger Sources are finite regions in a Complex Domain spacetime corresponding to Green's functions of particle creation / annihilation.
Its structure comes from the 24-dim Leech lattice part of the Monster Group which is \(2^{\wedge}(1+24)\) times the double cover of Co1, for a total order of about \(10^{\wedge} 26\).
(Since a Leech lattice is based on copies of an E8 lattice and since there are 7 distinct E8 integral domain lattices there are 7 (or 8 it you include a non-Integral domain E8 latice)mdistinct Leech lattices. The physical Leech lattice is a superposition of them, effectively acding a tactor of 8 to the order.)
The volume of the Kerr-Newman Cloud is on the order of \(10^{\wedge} 27 \times\) Planck scale,
\(=\) roughly \(10^{\wedge}(-24) \mathrm{cm}\).

March 2018

At the end of Non-Unitary Octonionic Inflation Our Universe had about (1/2) \(16^{\wedge} 64=(1 / 2)\left(2^{\wedge} 4\right)^{\wedge} 64=2^{\wedge} 255=6 \times 10^{\wedge} 76\) Fermion Particles
the size of our Universe was then about \(10^{\wedge}(-24) \mathrm{cm}\) which is about the size of a Fermion Schwinger Source Kerr-Newman Cloud

The End of Inflation time was at about \(10^{\wedge}(-34)\) sec \(=2^{\wedge} 64\) Tplanck The Zizzi Inflation phase of our universe ends with decoherence "collapse" of the 2^64 Superposition Inflated Universe into Many Worlds of Quantum Theory,

Farthest Supemova
The ratio Dark Energy : Dark Matter : Ordinary Matter for our Universe at the present time is calculated to be:
\[
0.75: 0.21: 0.04
\]

Paola Zizzi in gr-qc/0007006:
"... The self-reduction of the superposed quantum state ... corresponds to a superposed state of \(\ldots\) [\(10^{\wedge} 19=2^{\wedge} 64\) qubits \(]\). ... also the number of superposed tubulins-qubits in our brain ... leading to a conscious event. ...".

April 2018
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sunday & \({ }^{\text {Monday }}\) & \({ }^{\text {Tuestay }}\) & Wennestay & \(5^{\text {Thursday }}\) & \(6{ }^{\text {Friday }}\) & \(7^{\text {Stutray }}\) \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & \\
\hline 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline 15 & 16 & 17 & 18 & 19 & 20 & 21 \\
\hline \[
22
\] & 23 & 24 & 25 & 26 & 27 & 28 \\
\hline 29 & 30 & & & & & \\
\hline
\end{tabular}

CONFORMAL KEPLER

May 2018
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline sunday & Monday & & nest & \({ }^{\text {Thurstay }}\) & Friday & \\
\hline & & & 2 & 3 & 4 & \\
\hline 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
\hline vomers any & & & & & & memmemmen \\
\hline 20 & 21 & 22 & 23 & 24 & 25 & 26 \\
\hline 27 & 28 & 29 & 30 & 31 & & \\
\hline
\end{tabular}

(1/Mforce \({ }^{\wedge}\)) (\(\mathrm{Vol}(\) MISforce \()\)) (\(\mathrm{Vol}(\) Qforce \() / \mathrm{Vol}(\text { Dforce })^{\wedge}(1 /\) mforce)) Mforce represents the effective mass;
mforce is 4 for Gravity and Color force, 2 for Weak force 1 for Electromagnetism
\(\mathrm{Vol}(\text { Dforce })^{\wedge}(1 /\) mforce \()\) is to reconcile
the dimensionality of the Internal Symmetry Space of the target vertex with the dimensionality of the link from the origin to the target vertex
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Force & M & \(\mathrm{Vbl}(\mathrm{M})\) & Group & SymSpace & D & \(\mathrm{Vbl}(\mathrm{D})\) & Q & \(\mathrm{VbI}(\mathrm{Q})\) \\
\hline gravity & \(\mathrm{S}^{\wedge} 4\) & 8pi^2/3 & Spin(5) & \(\operatorname{Spin}(7) / \operatorname{Spin}(5) x U(1)\) & IV5 & pi^5/2^4 5 ! & \(\mathrm{RP}^{\wedge} 1 \mathrm{xS}{ }^{\wedge} 4\) & 8pi^3/3 \\
\hline color & CP^2 & \(8 \mathrm{pi}{ }^{\wedge} 2 / 3\) & SU(3) & \(\mathrm{SU}(4) / \mathrm{SU}(3) \mathrm{xU}(1)\) & \(\mathrm{B}^{\wedge} 6\) (ball) & pi^3/6 & S^5 & \(4 \mathrm{pi}{ }^{\wedge} 3\) \\
\hline Weak & \(\mathrm{S}^{\wedge} 2 \mathrm{xS}{ }^{\wedge} 2\) & 2 x 4 pi & SU(2) & Spin(5) / SU(2)xU(1) & IV3 & pi \({ }^{\wedge} 3 / 24\) & RP^1xS^2 & \(4 \mathrm{pi}^{\wedge} 2\) \\
\hline e-mag & T^4 & 4x2pi & U(1) & - & - & - & - & - \\
\hline
\end{tabular}

June 2018

July 2018
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & \(2^{\text {Momata }}\) & 3 & 4 & 5 & \(5^{\text {Thustay }}\) & 6 & 7 \\
\hline 8 & 9 & 10 & 11 & & 12 & 13 & 14 \\
\hline 15 & 16 & 17 & 18 & & 19 & 20 & 21 \\
\hline 22 & 23 & 24 & 25 & & 26 & 27 & 28 \\
\hline 29 & 30 & 31 & & & & & \\
\hline
\end{tabular}

\section*{Schwinger Pd-D Zeolite Quantum Fusion Process:}

Sandia-UNM 147-atom Pd Clusters

Akito Takahashi

icosa

Klee Irwin Jitterbug Eject He and Reload D

\section*{Deuterium Gas \\ from Heated Zeolite and additional D2O}

D2O HEAVY WATER

August 2018
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Sunday & Monday & Tuestay & \(1^{\text {Wednestay }}\) & \(2^{\text {Thursday }}\) & \(3^{\text {Friday }}\) & \(4^{\text {Saurray }}\) \\
\hline 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
\hline 19 & 20 & 21 & 22 & 23 & 24 & 25 \\
\hline 26 & 27 & 28 & 29 & 30 & 31 & \\
\hline
\end{tabular}

Each OPC State, analagous to a Possble Conscious Thought, is represented by a Chain of Local E8-CI(16) Deutsch-type Multiverse Snapshots
Each of tho Looal E8 Cl(16) Muitivoroe Enapohoto is doocribod by an E8 Stato. Sinoo E8 hao 240 Foot Voctoro and
the 240 Root Vectors correspond to the 240 -Polytope (see "Geonetrie Fustalion' by sacoe and Mosscri (Cambridge 2006) where they say
The polytope 240 . [s] . not a regular polylupe ... but _ an ordesed structure on a hypersphere .. \(\$ 3\).. which is chiral ...
generared by adding two replicas of the (3,3.5). dispteed along a sciew avis of 53)
each Local EB-Cl(10) Mulfiverse Snapshot is represenied by a pair of \(\{33,5\} 600\)-cells.

Green, Sctwartz, and Wicten say is thei book "Supersting Theory' vol 1 (Cambridge 1936)

*...For the ..closed .. bosoric string ... The first excited level .. consis's of the ground stale ... tachyon ... and ... a scalar ... dilaton' ... and SO(24) ... ittle group of a ...[26-dim] . massless particle ... and ..
a massless spin two stace .
Closed string tachyons localizod at orbifolds of formions produce virtual doude of particles \(f\) antiparticies that diess termions
Dilatons are Goldstone bosons of spontaneously brcken scale ifivariance that (analagous to Higgs) go from medialing a long-range scalar gravity-type force to the nonlocality of the Bohm-Sarfatt Quantum Potential.
The SO(24) litle group is related to the Monster automorphism group that is the oymmetry of each oell of Planck ocale looal lattice otructure.
The massless spin two state is the carrier of the Bohm-Sarfatti Quantum Potential. Peter R. Holland says in his book 'The Cuart m Theory of Mosion' (Cambridge 1993)
"... the total force ... from the quantum potential ... does not ... fall off with distance because ... the quantum potential ... depends on the form of ...[the quanlum state] rather than _. its ... magnituce ...".

First consider Superposition of States involving one tubulin wth one electron of mass \(m\) and two different position states separated by a The Superposition Separation Eneroy Difterence is the oravitational energy
\[
\mathrm{E}_{\text {_electron }}=\mathrm{G} \mathrm{~m}^{N 2} / \mathrm{a}
\]

For any single given tubulin \(\mathrm{a}=1\) nanometer \(=10^{4}(-7) \mathrm{cm}\) so trat for a single Electron \(\mathrm{T}=\mathrm{h} / \mathrm{E}\) elcctron \(=(\) Compton \(/\) Schwarzschild \()(\mathrm{a} / \mathrm{C})=1 \mathrm{C}^{\wedge} 2600 \mathrm{C}=10^{\mathrm{A}} 19\) years Now consider the case of N Tubulin Electrons in Coherent Superposition Jack Sarfatfi defines coherence length L by \(\mathrm{L}^{\wedge 3}=\mathrm{N} \mathrm{a}^{\wedge 3}\) so that the Superposition Energy E_N of N superposed Conformation Electrons is
\[
E_{-} N=G M^{2} / / L=N^{\prime}(5 / 3) E_{\text {_olectron }}
\]

The decohorence time for the system of N Tubulin Electrons is
\(T _N=h / F _N=h / N^{N}(5 / 3) F _\)nlactron \(=N^{N}(-5 / 3) 10^{\wedge} 26\) sec
Number of liwolvad
Time
\(\mathrm{T} N\)
Tubuin Dimers
\(10 \times(11+9)=10^{\circ} 20\)
\(10 \times 16\)
\(10^{2}(-33+26)=10^{N}(-7)\) sec \(\quad 10^{\wedge} 11\) neurons \(\times 10^{\wedge 9} \mathrm{TD} /\) neuron \(10 \wedge(-27+26)=10^{\wedge}(-1)\) sec \(-10 \mathrm{~Hz}-\) Human Alpha EEG is 8 to 13 Hz Fundamental Schumann Resonance is 7.8 Hz -
Trme of Hamiltonian Cricut of \(10^{\wedge} 16\) TD separated from nearest neighbors
by 10 nm is \(10^{\wedge} 16 \times 10 \mathrm{~mm} / \mathrm{c}=\left(1^{\wedge} 16 \times 10^{N}(-6)\right) \mathrm{cm} / \mathrm{c}=10^{\wedge} 10 \mathrm{~cm} / \mathrm{c}=0.3 \mathrm{sec}\).

