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Abstract
Here begins a precautionary tale from a creative life in STEM. Bringing an elementary knowledge
of vectors to Bell (1964)—en route to refuting Bell’s inequality and his theorem—we aim to help
STEM students study one of the strangest double-errors in the history of science. To that end we
question du Sautoy’s (2016) claim that Bell’s theorem is as mathematically robust as they come.

1 Preamble

1.1. (i) This essay is to be read in conjunction with Bell (1964). (ii) To aid discussion, improvement,
correction: all paragraphs, equations, figures, etc, are numbered; and all key texts are freely available
online (see References). (iii) Taking math to be the best logic, ours may flow for several lines before we
comment; N = absurd, � = fact; Bell-(1) is shorthand for Bell 1964:(1); etc. (iv) After Bell-(14), we
identify his unnumbered math-expressions as (14a)-(14c), (15a), (21a)-(21e), (23). (v) We then focus
on Bell-(15), Bell’s famous inequality: its fame deriving from Bell’s claim that—given QM’s validity
[which we accept] and Bell-(15)—seemingly sensible Bell-(2) cannot equal the QM-based RHS Bell-(3).
(vi) Calling this claim Bell’s theorem—and retaining Bell-(2) and RHS Bell-(3)—we refute it..

1.2. For newcomers to Bell’s theorem, Watson (2017d; ¶¶2.1-2.7) introduces EPR-Bohm (EPRB)—the
famous experiment discussed in Bell (1964)—in our notation. The key to our work there is this:
rejecting inferences that are false in quantum settings, we posit the principle of true local realism: the
union of true locality (after Einstein) and true (non-naive) realism (after Bohr). Since all our results
agree with QM, its demystification, and with experiment—ie, in our terms, they are QM-true—we’ll
be pleased to address any concerns re our approach: for us, critical comments can be most helpful.

1.3. In Bell (1964), P denotes an expectation (an average). We, reserving P for probabilities, often
denote expectations via 〈·〉; see LHS Bell-(3). To make our analysis here easier to follow wrt Bell
(1964), we replace Bell’s P (~a,~b) with E(a, b)—which is no bad thing—our a and b being unit-vectors.

1.4. We now set the EPRB-scene in our terms: and since our comments are based on our QM-true
analysis—as will be seen—our work is thus backed by valid math and QM; and thus by experiment.

Bell’s inequality: |E(a, b)− E(a, c) | −E(b, c)− 1 ≤ 0.N (1)
Our inequality: |E(a, b)− E(a, c) | +E(a, b)E(a, c)− 1 ≤ 0.� (2)

Bell’s theorem: E(a, b) = −∫dλ ρ(λ)A(a,λ)A(b,λ) 6= −a · b.N (3)

Our theorem: E(a, b) = − 1

n

n∑
i=1

A(a,λi)A(b,λi) = −∫dλ ρ(λ)A(a,λ)A(b,λ) = −a · b.� (4)

· (i) (1) is Bell-(15), Bell’s famous (1964) inequality per ¶1.3: it is doubly absurd and false.

· (ii) (2) corrects (1): QM-true, (2) is the result that Bell should have reached; see (7)-(12).

· (iii) (3) is Bell’s theorem: inferred by Bell via (1) and QM, (3) is false because (1) is false.

· (iv) (4) is our refutation of Bell’s theorem (3): (4) is QM-true; ie, (4) & (2) are QM-true together.
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3 ANALYSIS

1.5. Sharing Bell’s indifference (1964:195) as to whether λ denotes discrete or continuous variables,
we include both possibilities in (4): and though preferring λ-discrete—since we like to work with
individual particles here; see ¶3.5—we can work with both. Using Bell-(13), that variant of Bell-(2) in
(3) & (4) is Bell-(14).

2 Introduction

2.1. A separate Introduction is planned to discuss Bell’s nomination for a Nobel Prize in physics, Bell’s
theorem being widely regarded as one of the most profound discoveries in science and one of the few
essential achievements of 20th Century physics. [nb: our work raises questions re that nomination.]

2.2. From Bell (2004, cover): ‘John Bell ... is particularly famous for his discovery of the crucial differ-
ence between the predictions of conventional quantum theory and the implications of local causality, a
concept insisted on by Einstein.’ [nb: and insisted on by us; our point being that there is no difference.]

2.3. We believe a wider knowledge of Bell’s efforts to resolve his ‘action-at-a-distance’ (AAD) dilemma
(Bell 1990:7)—and of his ‘don’t be a sissy’ have-a-go attitude (Mermin 2001:1)—will bring many
students to life, and to a life, in STEM. [nb: accepting locality, contra Bell (1990:13), we reject AAD.]

3 Analysis

3.1. Encouraging students to study Bell (1964) deeply—and enjoy discovery—some small steps are not
included here. [Depending on responses, such steps may be added as endnotes in later updates.]

