Abstract
In this research investigation, the author has detailed the Theory Of Evolution.

Theory
Considering any Positive Number a we can define the Evolution of a as follows:

1. If a is prime and is specifically some k^{th} Primes, then the One Step Evolution of a is the $(k + 1)^{th}$ Prime. That is, $E^1(k^{th}\text{Prime}) = (k + 1)^{th}\text{Prime}$

2. If a is not Prime, we write a as $a = b_1 + \delta_1$ where b_1 is the Prime nearest to a and less than a.
 Furthermore, we write δ_1 as $\delta_1 = b_2 + \delta_2$ where b_2 is the Prime nearest to δ_1 and less than δ_1.
 and so on so forth, till we can express any number in terms of Primes and possibly 1 as well as the additive terms.
 For example, considering the number 24 we can write it as $(23+1)$, considering the number 27, we can write it as $(23+4)$ which can be further written as $(23+3+1)$, considering the number 34, we can write it as $(31+3)$.
 Then, One Step Evolution of a is the Sum of the One Step Evolution of the terms (as detailed above) that sum to it, with Evolution of 1 taken as 2.
 For Example, taking the number 24 we can write it as $(23+1)$, hence its One Step Evolution is $29 = 31 - 2 = 29 + 2$.
 Considering the number 27, we can write it as $(23+4)$, its One Step Evolution being $29+5 = 34$.
 Considering the number 34, we can write it as $(31+3)$, its One Step Evolution being $37+5 = 42$.

3. $E^1(l + m) = E^1(l) + E^1(m)$ where l and m are some Positive Numbers and E^1 represents the One Step Evolution Operator.

4. $E^1\left(\frac{c}{d}\right) = \frac{E^1(c)}{E^1(d)}$ where c and d are some Positive Numbers and E^1 represents the One Step Evolution Operator.
5. \(E^1(p - q) = E^1(p) - E^1(q) \) with \(p > q \), where \(p \) and \(q \) are some Positive Numbers and \(E^1 \) represents the One Step Evolution Operator.

References