September 2018

October 2018
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sunday & Monday & Tuestay & Wednestay & Thursay & Friday & \({ }^{\text {Saturay }}\) \\
\hline & 1 & & 3 & 4 & 5 & 6 \\
\hline 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\hline 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline 21 & 22 & 23 & 24 & 25 & 26 & 27 \\
\hline 28 & 29 & 30 & 31 & & & \\
\hline
\end{tabular}

November 2018

\section*{December 2018}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
timeanddate.com \\
Sun
\end{tabular}} & \multirow[b]{3}{*}{Mon} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{February 2019 (United States)}} & \multicolumn{2}{|r|}{March 2019} \\
\hline & & & & & & & \\
\hline & & Tue & Wed & Thu & Fri & Sat & \\
\hline \(27^{\text {a }}\) 3rd Quarter & 28 & 29 & 30 & 31 & 1 & 2 & \\
\hline 3 & \(4^{\text {New Moon }}\) & 5 & 6 & 7 & 8 & 9 & \\
\hline 10 & 11 & \(12^{\text {ist }}\) 新er & 13 & 14 & 15 & 16 & \\
\hline 17 & \(18^{\text {Presidents' Day }}\) & 19 O Full Moon & 20 & 21 & 22 & 23 & \\
\hline 24 & 25 & \(26^{\text {a }}\) 3rd Quater & 27 & 28 & 1 & 2 & \\
\hline
\end{tabular}

\section*{March 2019 (United States)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sun & Mon & Tue & Wed & Thu & Fri & Sat \\
\hline 24 & 25 & \(26^{\text {a sid Ouarter }}\) & 27 & 28 & 1 & 2 \\
\hline 3 & 4 & 5 & \(6^{\text {- New Moon }}\) & 7 & 8 & 9 \\
\hline 10 & 11 & 12 & 13 & \(14{ }^{\text {ist }}\) (Uuater & 15 & 16 \\
\hline 17 & 18 & 19 & \(20 \substack{\text { March equinox } \\ \text { Full } \\ \text { Noon }}\) & \(21^{\text {Purim }}\) & 22 & 23 \\
\hline 24 & 25 & 26 & 27 & \(28^{\text {a }}\) 3rd duater & 29 & 30 \\
\hline 31 & 1 & 2 & \(3^{\text {Irra and Miraj }}\) & 4 & & 6 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{April 2019 (United States)} & \begin{tabular}{l}
May 2019 \\
\(S \quad M \quad T \quad W \quad T \quad F \quad S\) \\
\(\begin{array}{ccccccc}5 & 6 & 7 & 8 & 9 & 10 & 1 \\ 12 & 13 & 14 & 15 & 10 & 17 & 18\end{array}\) \\
\(\begin{array}{lllllll}19 & 20 & 21 & 22 & 23 & 24 & 25\end{array}\)
\end{tabular} \\
\hline Sun & Mon & Tue & Wed & Thu & Fri & Sat \\
\hline 31 & 1 & 2 & \(3^{\text {Isra and Miraj }}\) & 4 & \(5^{\text {- } \text { New Moon }}\) & 6 \\
\hline 7 & 8 & 9 & 10 & 11 & \(12^{\text {ist }}\) (uater & 13 \\
\hline 14 & 15 & 16 & 17 & 18 & \[
19 \begin{gathered}
\text { Good Fididy Many } \\
\text { regorsil Many Moon }
\end{gathered}
\] & \(20^{\text {Passover (first day) }}\) \\
\hline \(21^{\text {Easter Sunday }}\) & \(22^{\text {Easier Monday }}\) & 23 & 24 & 25 & \(26^{\text {a }}\) 3rd Quater & \(27^{\text {Last Day of Passover }}\) \\
\hline 28 & 29 & 30 & \(1{ }^{\text {Yom Hashoah }}\) & 2 & 3 & \(4{ }^{\text {O Now Moon }}\) \\
\hline
\end{tabular}

F4 / B4 = OP2 = Spinor Fermions = = 8 Particles +8 AntiParticles B4 / D4 = 8-dim SpaceTime =
= Kaluza-Klein M4 x CP2
D4 = Spin(4,4) contains Spin(2,4) of Conformal Gravity + Dark Energy

containing E8
at each of the 256 points of \(\mathrm{Cl}(8)\) of Cnf6 \(\rightarrow \mathrm{M} 4\)
there are all 256 points of \(\mathrm{Cl}(8)\) of CP 2
Cross section

E8 / D8 \(=128\)-dim Fermion Spinor Space \(=8\) components of \(8+8\) Fermions
D8 / D4 x D4 = A7+1 = 64 = 8-dim position x 8-dim momentum
D4 containing D3 \(=\mathbf{S p i n}(2,4)=\mathbf{A 3}=\mathbf{S U (2 , 2)}\) for Conformal Gravity + Dark Energy D4 containing D3 \(=\mathrm{SU}(4)\) containing Color Force \(\mathrm{SU}(3)\)

24-Cell D4 to Pyramid F4 to E6 Tarot to 240-Polytope E8 Giza

E6 / (D5xU(1)) = 32-Real-dim Symmetric Space of Type Elll = (CxO)P2
16-Complex-dim NonCompact Dual = Type V Bounded Domain in subspace of J(3,CxO) Shilov Boundary \(=\) Not Tube Type \(=8\)-Complex-dim \(=\)
\(=\) bundle with fiber S1xS7 and base space S9 with fibration S1 \(\rightarrow\) S9 \(->\) CP4
each fiber S1xS7 = Shilov Boundary for D5 / (D4xU(1)) = Lie Sphere RP1xS7
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Force & \multicolumn{2}{|r|}{Hermitian symmetric space} & M & \(\mathrm{Vol}(\mathrm{M})\) & D & \(\mathrm{Vol}(\mathrm{D})\) & & Qforce & \(\mathrm{Vol}(\mathrm{Q})\) \\
\hline gravity & Spin(5) & Spin(7) / Spin(5)xU(1) & \(S^{\wedge} 4\) & 8pi^2/3 & IV5 & \(p i^{\wedge} 5 / 2^{\wedge} 45!\) & 4 & \(\mathrm{RP}^{\wedge} 1 \mathrm{xS}{ }^{\wedge} 4\) & \(8 \mathrm{pi}^{\wedge} 3 / 3\) \\
\hline color & SU(3) & \(\mathrm{SU}(4) / \mathrm{SU}(3) \mathrm{xU}(1)\) & \(\mathrm{CP}^{\wedge} 2\) & \(8 \mathrm{pi}^{\wedge} 2 / 3\) & \(B^{\wedge} 6\) (ball) & \(\mathrm{pi}^{\wedge} 3 / 6\) & 4 & \(\mathrm{S}^{\wedge} 5\) & \(4 \mathrm{pi} \mathrm{\wedge} 3\) \\
\hline Weak & SU(2) & Spin(5) / SU(2)xU(1) & \(\mathrm{S}^{\wedge} 2 \mathrm{xS}{ }^{\wedge} 2\) & 2 x 4 pi & IV3 & pi^3/24 & 2 & \(\mathrm{RP}^{\wedge} 1 \mathrm{xS} \mathrm{S}^{\wedge} 2\) & \(4 \mathrm{pi}{ }^{\wedge} 2\) \\
\hline e-mag & \(U(1)\) & - & T^4 & 4x2pi & - & - & 1 & - & - \\
\hline
\end{tabular}

\section*{June 2019 (United States)}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sun & Mon & Tue & Wed & Thu & Fri & Sat \\
\hline 26 a ard ouarer & \(27^{\text {Memorial Day }}\) & 28 & 29 & 30 & 31 Lailatal-aadr & 1 \\
\hline 2 & \(3^{\text {- }}\) New Moon & 4 & \(5^{\text {Eidal-fitr }}\) & 6 & 7 & 8 \\
\hline 9 Shavoot & \(10^{\text {0 }}\) ist Uuarter & 11 & 12 & 13 & 14 & 15 \\
\hline 16 & 17 O Ful Moon & 18 & 19 & 20 & \(21^{\text {June Sostice }}\) & 22 \\
\hline 23 & 24 & \(25^{\text {a }}\) 3rd duater & 26 & 27 & 28 & 29 \\
\hline 30 & 1 & \(2^{\text {Now Moon }}\) & 3 & & 5 & 6 \\
\hline
\end{tabular}

\section*{Ramon Llull Wheels:}

\section*{July 2019 (United States)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sun & Mon & Tue & Wed & Thu & Fri & Sat \\
\hline 30 & 1 & \(2^{\text {®ew Moon }}\) & 3 & \(4^{\text {Independence Day }}\) & 5 & 6 \\
\hline 7 & 8 & 90 1st Ouater & 10 & 11 & 12 & 13 \\
\hline 14 & 15 & \(16^{\text {O Full Moon }}\) & 17 & 18 & 19 & 20 \\
\hline 21 & 22 & 23 & \(24^{\text {a } 3 \text { rd Quarter }}\) & 25 & 26 & 27 \\
\hline 28 & 29 & 30 & \(31^{\text {New Moon }}\) & 1 & 2 & 3 \\
\hline
\end{tabular}