3.2. En route to showing that (1) is doubly absurd—and thus (3) also—we first confirm an oft-neglected
fact: (1) is absurd under QM. Thus, using RHS Bell-(3): (1) under QM becomes

|a · c− a · b | + b · c− 1 ≤ 0. (5)

3.3. We now test (1), hence (5), using RHS (4). If a · b = b · c = 1
2 & a · c = −1

2 ,

then LHS (1) and LHS (5) = |−1
2 −

1
2 | +

1
2 − 1 = 1

2 � 0. N (6)

3.4. Thus, via RHS (4), (6) being QM-true: Bell’s (1) and Bell’s (3) are refuted; the latter via our use
of its contradiction. Why is it so? Well: Bell’s derivation of that famous (1) is itself absurd. �

3.5. To see this, we apply LHS (4) to LHS Bell-(14a): ie, wrt Bell’s derivation of Bell-(15)—(1)—we
(and Bell) start at the same place. But we randomly distribute 3n particle-pairs—using up to 3n
detector-pairs—over randomized detector-settings (a, b), (a, c), (b, c). [nb: (a, b) denotes the angle be-
tween a and b; etc.] And—avoiding any possibility of false inference—we allow each particle-pair to be
unique: and thus uniquely indexed [i = 1, 2, ..., 3n] for identification purposes. We then allow n to be
such that—to an adequate accuracy; ie, satisfying serious critics—and for convenience in presentation:

LHS Bell(14a) = E(a, b)− E(a, c) (7)

= − 1

n

n∑
i=1

[A(a,λi)A(b,λi)−A(a,λn+i)A(c,λn+i)] (8)

=
1

n

n∑
i=1

A(a,λi)A(b,λi)[A(a,λi)A(b,λi)A(a,λn+i)A(c,λn+i)− 1]. (9)

ButA(a,λi)A(b,λi) = ±1 : from Bell-(1). (10)

∴ | E(a, b)− E(a, c) | ≤ 1− 1

n

n∑
i=1

A(a,λi)A(b,λi)A(a,λn+i)A(c,λn+i) (11)

≤ 1− E(a, b)E(a, c) : which is (2); and QM-true, (12)
∵ for any a, b, c : |a · c− a · b | +(a · b)(a · c)− 1 ≤ 0; using (4).� (13)
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4 CONCLUSIONS

3.6. Thus, using a not-too-difficult STEM-level particle-by-particle analysis of EPRB, we refute both
(1) & (3) via (7)-(13). For, using the discrete version of LHS (4), we refute Bell’s famous inequality
(1)—and thus its consequents (5)-(6)—via (7)-(12). And we refute Bell’s famous theorem (3) by using
its contradiction—RHS (4)—in (13). [nb: all our results are QM-true; see Appendix A for (11)-(12).]

3.7. For the record, the math-truth (and hence the QM-truth here) for (1)—and thus for (5)—is,

for any a, b, c : |a · c− a · b | +(b · c)− 1 ≤ 1
2 ; � (14)

which agrees with our result at (6). [Proving the limits of (13) & (14) is left as a STEM exercise.]

3.8. The above brings us to Bell’s famous claim: ie, the basis for (3), his theorem.

‘Thus, the quantum mechanical expectation value −a · b cannot [sic] be represented, either
accurately or arbitrarily, in the form of Bell-(2),’ after Bell (1964:199).

3.9. But before refuting it, let us be clear: this is Bell’s theorem—(3)—in our terms; aka Bell’s
impossibility theorem, and supposedly so profound that Stapp (1975:271) claimed it to be ‘the most
profound discovery’ of science. nb: CHSH (1969) imply that (1) is Bell’s theorem. But from the line
below Bell-(3), and from “This is the theorem” (Bell 2004: 65), Bell supports (3).

3.10. Either way: whether Bell’s theorem be (1) or (3), it is refuted; see ¶3.6.

3.11. In sum, under the same technique that Bell used to derive his QM-false (1) & (3)—ie, Bell’s
technique is the one that we have followed here—Bell’s inequality (1) and Bell’s theorem (3) are refuted.

3.12. Then—noting the note below Bell-(14b)—here is Bell’s key error;

Bell 1964:(14a) 6= Bell 1964:(14b); cf (13) with (6), etc. (15)

3.13. In other words: the source of 6= in (15) is Bell’s move from Bell-(14a) to Bell-(14b) using Bell-(1).
And here, from (1) & (2), is the physical significance of that move:

E(a, b)E(a, c) + E(b, c) = 0. (16)
ie: (a · b)(a · c)− (b · c) = 0. N (17)

3.14. Absurdities (1), (3), (6), (17) thus arise from Bell’s use of Bell-(1) after Bell-(14a). QED.�

3.15. So: (i) given the scenario in ¶3.5—given 3n particle-pairs, with from one to 3n detector-pairs
available; at different sites—over varied settings equivalent to (a, b), (a, c), (b, c); (ii) given our provision
of the more complete specification that Bell (1964:195) sought to be effected by means of λ; (iii) given
the Bellian absurdities; (iv) given our QM-truths; (v) and given du Sautoy (2016:170)—‘Bell’s theorem
is as mathematically robust as they come’—we ask: Is Bell’s theorem as mathematically robust as they
come? Or have we missed something?

