Dynamic Thresholding For Linear Binary Classifiers.
{Version 2} ISSN 1751-3030

Author:
Ramesh Chandra Bagadi
Data Scientist
INSOFE (International School Of Engineering),
Hyderabad, India.
rameshcbagadi@uwalumni.com
+91 9440032711

Research Manuscript

Abstract

In this research investigation, the author has detailed a novel method of finding the Thresholding for Linear Binary Classifiers.

Theory

Method 1:

If \(y_l \) (for \(l = 1 \) to \(n \)) are the points, that have to be divided using a linear binary classifier, we can select the Threshold value \(y_t \) using the equation

\[
\sum_{i=1}^{m} (y_i - y_t)y_i = \sum_{j=1}^{n-m} (y_j - y_t)y_j
\]

Equation 1

with \(i \neq j \), \(y_i > y_t \), \(y_j < y_t \) and \(y_i, y_j \in y_l \). But since we do not know \(y_t \), we first order all the \(y_l \) in increasing order and choose \(y_t \) to be in between the \(y_l \) values, i.e., \(y_l < y_t < y_{l+1} \) (for \(l = 1 \) to \(n - 1 \)). That is for \(n \) number of points, we need to choose \((n-1)\) number of domains of \(y_t \). Values of \(y_t \) within one of these domains gives us the best \(y_t \), the best being the one which satisfies the above stated equation 1 best.
Method 2:

Case 1:

If \(x_l, y_l\) (for \(l = 1\) to \(n\)) are the points, that have to be divided using a linear binary classifier, we can select the Threshold value \(y_t\) using the equation

\[
\sum_{i=1}^{m} (y_i - y_t)(x_l - x_i) = \sum_{j=1}^{n-m} (y_t - y_j)(x_j - x_i)
\]

Equation 2

with \(i \neq j\), \(y_i > y_t\), \(y_j < y_t\), \(x_i < x_t\), \(x_j > x_t\) and \(y_i, y_j \in y_l\). But since we do not know \(x_t\), \(y_t\), we first order all the \(y_l\) in increasing order and choose \(y_t\) to be in between the \(y_l\) values, i.e., \(y_l < y_t < y_{l+1}\) (for \(l = 1\) to \(n - 1\)). We similarly, order all \(x_l\) in increasing order and choose \(x_t\) to be in between the \(x_l\) values, i.e., \(x_l < x_t < x_{l+1}\) (for \(l = 1\) to \(n - 1\)). That is for \(n\) number of points, we need to choose \((n - 1)\) number of domains (each) of \(x_t\) and \(y_t\). Now, we have to choose the values of \(x_t\), \(y_t\) within one of their (respective) domains such that they satisfy the above stated equation 2 best.

Case 2:

If \(y_i\) (for \(i = 1\) to \(n\)) are the points, that have to be divided using a linear binary classifier, we can select the Threshold value \(y_t\) using the equation

\[
\sum_{i=1}^{m} (y_t - y_i)(x_l - x_i) = \sum_{j=1}^{n-m} (y_j - y_t)(x_j - x_i)
\]

Equation 3

with \(i \neq j\), \(y_i < y_t\), \(y_j > y_t\), \(x_i < x_t\), \(x_j > x_t\) and \(y_i, y_j \in y_l\). But since we do not know \(x_t\), \(y_t\), we first order all the \(y_l\) in increasing order and choose \(y_t\) to be in between the \(y_l\) values, i.e.,
$y_l < y_t < y_{l+1}$ (for $l = 1$ to $n - 1$). We similarly, order all x_l in increasing order and choose x_t to be in between the x_l values, i.e., $x_l < x_t < x_{l+1}$ (for $l = 1$ to $n - 1$). That is for n number of points, we need to choose $(n - 1)$ number of domains (each) of x_t and y_t. Now, we have to choose the values of x_t, y_t within one of their (respective) domains such that they satisfy the above stated equation 2 best.

References