Guillermo Moreno (arariv math10512517) has shown that \(V(7,2)=\) Spin(77\() /\) Spin(5) can
beidentified with the Zero Divisors of Sedenions which have \(7+28=35\) Associative Trip se identified with the Zero Divisors of Sedenions which have \(7+28=35\) Associative Triples
and for which Zero Divisors are given by the fibration \(\mathrm{V}(7,2) \rightarrow \mathrm{G} 2 \rightarrow \mathrm{~S}\) [3 -sphere \(]\)
 whose \((10 \mathrm{D}\) correspond to \(\mathrm{Cl}(1,9)=\mathrm{Cl}(2,8)\) Conformal over \(\mathrm{Cl}(1,7), 7)\)
that \(\mathrm{V}(15,2)=\operatorname{Spin}(15) /\) Spin \((13)\) is related to, but not identified with,

he Zero Divisors of Voudon 256 -ons corresponding to Coci(f)

Robert de Marrais said
"... 256 ... \(2^{\wedge} 8\) ions Voudons
Moreno ... determines that the automorphism group of the ZD 's of all \(2^{\wedge} n\)-ions ... obey a simple pattern: for \(n \geq 4\) this group has the for \(\mathrm{G} 2 \times(\mathrm{n}-3) \times \mathrm{S} 3\) (\(\ldots\) order- 6 permutation group on 3 elements) ... This says the automorphism group of the Sedenions' ZD's has order \(14 \times 1 \times 6=84 \ldots\) based on 7 octahedral lattices ("Box-Kites")

here are] ... Emanation tables ... ET's for \(\mathrm{S}=15, \mathrm{~N}=5,6,7 \ldots\) and fractal limit.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{August 2019 (United States)} & \begin{tabular}{ccccccc}
\multicolumn{7}{c}{ September 2019} \\
S & M & T & W & T & F & S \\
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
8 & 9 & 10 & 11 & 12 & 13 & 14 \\
15 & 16 & 17 & 18 & 19 & 20 & 21 \\
22 & 23 & 24 & 25 & 26 & 27 & 28 \\
29 & 30 & & & & &
\end{tabular} \\
\hline Sun & Mon & Tue & Wed & Thu & Fri & Sat \\
\hline 28 & 29 & 30 & \(31^{\text {New Moon }}\) & 1 & 2 & 3 \\
\hline 4 & 5 & 6 & 70 ist Ouarer & 8 & 9 & 10 \\
\hline \(11^{\text {Tisha BAv }}\) & \(12^{\text {Eidal-Adha }}\) & 13 & 14 & \(15^{\text {O Full Moon }}\) & 16 & 17 \\
\hline 18 & 19 & 20 & 21 & 22 & \(23^{\text {a }}\) 3rd duater & 24 \\
\hline 25 & 26 & 27 & 28 & 29 & \(30^{\text {- }}\) - M Moon & 31 \\
\hline
\end{tabular}

Julian Schwinger describes Elementary Particles as volumes of space - Sources - whose properties are determined by Green's Functions characteristic of the volumes.

In E8 Physics any Elementary Particle is immediately surrounded by a cloud of virtual particle-antiparticle pairs similar to a Kerr-Newman Black Hole with Symmetric Space - Bounded Complex Domain Shilov Boundary structure corresponding to its Gauge Group properties.
The Poisson Kernel - Bergman Kernel defines the Green's Function.
The initial Valence Particle is Planck scale. The number of Virtual Particles is determined by the Planck scale geometry of spacetime. The E8 model at the Planck Scale has spacetime condensing out of Clifford structures forming a Lorentz Leech lattice underlying 26 -dim String Theory of World-Lines with \(8+8+8=24\)-dim of fermion particles and antiparticles and of spacetime.
The automorphism group of one \(\mathbf{2 6}\)-dim String Theory cell modulo the Leech lattice is the Monster Group of order about \(8 \times 10^{\wedge} 53\). The Cloud structure comes from the \(\mathbf{2 4}\)-dim Leech lattice part of the Monster Group which is \(\mathbf{2 n}^{\wedge}(1+24)\) times the double cover of Co1, for an order of about \(1 \mathbf{1}^{\wedge} \mathbf{2 6}\). Due to superpostions of algebraically independent E8 Lattices the total number of Virtual particle/ antiparticle pairs is about \(10^{\wedge} 27\) so the volume of the Kerr-Newman Cloud is on the order of \(10^{\wedge} \mathbf{2 7} \times\) Planck scale, and its size should be about \(10^{\wedge}(27 / 3) \times 1.6 \times 10^{\wedge}(-33) \mathrm{cm}=\) roughly \(10^{\wedge}(-24) \mathrm{cm}\).

Each Schwinger Source particle-antiparticle pair should see (with Bohm Quantum Potential and Sarfatti Back-Reaction) the rest of our Universe in the perspective of \(8 \times 10^{\wedge} 53\) Monster Symmetry so a Schwinger Source acting as a Jewel of Indra's Net of Schwinger Source Bohm Quantum Blockchain Physics can see \(10^{\wedge} 27 \times 8 \times 10^{\wedge} 53=8 \times 10^{\wedge} 80\) Other Sources of an Indra's Net.

To fit inside the initial Schwinger Source the Information Elements of all the Other Schwinger Sources of Our Universe (\(10^{\wedge} 77\) or so) should be distributed as a Fractal Julia Set. There are \(\mathbf{2}^{\wedge} \mathbf{n}\) stage-n cells in a Binary Decomposition of Julia Sets, so a stage-256 Julia level set based on Binary Decomposition has \(\mathbf{2}^{\wedge} \mathbf{2 5 6}=\) about \(\mathbf{1 0}^{\wedge 77}\) cells so Full Indra Net information can be seen / reflected by each Schwinger Source Indra Jewel.

Each Schwinger Source contains \(\mathbf{1 0}^{\wedge 27}\) Virtual pairs of particles each of which can see along a connecting Line an Other Indra's Net Source which Line sees Other Sources through Monster Group Lens elements so that the Other Source appears to the Original Source to be a Julia Set.

Each Schwinger Source has a Mandelbrot Set that tells its Source what each of the many Indra's Net Source Julia set looks like by correlating Monster Group Lens Elements with Types of Julia Set. Self-Perception is always the \(\mathbf{c}=\mathbf{0}\) Circle Julia Set.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|r|}{September 2019 (United States)} & October 2019 \\
\hline Sun & Mon & Tue & Wed & Thu & Fri & Sat \\
\hline \(1^{\text {Munaram }}\) & \(2^{\text {Labor Day }}\) & 3 & 4 & \(5^{\text {O }}\) 1st Ouater & 6 & 7 \\
\hline 8 & 9 & 10 & 11 & 12 & 13 & \(14{ }^{\text {O Full Moon }}\) \\
\hline 15 & 16 & 17 & 18 & 19 & 20 & \(21^{\text {3rd }}\) Uuater \\
\hline 22 & \(23^{\text {September equinox }}\) & 24 & 25 & 26 & 27 & \(28^{\text {New Moon }}\) \\
\hline 29 & \(30^{\text {Rosh Hashana }}\) & 1 & 2 & 3 & 4 & 5 O istouater \\
\hline
\end{tabular}
\begin{tabular}{cccc}
S0 & S1 & S3 & S7 \\
\(U\) & \(U\) & \(U\) & \(U\) \\
T \(=\) & R & C & x \\
Z2 & H(1) & H & SU(2) \\
& Spin(8)
\end{tabular}

Division Algebras, Lattices, Physics, Windmill Tilting Geoffrey Dixon
As to \(\mathbf{T}\), resolve its identity into four orthogonal idempotents
\[
\begin{aligned}
& \Delta_{0}=\frac{1}{4}(1+i \vec{x})\left(1+i e_{7}\right)=\left(\frac{1}{2}(1+i \vec{x})\right)\left(\frac{1}{2}\left(1+e_{7}\right)\right) \\
& \Delta_{1}=\frac{1}{4}(1-i \vec{x})\left(1+i e_{7}\right)=\left(\frac{1}{2}(1-i \vec{x})\right)\left(\frac{1}{2}\left(1+i e_{7}\right)\right) \\
& \Delta_{2}=\frac{1}{4}(1+i \vec{y})\left(1-i e_{7}\right)=\left(\frac{1}{2}(1+i \vec{y})\left(\frac{1}{2}\left(1-i e_{7}\right)\right)\right. \\
& \Delta_{3}=\frac{1}{4}(1-i \vec{y})\left(1-i e_{7}\right)=\left(\frac{1}{2}(1-i \vec{y})\right)\left(\frac{1}{2}\left(1-i e_{7}\right)\right)
\end{aligned}
\]

In the Pauli algebra case, we got Dirac spinors by doubling \(\mathbf{P}\) to \(\mathbf{P}^{2}\) we double up and use \(\mathbf{T}^{2}\) as our spinor space Let \(\Psi\) be a \(\mathbf{T}^{2}\) spinor the following identifications fall out of the mathematics
\[
\rho_{+} \Psi: \text { matter }
\]
\(\rho_{-} \Psi\) : antimatter
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{|c}
\hline 8 Fermion First-Generation Particles \\
each with 8 Spacetime Components \\
\(\rho_{+} \Psi \Delta_{0}:\) matter - neutrino \(-S U(3)\) singlet \\
\(\rho_{+} \Psi \Delta_{1}:\) matter - electron \(-S U(3)\) singlet \\
\(\rho_{+} \Psi \Delta_{2}:\) matter - up quark \(-S U(3)\) triplet \\
\(\rho_{+} \Psi \Delta_{3}:\) \\
+
\end{tabular}}} \\
\hline & \\
\hline \[
\begin{aligned}
& \rho_{-} \Psi \Delta_{3} \\
& \rho_{-} \Psi \Delta_{2} \\
& \rho_{-} \Psi \Delta_{1} \\
& \rho_{-} \Psi \Delta_{0}
\end{aligned}
\] & \begin{tabular}{l}
8 Fermion First-Generation AntiParticles each with 8 Spacetime Components \\
: antimatter - antineutrino - \(S U(3)\) antisinglet \\
: antimatter - positron \(-S U(3)\) antisinglet \\
: antimatter - anti-up antiquark - \(S U(3)\) antitriplet \\
: antimatter - anti-down antiquark - \(S U(3)\) antitriplet
\end{tabular} \\
\hline & \[
\begin{aligned}
& =8 \times 8+8 \times 8=64+64=\mathrm{T}+\mathrm{T}=128=\mathrm{T} 2= \\
& =\mathrm{E} 8 / \mathrm{D} 8=(\mathrm{O} \times \mathrm{O}) \mathrm{P} 2=\text { HalfSpinors of } \mathrm{Cl}(16)
\end{aligned}
\] \\
\hline
\end{tabular}

Geoffrey Dixonwrote a 1995 paper in which he represented the Leech lattice over \(\mathbf{O}^{3}\).
the final result breaks up the inner shell of \(\Lambda_{24}\), which is of order \(K_{24}=196560\),
into three subsets with orders \(3 \times 240=720\),
\(3 \times 240 \times 16=11520\), and \(3 \times 240 \times 16 \times 16=184320\), the sum of all three orders being 196560 .