4 Conclusions

‘This was our dilemma: our analysis of EPRB led us to admit that, somehow, distant things
are subtly connected, or at least not disconnected,’ after Bell (1990:7). But there was hope:
‘This action-at-a-distance business will pass. ... If we’re lucky it will be to some big new
development like the theory of relativity. Maybe someone will just point out that we were
being rather silly. ... But I believe the questions will be resolved,’ after Bell (1990:9).

4.1. Eliminating 22 math-expressions—between Bell-(3)-(12) and after Bell-(15)—Bell’s ideas would
be clearer still if our (3) is declared to be Bell’s theorem.
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6 APPENDIX: PROOF THAT RHS (11) = RHS (12)

4.2. Students should then be encouraged to understand ¶3.5—nb: its subtle particle-by-particle anal-
ysis is more elementary (and much less daunting) than it sounds—and thus find the many interesting
errors in Bell-(14b)-(22). They might then join us and refute Bell’s theorem on their own terms.

4.3. ‘Britain’s most famous mathematician’—du Sautoy (2016, cover)—may well say (p.170), ‘Bell’s
theorem is as mathematically robust as they come.’ But bound, as we are—by EPRB, QM, and true
local realism—we find no basis for that conclusion here.

4.4. Indeed, in closing, we launch our own impossibility theorem. Given EPRB, QM, and true local
realism (the union of true locality and true realism)—ie, given the locality that Bell (1990:12-13)
rejects—it is impossible that Bell-(14a) = Bell-(14b). Or have we missed something?
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6 Appendix: Proof that RHS (11) = RHS (12)

6.1. We first reduce the expectation on RHS (11) to a conventional (probability-based) arithmetic
mean over all test outcomes; the most basic definition of an expectation. Thus, using Bell-(13) to
convert our A-style functions to relevant B- and C-style functions:

A(b,λi) = −Bi;A(c,λn+i) = −Cn+i. (18)

6.2. Next (eliminating the identifiers n, n + i ), we need to identify which A result is correlated with
the B result, and which with the C result. So—with A+

B =1, A−
B = −1, etc—let A±

B (A±
C) be correlated

with B± (C±); with A±
B andB± independent of (A±

C) and C
±, and vice versa.

6.3. Then, since λi and λn+i are independent random variables, here are our progressive simplifications:

P [A(a,λi) = 1] ≡ P (Ai = 1) = P (A+
B) = P (A−

B) = P (A+
C) = P (A−

C) =
1
2 . (19)

So: P (A+
BA

+
C) = P (A+

BA
−
C) = P (A−

BA
+
C) = P (A−

BA
−
C) =

1
4 . (20)

6.4. Thus, via similar progressive simplifications:

1

n

n∑
i=1

A(a,λi)A(b,λi)A(a,λn+i)A(c,λn+i) (21)

=
1

n

n∑
i=1

AiBiAn+iCn+i) (22)

=
〈
A±

BB
±A±

CC
±〉 (23)
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= 1
4(A

+
BA

+
C)[P (B

+ | A+
BA

+
C)− P (B

− | A+
BA

+
C)][P (C

+ | A+
BA

+
C)− P (C

− | A+
BA

+
C)]

+ 1
4(A

+
BA

−
C)[P (B

+ | A+
BA

−
C)− P (B

− | A+
BA

−
C)][P (C

+ | A+
BA

−
C)− P (C

− | A+
BA

−
C)]

+ 1
4(A

−
BA

+
C)[P (B

+ | A−
BA

+
C)− P (B

− | A−
BA

+
C)][P (C

+ | A−
BA

+
C)− P (C

− | A−
BA

+
C)]

+ 1
4(A

−
BA

−
C)[P (B

+ | A−
BA

−
C)− P (B

− | A−
BA

−
C)][P (C

+ | A−
BA

−
C)− P (C

− | A−
BA

−
C)] (24)

= 1
4 [sin

2 1
2(a, b)− cos2 1

2(a, b)][sin
2 1
2(a, c)− cos2 1

2(a, c)]

− 1
4 [sin

2 1
2(a, b)− cos2 1

2(a, b)][cos
2 1
2(a, c)− sin2 1

2(a, c)]

− 1
4 [cos

2 1
2(a, b)− sin2 1

2(a, b)][sin
2 1
2(a, c)− cos2 1

2(a, c)]

+ 1
4 [cos

2 1
2(a, b)− sin2 1

2(a, b)][cos
2 1
2(a, c)− sin2 1

2(a, c)] (25)
= 1

4 [− cos(a, b)][− cos(a, c)]− 1
4 [− cos(a, b)][cos(a, c)]

− 1
4 [cos(a, b)][− cos(a, b)] + 1

4 [cos(a, b)][cos(a, c)] (26)
= cos(a, b) cos(a, c) = (a · b)(a · c).� (27)

∴ RHS (11) = RHS (12). QED. (28)

6.5. Using the independence relations identified in ¶6.2 (under true locality; Watson 2017d), the key
probability relations in (25) —see Watson 2017d:(20)—are typified by:

P (B+ | A+
BA

+
C) = P (B+ | A+

B) = sin2 1
2(a, b);P (B

− | A+
BA

+
C) = P (B− | A+

B) = cos2 1
2(a, b). (29)
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