Here is a summary of E8 Physics model calculation results. Since ratios are calculated, values for one particle mass and one force strength are assumed.
Quark masses are constituent masses. Most of the calculations are tree-level, so more detailed calculations might be even closer to observations.

Dark Energy : Dark Matter : Ordinary Matter = 0.75 : 0.21 : 0.04
Fermions as Schwinger Sources have geometry of Complex Bounded Domains with Kerr-Newman Black Hole structure size about \(10^{\wedge}(-24) \mathrm{cm}\).
\begin{tabular}{|c|c|c|}
\hline Particle/Force & Tree-Level & Higher-Order \\
\hline e-neutrino & 0 & 0 for nu_1 \\
\hline mu-neutrino & 0 & \(9 \times 10^{\wedge}(-3)\) eV for nu_2 \\
\hline tau-neutrino & 0 & \(5.4 \times 10^{\wedge}(-2)\) eV for \(\mathrm{nu}_{3} 3\) \\
\hline electron & 0.5110 MeV & \\
\hline down quark & 312.8 MeV & charged pion \(=139 \mathrm{MeV}\) \\
\hline up quark & 312.8 MeV & \[
\text { proton }=938.25 \mathrm{MeV}
\] \\
\hline muon & 104.8 MeV & 106.2 MeV \\
\hline strange quark & 625 MeV & \\
\hline charm quark & 2090 MeV & \\
\hline tauon & 1.88 GeV & \\
\hline beauty quark & 5.63 GeV & \\
\hline truth quark (low state) & 130 GeV & (middle state) 174 GeV
(high state) 218 GeV \\
\hline W+ & 80.326 GeV & \\
\hline W- & 80.326 GeV & \\
\hline พ0 & 98.379 GeV & \(z 0=91.862 \mathrm{GeV}\) \\
\hline
\end{tabular}

Mplanck \(1.217 \times 10^{\wedge} 19 \mathrm{GeV}\)
\begin{tabular}{lr}
Higgs VEV (assumed) & 252.5 GeV \\
Higgs (low state) & 126 GeV
\end{tabular}

Kobayashi-Maskawa parameters for \(W+\) and \(W-\) processes are:
\begin{tabular}{lll}
d & \multicolumn{1}{c}{\(s\)} & \multicolumn{1}{c}{ b } \\
\(u \quad 0.975\) & 0.222 & \(0.00249-0.00388 i\) \\
\(c-0.222-0.000161 i\) & \(0.974-0.0000365 i\) & 0.0423 \\
\(t \quad 0.00698-0.00378 i\) & \(-0.0418-0.00086 i\) & 0.999 \\
The phase angle d13 is taken to be 1 radian. &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{October 2019 (United States)} & \begin{tabular}{l}
November 2019 \\
\(S \quad M \quad T \quad W \quad T \quad F \quad S\) \\
\(\begin{array}{ccccccc}3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 10 & 11 & 12 & 13 & 14 & 15 & 16\end{array}\) \\
\(\begin{array}{lllllll}17 & 18 & 19 & 20 & 21 & 22 & 23\end{array}\)
\end{tabular} \\
\hline Sun & Mon & Tue & Wed & Thu & Fri & Sat \\
\hline 29 & 30 Rosh Hashana & 1 & 2 & 3 & 4 & 5 - 1 st Ouater \\
\hline 6 & 7 & 8 & \(9^{\text {Yom Kippur }}\) & 10 & 11 & 12 \\
\hline \(13^{\text {O Full Moon }}\) & \[
\begin{aligned}
& 14 \begin{array}{l}
\text { Columbus Day (Most } \\
\text { regions) } \\
\text { First Day of Sukkot }
\end{array}
\end{aligned}
\] & 15 & 16 & 17 & 18 & 19 \\
\hline \(20^{\text {Last Day of Sukkot }}\) & & \(22^{\text {Simchat Torah }}\) & 23 & 24 & 25 & 26 \\
\hline \(27^{\text {® New Moon }}\) & 28 & 29 & 30 & 31 & 1 & 2 \\
\hline
\end{tabular}

Void \(->\mathrm{Cl}(\) Void \()->\mathrm{Cl}(0)->\mathrm{Cl}(1)->\mathrm{Cl}(2)->\mathrm{Cl}(4)->\mathrm{Cl}(16)\)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|r|}{November 2019 (United States)} & & \begin{tabular}{l}
December 2019 \\
\(\begin{array}{ccccc}\text { T } & \text { W } & \text { T } & \text { F } & \text { S } \\ 3 & 4 & 5 & 6 & 7\end{array}\) \\
\(\begin{array}{ccccc}3 & 4 & 5 & 6 & 7 \\ 10 & 11 & 12 & 13 & 14\end{array}\) \\
\(\begin{array}{lllll}17 & 18 & 19 & 20 & 21\end{array}\) \\
\(\begin{array}{llllll}24 & 25 & 26 & 27 & 28\end{array}\)
\end{tabular} \\
\hline Sun & Mon & Tue & Wed & Thu & Fri & Sat & \\
\hline \(27^{\text {Now Moon }}\) & 28 & 29 & 30 & 31 & 1 & 2 & \\
\hline 3 & \(4{ }^{\text {1st Ouater }}\) & 5 & 6 & 7 & 8 & 9 & \\
\hline & \(11^{\text {Veterans Day }}\) & 12 O Full Moon & 13 & 14 & 15 & 16 & \\
\hline 17 & 18 & 19 O 3rd Quarter & 20 & 21 & 22 & 23 & \\
\hline 24 & 25 & \(26^{\text {New Moon }}\) & 27 & \(28^{\top}\) & 29 & 30 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|r|}{December 2019 (United States)} & \begin{tabular}{l}
January 2020 \\
\(\begin{array}{lllllll}\mathrm{S} & \mathrm{M} & \mathrm{T} & \mathrm{W} & \mathrm{T} & \mathrm{F} & \mathrm{S}\end{array}\) \\
\(\begin{array}{ccccccc}5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 12 & 13 & 14 & 15 & 16 & 17 & 18\end{array}\) \\
\(\begin{array}{lllllll}19 & 20 & 21 & 22 & 23 & 24 & 25\end{array}\)
\end{tabular} \\
\hline Sun & Mon & Tue & Wed & Thu & Fri & Sat \\
\hline 1 & 2 & 3 & \(4^{\text {® }}\) 1stauater & 5 & 6 & 7 \\
\hline 8 & 9 & 10 & 11 & 12 O Ful Moon & 13 & 14 \\
\hline 15 & 16 & 17 & \(18^{\text {3 } 3 \text { d duater }}\) & 19 & 20 & \(21^{\text {December Sossice }}\) \\
\hline 22 & 23 (finaukahH-anukkah & \(24^{\text {Chisismas Eve }}\) & \(25^{\text {Chisismas Day }}\) & \(26^{\text {New Moon }}\) & 27 & 28 \\
\hline 29 & 30 Last Day of Chanukah & 31 & \(1{ }^{\text {New Years Day }}\) & \(2^{\text {d ist }}\) vararer & 3 & 4 \\
\hline
\end{tabular}

\title{
RED BOOK PHYSICS
}

\author{
How Jung's Red Book Archetypes connect with E8-Cl(16) Physics
}

Frank Dodd (Tony) Smith, Jr. - 2018

The first five pages after the cover summarize the rest of this paper.

CLIFFORD ALGEBRAS to E8

CLIFFORD EVOLUTION of OUR UNIVERSE

CREATION - OCTONIONIC NON-UNITARY INFLATION 28+64+28 = 120 D8 = 4X32 =128 D8 HALF-SPINOR

E8 - PARTICLES and FORCES - 8D LAGRANGIAN - TRIALITY

E8 HEISENBERG CREATION-ANNIHILATION -28+64+(63+1)+64=28

(4)

\section*{AFTER INFLATION - QUATERNIONIC UNITARY EXPANSION now - DE : DM : OM = 0.75 : \(0.21: 0.04\)}

E8 = H4 STANDARD MODEL CP2 + H4 GRAVITY+DARK ENERGY M4 STRINGS = WORLD LINES 26D STRING THEORY - SPIN-2 BOHMIONS QUANTUM BLOCKCHAINS OF SCHWINGER SOURCES

HIGGS = NAMBU-JONA-LASINIO TRUTH QUARK COMPOSITE FERMILAB TRUTH QUARK MASSES 130 GeV - \(174 \mathrm{GeV}-220 \mathrm{GeV}\) CMS HIGGS MASSES 125 GeV - 195 GeV - 260 GeV

M4xCP2 KALUZA-KLEIN - MAYER HIGGS - 3 FERMION GENERATIONS

FERMION OCTONIONIC BRAIDS - FERMION MASSES

D4 STANDARD MODEL and GRAVITY+DE GHOSTS D4 GRAVITY+DE and STANDARD MODEL GHOSTS

\section*{FORCE STRENGTHS - 4D LAGRANGIAN - CALCULATION RESULTS}

E8 - H4 - F4 - D4 - D3=A3 - H3 - H2=PENROSE STAR

\section*{CELLULAR AUTOMATA - CL(8) - CL(16) - MICROTUBULE - PYRAMIDS}

\section*{SHILOV BOUNDARY HUMAN MIND COMPLEX DOMAIN UNIVERSAL CONSCIOUSNESS}

William KIngdon Clifford (1845-1879)
described Geometry in terms of his invention: Real Clifford Algebras, which he called "mind-stuff", saying:
"... That element of which ... even the simplest feeling is a complex, I shall call Mind-stuff.
A moving molecule of inorganic matter does not possess mind or consciousness ; but it possesses a small piece of mind-stuff. ... When molecules are ... combined together ... the elements of mind-stuff which go along with them ... combine ... to form the ... beginnings of Sentience. When the molecules are so combined as to form the brain and nervous system . the corresponding elements of mind-stuff are so combined as to form some kind of consciousness ... changes in the complex which take place at the same time get so linked together that the repetition of one implies the repetition of the other. When matter takes the complex form of a living human brain, the corresponding mind-stuff takes the form of a human consciousness ..."

Appendix - Red Book Physics
How some Images of Jung's Red Book relate to C8-CI(16) Physics
Clifford Algebra \(=\) Algebra of Spaces \(=\)
= Fundamental Human Understanding
For our 3-dim Space with coordinates x y z
\(\mathrm{Cl}(3)\) describes
1 - all of 3-space itself

3 - three types of planes in space:

yz
zx

3 - three types of lines / directions in space:
x
y
Z

1- one type of 0-dim point
so
\(\mathrm{Cl}(3)\) of 3-dim space has total dimension
\[
1+3+3+1=2^{\wedge} 3=8
\]

Generally, \(\mathbf{C l}(\mathbf{N})\) of \(\mathbf{N}\)-dim space has dimension \(\mathbf{2}^{\mathbf{N}} \mathbf{N}\) so the process of forming Clifford Algebra creates \(\mathbf{2}^{\wedge} \mathbf{N}\)-dim spaces from \(\mathbf{N}\)-dim spaces

\section*{THIS IS HOW OUR UNIVERSE GREW FROM NOTHING:}

\(\mathbf{C l}(16)=\mathbf{2}^{\wedge} \mathbf{1 6}=\mathbf{6 5 , 5 3 6}\) dimensions with graded structure
116120560182043688008114401287011440800843681820560120161
The 120 grade-2 BiVectors form the D8 Lie Algebra that is related to rotations in 16-dim space

The Real Clifford Algebra \(\mathbf{C l}(16)=256 \times 256\) Real Matrix Algebra

The 256 first-column-vectors are the Spinors of D8 that are related to entanglement of connections to 16-dim space

The 256 D8 Spinors break down into two half-Spinors
\[
256=128+128
\]

The 128 and 128 half-spinors are mirror images of each other so 128 can describe all useful physics by itself.

120 D8 BiVectors + 128 D8 half-Spinors \(=248\)-dim E8

> 248-dim E8 lives in \(\mathrm{Cl}(16) \mid\) containing 120-dim D8 biVectors of \(\mathrm{Cl}(16)\)

E8 / D8 = 64 + 64 Fermions \(=128\)-dim D8 half-Spinors of \(\mathrm{Cl}(16)\)

D8 / D4 x D4 = 64 Spacetime
D4 = 28 Standard Model (12)
with 16 Gravity + Dark Energy Ghosts
D4 = 28 Gravity + Dark Energy (16) with 12 Standard Model Ghosts

When Our Planck Scale Universe emerged from its Parent Universe by Quantum Fluctuation it was described by SO(16) symmetry of Compact E8(-248). E8 Compact Form E8(-248) with Symmetric Space E8 / Spin(16) represents Our Planck Scale Universe when it emerged from its Parent Universe by Quantum Fluctuation.

\section*{E8 Split Form EVIII E8(8) with Symmetric Space E8 / SO(8,8) represents Our Universe during Octonionic Inflation with Non-Unitary Quantum Processes.}

orf
benitro/ Die monabe sie bas plemma aufiviegl'.

Creation-Annihilation Operators for 8 components of \(8+8\) Fermions are
odd-grade-+/-1 part of
E8 Maximal Contraction generalized Heisenberg Algebra
\[
h 92 \times \text { A7 }=28+64+((S L(8, R)+1)+64+28
\]
(see Rutwig Campoamor-Stursberg in Acta Physica Polonica B 41 (2010) 53-77 "Contractions of
Exceptional Lie Algebras and SemiDirect Products")

At the end of Non-Unitary Octonionic Inflation Our Universe had about (1/2) \(16^{\wedge} 64=(1 / 2)\left(2^{\wedge} 4\right)^{\wedge} 64=2^{\wedge} 255=6 \times 10^{\wedge} 76\) Fermion Particles
the size of our Universe was then about \(10^{\wedge}(-24) \mathrm{cm}\) which is about the size of a Fermion Schwinger Source Kerr-Newman Cloud

The End of Inflation time was at about \(10^{\wedge}(-34)\) sec \(=2^{\wedge} 64\) Tplanck The Zizzi Inflation phase of our universe ends with decoherence "collapse" of the 2^64 Superposition Inflated Universe into Many Worlds of Quantum Theory,

Farthest Supemova
The ratio Dark Energy : Dark Matter : Ordinary Matter for our Universe at the present time is calculated to be:
\[
0.75: 0.21: 0.04
\]

Paola Zizzi in gr-qc/0007006:
"... The self-reduction of the superposed quantum state ... corresponds to a superposed state of \(\ldots\) [\(10^{\wedge} 19=2^{\wedge} 64\) qubits \(]\). ... also the number of superposed tubulins-qubits in our brain ... leading to a conscious event. ...".

Inflation ends when a preferred Quaternionic Subspacetime freezes out,
converting 8 dim Spacetime into 4+4 dim M4 x CP2 Spacetime where
M4 = Physical Minkowski Spacetime and
CP2 \(=\mathbf{S U}(3) / \mathrm{U}(2)\) Internal Symmetry Space Octonionic Integral becomes two Quaternionic Integrals

8-dim Octonionic Spacetime was broken into (4+4)-dim Unitary Quaternionic M4 x CP2 Kaluza-Klein Spacetime with SO*(16) symmetry of EIX E8(-24).

That transition was
a Weyl Unitary Trick within E8(8) from SO(8,8) to SO*(16) followed by a shifting of SO*(16) symmetry from E8(8) to E8(-24)
E8 form EIX E8(-24) with Symmetric Space E8 / SO*(16) represents Our Universe after End of Inflation

Indra's Net of Schwinger Sources - Bohm Quantum Blockchain

The \(\mathrm{Cl}(16)\)-E8 AQFT inherits structure from the \(\mathrm{C}(16)\)-E8 Local Lagrangian
```

Standard Model Gauge Gravity + Fermion Particle-AntiParticle

``` 8-dim SpaceTime
the \(\mathrm{Cl}(16)\)-E8 model at the Planck Scale has spacetime condensing out of Clifford structures forming a Leech lattice underlying 26 -dim String Theory of Worid-Lines with \(8+8+8=24\)-dim of fermion particles and antiparticles and of spacetime.
Slices of 8 v SpaceTime are represented as D8 branes. Each D8 brane has Planck-Scale Lattice Structure superpositions of 8 types of E8 Lattice
denoted by 1E8, IE8. JE8. kE8. EE8. IE8. JE8. KE8
Stack D8 branes to get SpaceTime with Strings = World-Lines
Let Oct16 \(=\) discrete mutiplicative group \(\{+/-1 .+/-\mathrm{i} .+/-\mathrm{j} .+/\) -.\(+/-\mathrm{E} .+/-\mathrm{I} .+/-\mathrm{J} .+/\) K \(\}\). Orbifold by Oct16 the As, to get 8 Fermion Particle Types
Obifold by Oct16 the 8s- to get 8 Fermion AntiParticle Types
Gauge Bosons from \(1 \mathrm{E8}\) and EE8 parts of a D8 give U(2) Electroweak Force
Gauge Bosons from IE8. JE8. and KE8 parts of a D8 give SU(3) Color Force Gauge Bosons from \(1 E 8, \mathrm{iE8}, \mathrm{~J} E 8\), and \(\mathrm{k} E 8\) parts of a D 8 give \(U(2,2)\) Conformal Gravity
The \(8 \times 8\) matices for collective coordinates linking one D8 to the next D8 give Position x Momentum
The automorphism group of a single 26 -dim String Theory cell modulo the Leech lattice is the Monster Group of order about \(8 \times 10^{\wedge} 53\).
When a fermion particle/antiparticle appears Tachyons create a cloud of particles/antiparticles. The cloud is one Planck-scale Fundamental Fermion Valence Particle plus an effectively neutral cloud of particlelantiparticle pairs forming a Kerr-Newman black hole.
That cloud constitutes the Schwinger Source.
The Schwinger Sources are finite regions in a Complex Domain spacetime corresponding to Green's functions of particle creation / annihilation.
Its structure comes from the 24-dim Leech lattice part of the Monster Group which is \(2^{\wedge}(1+24)\) times the double cover of Co1, for a total order of about \(10^{\wedge} 26\).
(Since a Leech lattice is based on copies of an E8 lattice and since there are 7 distinct E8 integral domain lattices there are 7 (or 8 it you include a non-Integral domain E8 latice)mdistinct Leech lattices. The physical Leech lattice is a superposition of them, effectively acding a tactor of 8 to the order.)
The volume of the Kerr-Newman Cloud is on the order of \(10^{\wedge} 27 \times\) Planck scale,
\(=\) roughly \(10^{\wedge}(-24) \mathrm{cm}\).

Julian Schwinger describes Elementary Particles as volumes of space - Sources - whose properties are determined by Green's Functions characteristic of the volumes.

In E8 Physics any Elementary Particle is immediately surrounded by a cloud of virtual particle-antiparticle pairs similar to a Kerr-Newman Black Hole with Symmetric Space - Bounded Complex Domain Shilov Boundary structure corresponding to its Gauge Group properties.
The Poisson Kernel - Bergman Kernel defines the Green's Function.
The initial Valence Particle is Planck scale. The number of Virtual Particles is determined by the Planck scale geometry of spacetime. The E8 model at the Planck Scale has spacetime condensing out of Clifford structures forming a Lorentz Leech lattice underlying 26 -dim String Theory of World-Lines with \(8+8+8=24\)-dim of fermion particles and antiparticles and of spacetime.
The automorphism group of one \(\mathbf{2 6}\)-dim String Theory cell modulo the Leech lattice is the Monster Group of order about \(8 \times 10^{\wedge} 53\). The Cloud structure comes from the \(\mathbf{2 4}\)-dim Leech lattice part of the Monster Group which is \(\mathbf{2 n}^{\wedge}(1+24)\) times the double cover of Co1, for an order of about \(1 \mathbf{1}^{\wedge} \mathbf{2 6}\). Due to superpostions of algebraically independent E8 Lattices the total number of Virtual particle/ antiparticle pairs is about \(10^{\wedge} 27\) so the volume of the Kerr-Newman Cloud is on the order of \(10^{\wedge} \mathbf{2 7} \times\) Planck scale, and its size should be about \(10^{\wedge}(27 / 3) \times 1.6 \times 10^{\wedge}(-33) \mathrm{cm}=\) roughly \(10^{\wedge}(-24) \mathrm{cm}\).

Each Schwinger Source particle-antiparticle pair should see (with Bohm Quantum Potential and Sarfatti Back-Reaction) the rest of our Universe in the perspective of \(8 \times 10^{\wedge} 53\) Monster Symmetry so a Schwinger Source acting as a Jewel of Indra's Net of Schwinger Source Bohm Quantum Blockchain Physics can see \(10^{\wedge} 27 \times 8 \times 10^{\wedge} 53=8 \times 10^{\wedge} 80\) Other Sources of an Indra's Net.

To fit inside the initial Schwinger Source the Information Elements of all the Other Schwinger Sources of Our Universe (\(10^{\wedge} 77\) or so) should be distributed as a Fractal Julia Set. There are \(\mathbf{2}^{\wedge} \mathbf{n}\) stage-n cells in a Binary Decomposition of Julia Sets, so a stage-256 Julia level set based on Binary Decomposition has \(\mathbf{2}^{\wedge} \mathbf{2 5 6}=\) about \(\mathbf{1 0}^{\wedge 77}\) cells so Full Indra Net information can be seen / reflected by each Schwinger Source Indra Jewel.

Each Schwinger Source contains \(\mathbf{1 0}^{\wedge 27}\) Virtual pairs of particles each of which can see along a connecting Line an Other Indra's Net Source which Line sees Other Sources through Monster Group Lens elements so that the Other Source appears to the Original Source to be a Julia Set.

Each Schwinger Source has a Mandelbrot Set that tells its Source what each of the many Indra's Net Source Julia set looks like by correlating Monster Group Lens Elements with Types of Julia Set. Self-Perception is always the \(\mathbf{c}=\mathbf{0}\) Circle Julia Set.

Splitting Octonionic Spacetime into Quaternionic M4 x CP2 Kaluza-Klein over CP2 produces
Higgs by the Mayer Mechanism and Second and Third Generation Fermions

Quaternionic E7xSU(2) structure breaks 8-dim Spacetime Octonionic Symmetry to Quaternionic (4+4)-dim Associative x CoAssociative Kaluza-Klein Spacetime
(see Reese Harvey "Spinors and Calibrations" (Academic 1990))
where M4 = 4-dim Minkowski Physical Spacetime is Associative and CP2 \(=\mathrm{SU}(3) / \mathrm{SU}(2) \times \mathrm{U}(1)\) Internal Symmetry Space is CoAssociative

Meinhard Mayer said (Hadronic Journal 4 (1981) 108-152): "... each point of ... the ... fibre bundle ... E ...

n

\(E=P / H\)

n
... consists of
a four- dimensional spacetime point \(x\) [in M4]
to which is attached the homogeneous space G / \(\mathrm{H}[\mathrm{SU}(3) / \mathrm{U}(2)=\mathrm{CP} 2\)]
the components of the curvature lying in the homogeneous space G / H could be reinterpreted as Higgs scalars (with respect to spacetime [M4])
the Yang-Mills action reduces to a Yang-Mills action for the h-components [U(2) components] of the curvature over M [M4] and a quartic functional for the "Higgs scalars", which not only reproduces the Ginzburg-Landau potential, but also gives the correct relative sign of the constants, required for the BEHK ... Brout-Englert-Higgs-Kibble ... mechanism to work. ...".

\section*{3 Generations of Fermions}

In Kaluza-Klein M4 x CP2 there are 3 possibilities for a fermion represented by an Octonion O basis element to go from point A to point B:

1 - \(A\) and \(B\) are both in M4: First Generation Fermion whose path can be represented by the single \(O\) basis element so that First Generation Fermions are represented by Octonions O.

2 - Either A or B, but not both, is in CP2: Second Generation Fermion whose path must be augmented by one projection from CP2 to M4, which projection can be represented by a second O basis element so that Second Generation Fermions are represented by Octonion Pairs OxO.

3 - Both A and B are in CP2: Third Generation Fermion whose path must be augmented by two projections from CP2 to M4, which projections can be represented by a second O and a third O , so that Third Generation Fermions are represented by Octonion Triples OxOxO.

\section*{3 Generation Fermion Combinatorics}

First Generation (8)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline electron & & green up quark & blue up quark & red down quark & green down quark & blue down quark & neutrino \\
\hline E & 1 & \(J\) & K & i & j & k & 1 \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{Second Generation (64)}

Mu Neutrino (1)
Rule: a Pair belongs to the Mu Neutrino if: All elements are Colorless (black) and all elements are Associative (that is, is 1 which is the only Colorless Associative element) .

Muon (3)
Rule: a Pair belongs to the Muon if:
All elements are Colorless (black)
and at least one element is NonAssociative (that is, is E which is the only Colorless NonAssociative element).

Blue Strange Quark (3)
Rule: a Pair belongs to the Blue Strange Quark if:
There is at least one Blue element and the other element is Blue or Colorless (black) and all elements are Associative (that is, is either 1 or i or j or k).

\section*{Blue Charm Quark (17)}

Rules: a Pair belongs to the Blue Charm Quark if:
1 - There is at least one Blue element and the other element is Blue or Colorless (black) and at least one element is NonAssociative (that is, is either E or I or J or K) 2 - There is one Red element and one Green element (Red x Green = Blue).

\section*{Third Generation (512)}

Tau Neutrino (1)
Rule: a Triple belongs to the Tau Neutrino if:
All elements are Colorless (black) and all elements are Associative
(that is, is 1 which is the only Colorless Associative element)

Tauon (7)
Rule: a Triple belongs to the Tauon if:
All elements are Colorless (black)
and at least one element is NonAssociative (that is, is E which is the only Colorless NonAssociative element)

Blue Beauty Quark (7)
Rule: a Triple belongs to the Blue Beauty Quark if:
There is at least one Blue element and all other elements are Blue or Colorless (black) and all elements are Associative (that is, is either 1 or i or j or k).

Blue Truth Quark (161)
Rules: a Triple belongs to the Blue Truth Quark if:
1 - There is at least one Blue element and all other elements are Blue or Colorless (black)
and at least one element is NonAssociative (that is, is either E or I or J or K) 2 - There is one Red element and one Green element and the other element is Colorless (Red x Green = Blue)
3 - The Triple has one element each that is Red, Green, or Blue, in which case the color of the Third element (for Third Generation) is determinative and must be Blue.

(Red and Green Beauty and Truth Quarks follow similar rules)

Fermion masses are calculated as a product of four factors: \(\mathbf{V}(\) Qfermion \() \times \mathbf{N}(\) Graviton \() \times \mathbf{N}(\) octonion \() \times\) Sym
The ratio of the down quark spinor manifold volume factor to the electron spinor manifold volume factor is
\(\mathbf{V}(\) Qdown quark \() / \mathbf{V}(\) Qelectron \()=\mathbf{V}\left(\mathbf{S}^{\wedge} \mathbf{7 x}\right.\) RP^1)/1 \(=\mathbf{p i \wedge 5} / 3\).
The third generation fermion particles correspond to triples of octonions.
There are \(8^{\wedge} 3=512\) such triples.
The triple \(\{1,1,1\}\) corresponds to the tau-neutrino.
The other 7 triples involving only 1 and \(E\) correspond to the tauon:
\(\{E, E, E\}\{E, E, 1\}\{E, 1, E\}\{1, E, E\}\{1,1, E\}\{1, E, 1\}\{E, 1,1\}\)
The symmetry of the 7 tauon triples is the same
as the symmetry of the first generation tree-level-massive fermions,
3 down, quarks, the 3 up quarks, and the electron,
so by the Sym factor the tauon mass should be the same as
the sum of the masses of the first generation massive fermion particles.
Therefore the tauon mass is calculated at tree level as 1.877 GeV .
The beauty quark corresponds to 21 triples.
They are triples of the same form as the 7 tauon triples involving 1 and E , but for 1 and \(\mathrm{I}, 1\) and J , and 1 and \(\mathrm{K}=\) red, green, and blue beauty quarks.
The seven red beauty quark triples correspond to the seven tauon triples, except that the beauty quark interacts with \(6 \mathrm{Spin}(0,5)\) gravitons while the tauon interacts with only two.
The red beauty quark constituent mass should be the tauon mass times the third generation graviton factor \(6 / 2=3\), so the red beauty quark mass is \(\mathbf{m b}=5.63111 \mathrm{GeV}\).

Triples of the type \(\{1, I, J\},\{I, J, K\}\), etc., do not correspond to the beauty quark, but to the truth quark. The truth quark corresponds to those 512-1-7-21 = 483 triples, so the constituent mass of the red truth quark is 161 / \(7=23\) times the red beauty quark mass, and the red T-quark mass is \(\mathrm{mt}=129.5155 \mathrm{GeV}\)

\section*{248-dim E8 contains 120-dim D8}

E8 / D8 = 64 + 64 Fermions
D8 / D4 x D4 = 64 Spacetime
D4 = 28 Standard Model (12)
with 16 Gravity + Dark Energy Ghosts
D4 = 28 Gravity + Dark Energy (16) with 12 Standard Model Ghosts

The 24 Orange Root Vectors of the D4 of E8 Standard Model + Gravity Ghosts are on the Horizontal X-axis.

\section*{- - ↔ \\ \(-500-\) \\ - ○ ○}

8 of them in the Orange Box represent the 8 Root Vectors of the Standard Model Gauge Groups \(\mathrm{SU}(3) \mathrm{SU}(2) \mathrm{U}(1)\).
Their 4 Cartan Subalgebra elements correspond to the 4 Cartan Subalgebra elements of D4 of E8 Standard Model + Gravity Ghosts and to half of the 8 Cartan Subalgebra elements of E8.

The other \(24-8=16\) Orange Root Vectors represent Ghosts of 16D U(2,2) which contains the Conformal Group SU(2,2) = Spin(2,4)
that produces Gravity + Dark Energy by the MacDowell-Mansouri mechanism.
Standard Model Gauge groups come from \(\mathrm{CP} 2=\mathrm{SU}(3) / \mathrm{SU}(2) \times \mathrm{U}(1)\)
(as described by Batakis in Class Quantum Grav. 3 (1986) L99-L105)
Electroweak \(\mathrm{SU}(2) \times \mathrm{U}(1)\) is gauge group as isotropy group of CP2
\(\mathrm{SU}(3)\) is global symmetry group of CP2 but due to Kaluza-Klein M4×CP2 structure of compact CP2 at every M4 spacetime point, it acts as Color gauge group with respect to M4.

The 24 Yellow Root Vectors of the D4 of E8 Gravity + Standard Model Ghosts are on the Vertical Y -axis.
12 of them in theYellow Box represent the 12 Root Vectors of the Conformal Gauge Group SU(2,2) = Spin \((2,4)\) of Conformal Gravity + Dark Energy.
The 4 Cartan Subalgebra elements of \(\mathrm{SU}(2,2) \mathrm{xU}(1)=\mathrm{U}(2,2)\) correspond to the 4 Cartan Subalgebra elements of D4 of E8 Gravity + Standard Model Ghosts and to the other half of the 8 Cartan Subalgebra elements of E8.

The other 24-12 = 12 Yellow Root Vectors represent Ghosts of 12D Standard Model whose Gauge Groups are \(\operatorname{SU}(3) \mathrm{SU}(2) \mathrm{U}(1)\).

Gravity and Dark Energy come from its Conformal Subgroup SU(2,2) = Spin(2,4) (see Appendix - Details of Conformal Gravity and ratio DE : DM :OM)
\(\operatorname{SU}(2,2)=\) Spin \((2,4)\) has 15 generators:
1 Dilation representing Higgs Ordinary Matter
4 Translations representing Primordial Black Hole Dark Matter
\(10=4\) Special Conformal +6 Lorentz representing Dark Energy
(see Irving Ezra Segal, "Mathematical Cosmology and Extragalactic Astronomy" (Academic 1976))
The basic ratio Dark Energy : Dark Matter : Ordinary Matter \(=10: 4: 1=0.67: 0.27: 0.06\) When the dynamics of our expanding universe are taken into account, the ratio is calculated to be \(0.75: 0.21: 0.04\)

D4
8 Roct Vectors +4 Cartan Elements for 12 Gavge Bosons of Stan dard Model
SU(3)xSU(2)ru(1)

The force strength of a given force is
(1 / Mforce^2) (Vol(MISforce)) (Vol(Qforce) / Vol(Dforce)^(1 / mforce)) where:

Mforce represents the effective mass;
MISforce represents the relevant part of the target Internal Symmetry Space; Vol(MISforce) stands for volume of MISforce and is sometimes also denoted by Vol(M);
Qforce represents the link from the origin to the relevant target for the gauge boson;
Vol(Qforce) stands for volume of Qforce;
Dforce represents the complex bounded homogeneous domain of which Qforce is the Shilov boundary; mforce is the dimensionality of Qforce, which is
Vol(Dforce) \()^{\wedge}(1 /\) mforce \()\) stands for a dimensional normalization factor (to reconcile the dimensionality of the Internal Symmetry Space of the target vertex with the dimensionality of the link from the origin to the target vertex).
\begin{tabular}{lcccc}
Spin(5) & Spin(7) / Spin(5)xU(1) & IV5 & 4 & \(R^{\wedge} 1 x S^{\wedge} 4\) \\
\(S U(3)\) & \(S U(4) / S U(3) x U(1)\) & B^6(ball) & 4 & \(S^{\wedge} 5\) \\
\(S U(2)\) & \(S p i n(5) / \operatorname{SU}(2) x U(1)\) & IV3 & 2 & \(R P \wedge 1 x S^{\wedge 2}\) \\
\(U(1)\) & - & - & 1 & -
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Force & M & Vol(M) & Q & Vol(Q) & D & Vol(D) \\
\hline gravity & S^4 & 8pi^2/3 & RP^1xS^4 & \(8 \mathrm{pi}^{\wedge} 3 / 3\) & IV5 & pi^5/2^4 5! \\
\hline color & CP^2 & 8pi^2/3 & squashed \(\mathrm{S}^{\wedge} 5\) & \(4 \mathrm{pi} \mathrm{\wedge} 3\) & B^6(ball) & pi^3/6 \\
\hline Weak & \(\mathrm{S}^{\wedge} 2 \mathrm{xS} \mathrm{S}^{\wedge} 2\) & 2x4pi & RP^1xS^2 & \(4 \mathrm{pi}^{\wedge} 2\) & IV3 & pi^3/24 \\
\hline e-mag & T^4 & 4x2pi & & - & - & \\
\hline
\end{tabular}
squashed \(S 5=\) Shilov boundary of complex domain of symmetric space \(\operatorname{SU}(4) / \operatorname{SU}(3) x U(1)\)

The relative force strengths at the characteristic energy level of each force are:
Spin(5) gravity at 10^19 GeV = 1; GGmproton^2 approx \(5 \times 10^{\wedge}-39\)
SU(3) color at \(245 \mathrm{MeV}=0.6286\)
at \(5.3 \mathrm{GeV}=0.166\)
at \(34 \mathrm{GeV}=0.121\)
at \(91 \mathrm{GeV}=0.106\); with nonperturbative effects \(=0.125\)
\(\mathbf{S U (2)}\) weak at \(100 \mathrm{GeV}=0.2535\); GWmproton^2 approx \(1.05 \times 10^{\wedge}-5\)
\(\mathbf{U (1)}\) e-mag at \(4 \mathrm{KeV}=1 / 137.03608\)

Fermion masses are calculated as a product of four factors:
\[
\text { V(Qfermion) } \times \mathrm{N}(\text { Graviton }) \times \mathrm{N}(\text { octonion }) \times \text { Sym }
\]

The ratio of the down quark spinor manifold volume factor to the electron spinor manifold volume factor is
\[
\mathrm{V}(\text { Qdown quark }) / \mathrm{V}(\text { Qelectron })=\mathrm{V}\left(\mathrm{~S}^{\wedge} 7 \times \mathrm{RP}^{\wedge} 1\right) / 1=\mathrm{pi} \wedge 5 / 3 .
\]

The third generation fermion particles correspond to triples of octonions.
There are \(8^{\wedge} 3=512\) such triples.
The triple \(\{1,1,1\}\) corresponds to the tau-neutrino.
The other 7 triples involving only 1 and E correspond to the tauon:
The beauty quark corresponds to 21 triples.
They are triples of the same form as the 7 tauon triples involving 1 and E , but for 1 and \(\mathrm{I}, 1\) and J , and 1 and K ,
which correspond to the red, green, and blue beauty quarks,
Triples of the type \(\{1, I, J\},\{I, J, K\}\), etc.,
do not correspond to the beauty quark, but to the Truth quark.
The Truth quark corresponds to those 512-1-7-21 = 483 triples, so the constituent mass of red truth quark is 161/7=23 times red beauty quark red Truth quark mass is \(\mathrm{mt}=129.5155 \mathrm{GeV}\)

Here is a summary of E8 Physics model calculation results. Since ratios are calculated, values for one particle mass and one force strength are assumed.
Quark masses are constituent masses. Most of the calculations are tree-level, so more detailed calculations might be even closer to observations.

\(\mathrm{E} 8=\mathrm{H} 4+\mathrm{H} 4=120+120=240\)-vertex Witting polytope tiling of 8-dim space

\(\mathrm{E} 8=120\) BiVectors +128 half-Spinors of \(\mathrm{Cl}(16)\) Clifford Algebra with graded structure
116120560182043688008114401287011440800843681820560120161
By 8 -Periodicity of Real Clifford Algebras: \(\mathrm{Cl}(16)=\) tensor product \(\mathrm{Cl}(8) \times \mathrm{Cl}(8)\) so with that product \(\mathrm{E} 8=\mathrm{F} 4 \times \mathrm{F} 4\)

H4 = 24 (vertices) +96 (edges) \(=120\)-vertex 600 -cell tiling of 4-dim space with Coxeter Group determined by E8

F4 = 24 cell + dual 24-cell tiling of 4-dim space
F4 \(=8\) Vectors + 28 BiVectors + 16 Spinors of Cl(8) Clifford Algebra with graded structure 188285670562881 tile 4-dim space by 24-cells and their dual 24-cells

D4 24-cell tiling of 4-dim space
\(\mathrm{D} 4=28\) BiVectors of \(\mathrm{Cl}(8)\) Clifford Algebra with 24 root vectors with graded structure \(1 \begin{array}{llllllll}1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 \\ 1\end{array}\) tile 4 -dim space by 24 -cells

A3 = D3 = cuboctahedral tiling of 3-dim space
\(\mathrm{A} 3=\mathrm{D} 3=15\) BiVectors of \(\mathrm{Cl}(6)\) Clifford Algebra with 12 root vectors and with graded structure 1615201561 tile 3-dim space by cuboctahedra which can be seen as a central part of a 24-cell (green vertices above)

H3 = 12-Vertex Icosahedron as Jitterbug Transform of 12-Vertex Cuboctahedron with Coxeter Group determined by D6

\section*{H2 Penrose STAR tilings of 2-dim space}

\section*{H2 = |^5_2 = Penrose STAR tiling of 2-dim space with Coxeter group determined by A4 which contains A2 and field extension \(Q(\) sqrt(5))}

The central part of the tiling has 5 pentagonal sectors

Each of the 5 pentagonal sectors of the tiling contains a 2-dim projected version of the 8-dim E8 Root Vector structure of E8 Physics corresponding to the Complex E6 subalgebra of Octonionic E8. The outer boundary of each sector is not a straight line but is curved with Conformal Symmetry and pentagonal sectors further out are conformally curved rather than straight-line pentagons.

Each pentagonal sector represents the Complex part of Octonionic E8 Physics whose 240 E8 Root Vectors project to the 72 Root Vectors of E6 subalgebra of E8 which 72 E6 Root Vectors have the following physical interpretation
\(16=2 \times 8\) of which represent Complex Fermion Particles
\(16=2 \times 8\) of which represent Complex Fermion AntiParticles
\(16=2 \times(4+4)\) of which represent Complex (4+4)-dim Kaluza-Kiein SpaceTime 12 of which represent the Standard Model
12 of which represent Gravity + Dark Energy
as shown in the following image of one of the pentagonal sectors:

The Bohm Quantum Potential interacts between two Pentagonal Sectors by 24 Bohm Carrier Tiles of one Pentagonal Sector carrying E8 Configuration Information and comparing it with
24 Bohm Carrier Tiles of the Other Sector carrying E8 Configuration Information. If the resulting \(24 \times 24\) Matrix shows that the two E8 Configurations are similar, then a Bohm Quantum Potential Resonant Connection is established.

The Bohm Quantum Potential 24x24 Matrix is traceless because Configuration Resonance is sensitive to similarity rather than dilation scale and is symmetric because Configuration Resonance is symmetric between Sectors.

Guillermo Moreno (arariv math10512517) has shown that \(V(7,2)=\) Spin(77\() /\) Spin(5) can
beidentified with the Zero Divisors of Sedenions which have \(7+28=35\) Associative Trip se identified with the Zero Divisors of Sedenions which have \(7+28=35\) Associative Triples
and for which Zero Divisors are given by the fibration \(\mathrm{V}(7,2) \rightarrow \mathrm{G} 2 \rightarrow \mathrm{~S}\) [3 -sphere \(]\)
 whose \((10 \mathrm{D}\) correspond to \(\mathrm{Cl}(1,9)=\mathrm{Cl}(2,8)\) Conformal over \(\mathrm{Cl}(1,7), 7)\)
that \(\mathrm{V}(15,2)=\operatorname{Spin}(15) /\) Spin \((13)\) is related to, but not identified with,

he Zero Divisors of Voudon 256 -ons corresponding to Coci(f)

Robert de Marrais said
"... 256 ... \(2^{\wedge} 8\) ions Voudons
Moreno ... determines that the automorphism group of the ZD 's of all \(2^{\wedge} n\)-ions ... obey a simple pattern: for \(n \geq 4\) this group has the for \(\mathrm{G} 2 \times(\mathrm{n}-3) \times \mathrm{S} 3\) (\(\ldots\) order- 6 permutation group on 3 elements) ... This says the automorphism group of the Sedenions' ZD's has order \(14 \times 1 \times 6=84 \ldots\) based on 7 octahedral lattices ("Box-Kites")

here are] ... Emanation tables ... ET's for \(\mathrm{S}=15, \mathrm{~N}=5,6,7 \ldots\) and fractal limit.

F4 / B4 = OP2 = Spinor Fermions = = 8 Particles +8 AntiParticles B4 / D4 = 8-dim SpaceTime =
= Kaluza-Klein M4 x CP2
D4 = Spin(4,4) contains Spin(2,4) of Conformal Gravity + Dark Energy

containing E8
at each of the 256 points of \(\mathrm{Cl}(8)\) of Cnf6 \(\rightarrow \mathrm{M} 4\)
there are all 256 points of \(\mathrm{Cl}(8)\) of CP 2
Cross section

E8 / D8 \(=128\)-dim Fermion Spinor Space \(=8\) components of \(8+8\) Fermions
D8 / D4 x D4 = A7+1 = 64 = 8-dim position x 8-dim momentum
D4 containing D3 \(=\mathbf{S p i n}(2,4)=\mathbf{A 3}=\mathbf{S U (2 , 2)}\) for Conformal Gravity + Dark Energy D4 containing D3 \(=\mathrm{SU}(4)\) containing Color Force \(\mathrm{SU}(3)\)

Void \(->\mathrm{Cl}(\) Void \()->\mathrm{Cl}(0)->\mathrm{Cl}(1)->\mathrm{Cl}(2)->\mathrm{Cl}(4)->\mathrm{Cl}(16)\)

\section*{Leonardo da Vinci E8}

Frank Dodd (Tony) Smith, Jr. - 2017
Wikipedia: "... Christ as Salvator Mundi (Saviour of The World) ... is a painting ... from c. 1500 ... by Leonardo da Vinci ... The painting shows Christ, in Renaissance dress, giving a benediction with his raised right hand and crossed fingers while holding a crystal sphere in his left hand ...

... It was ... possibly painted for Louis XII of France and his consort, Anne of Brittany ... shortly after the conquests of Milan and Genoa around 1500 [and] subsequently owned by Charles I of England and recorded in his art collection in 1649 ... Leonardo painted the orb as if it were a hollow glass bubble that does not refract or distort the light passing through it ...[instead of]... paint[ing] the distortion that would occur when looking through a solid clear orb ...".

Since Leonardo's orb is a hollow sphere instead of a solid ball Leonardo's markings are all on the surface of the 2-dim sphere boundary of the ball in 3-dim space.

E8-Cl(16) Physics (viXra 1602.0319) is based on the 240 Root Vectors of E8 which are points on the 7-dim sphere boundary of the ball in 8-dim space.
\[
\begin{gathered}
\text { 248-dim E8 = 120-dim D8 + 128-dim D8 +half-spinor }= \\
=\text { D4×D4 }+8 \times 8+128 \text {-dim D8 +half-spinor D8+s }
\end{gathered}
\]

The structure of E8 was depicted by Flammarion (wood engraving on page 163 of his 1888 book "L'Atmosphere Meteorologie Populaire") on a Celestial Sphere beyond our Earthly Plane and its Star-Sun-Moon-Planets Sphere (viXra 1304.0071):

Flammarion's 1888 engraving was much later than Leonardo's 1500 painting so it did not directly influence Leonardo, but its basic components were well known from at least the time of Ramon Llull (1232-1315)

who, according to R. Pring-Mill, Studies on Ramon Llull, Barcelona, PAM-Curial, 1991, p. 62, produced a "Scheme of the simplified aristotelian cosmos"
as a circle centered by 4 layers Earth, Water, Air, and Fire
and then by 7 layers Moon, Mercury, Venus, Sun, Mars, Jupiter, and Saturn and an 8th layer for the fixed Stars described by the Zodiac
and the 13th layer of Angels, Saints, and the Heavenly Empire of Jesus and G-d which I interpret as E8 Physics by which G-d governs Our Universe.
that is beyond the outer \(4+7+1=12\) layers of Earth, Sun, Moon, Planets, Stars:

The Flammarion Celestial Sphere representation of E8 corresponds to Leonardo's Sphere with markings also representing E8.

Flammarion's Celestial Sphere has two copies of D4 each with 24 Root Vectors and 128 Root Vectors from +half-spinors D8+s of D8 and
8 levels of 8 Spacetime dimensions for position x momentum \(=8 x 8=64\) Root Vectors thus giving \(24+24+128+64=240\) Root Vectors of E8.

Flammarion's Earthly Plane and Stars-Sun-Moon-Panets Sphere corresponding to
Gravity, Dark Energy ratio DE:DM:OM , Higgs , Solar Fusion, and Pd-D Cold Fusion is not shown explicitly by Leonardo, but is represented by Leonardo as

Earthly Plane = Brown Hand and Stars-Sun-Moon-Panets Sphere = Blue Garment.
Leonardo's Celestial Sphere represents E8 in this way:

Two markings correspond to \(64+64=128-d i m\) E8 \(/\) D8
(8x8 Fermion and \(8 \times 8\) AntiFermion components)
The third marking corresponds to 64-dim D8 / D4 x D4
(8-dim Spacetime 8x8 Position x Momentum)
One of the D4 groups of markings corresponds to
the Standard Model and Gravity-Dark Energy Ghosts.
The other D4 group of markings corresponds to
Gravity-Dark Energy and Standard Model Ghosts.
24 of each D4 group of markings are D4 Root Vectors,
the others are composite structures such as
Gauge-Boson-bound (mesons, baryons, atoms) and Gravity-bound (black holes, planets, stars, galaxies).
E8-Cl(16) Physics Calculations of Particle Masses and Force Strengths
from Green's Functions = Kernel Functions of Schwinger Sources
make use of Shilov Boundaries of Complex Domains whose structure
is inherited from the geometry of E8.```

