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Abstract

After applying the recently proposed Bohm-Poisson equation [1] to the observ-
able Universe as a whole, and by introducing an ultraviolet (very close to the Planck
scale) and an infrared (Hubble radius) scale, one can naturally obtain a value for
the vacuum energy density which coincides exactly with the extremely small ob-
served vacuum energy density, and explain the origins of its repulsive gravitational
nature. Because Bohm’s formulation of QM is by construction non-local, it is this
non-locality which casts light into the crucial ultraviolet/infrared entanglement of
the Planck/Hubble scales which was required in order to obtain the observed value
of the vacuum energy density.

Exact solutions to the stationary spherically symmetric Newton-Schroedinger equation

ih̄
∂Ψ(~r, t)

∂t
= − h̄2

2m
∇2Ψ(~r, t) −

(
Gm2

∫ |Ψ(~r′, t)|2

|~r − ~r′|
d3r′

)
Ψ(~r, t) (1)

were proposed recently in terms of integrals involving generalized Gaussians [1]. The en-
ergy eigenvalues were also obtained in terms of these integrals which agree with the numer-
ical results in the literature. We proceeded to replace the nonlinear Newton-Schroedinger
equation for a non-linear quantum-like Bohm-Poisson equation involving Bohm’s quan-
tum potential, and where the fundamental quantity is no longer the wave-function Ψ but
the real-valued probability density ρ.

Bohm’s quantum potential VQ = − h̄2

2m
(∇2√ρ/√ρ) has a geometrical derivation in

terms of the Weyl scalar curvature produced by an ensemble density of paths associated
with one, and only one particle [2]. This geometrization process of quantum mechanics
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allowed to derive the Schroedinger, Klein-Gordon [2] and Dirac equations [3]. Most re-
cently, a related geometrization of quantum mechanics was proposed [4] that describes
the time evolution of particles as geodesic lines in a curved space, whose curvature is
induced by the quantum potential. This formulation allows therefore the incorporation
of all quantum effects into the geometry of space-time, as it is the case for gravitation
in the general relativity. Based on these results we proposed [1] the following nonlinear
quantum-like Bohm-Poisson equation for static solutions ρ = ρ(~r), after reabsorbing a
mass factor inside ρ so that ρ is now a mass-density,

∇2VQ = 4πGmρ ⇒ − h̄2

2m
∇2 (

∇2√ρ
√
ρ

) = 4πGmρ (2)

such that one could replace the nonlinear Newton-Schroedinger equation for the above
non-linear quantum-like Bohm-Poisson equation (2) where the fundamental quantity is
no longer the wave-function Ψ (complex-valued in general) but the real-valued probability
density ρ = Ψ∗Ψ.

It has been proposed by [5], [6] to give up the description of physical states in terms of
ensembles of state vectors with various probabilities, relying instead solely on the density
matrix as the description of reality. The time evolution of ρ is governed by the Lindblad
equation 1. The authors [6] also investigated a number of unexplored features of quantum
theory, including an interesting geometrical structure- which they called subsystem space-
that they believed merits further study.

An infinite-derivative-gravity generalization of eq-(2) is [1]

− h̄2

2m
(e−

σ2

4
∇2 ∇2) (

∇2√ρ
√
ρ

) = 4πGmρ (3)

the above equation is nonlinear and nonlocal.
If one wishes to introduce a temporal evolution to ρ via a Linblad-like equation, for

instance, this would lead to an overdetermined system of differential equations for ρ(~r, t).
This problem might be another manifestation of the problem of time in Quantum Gravity.
Naively replacing ∇2 in eqs-(2,3) for the D’Alambertian operator ∂µ∂

µ, µ = 0, 1, 2, 3 has
the caveat that in QFT ρ(xµ) = ρ(~r, t) no longer has the interpretation of a probability
density (it is now related to the particle number current). For the time being we shall
just focus on static solutions ρ(~r).

It is straightforward to verify that a spherically symmetric solution to eq-(2) in D = 3
is

ρ(r) =
A

r4
, A = − h̄2

2πGm2
< 0 (4)

At first glance, since ρ(r) ≤ 0 one would be inclined to dismiss such solution as being
unphysical. Nevertheless, we can bypass this problem by focusing instead on the shifted

1To be more precise it is the Gorini-Kossakowski-Sudarshan-Lindblad equation
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density ρ̃(r) ≡ ρ(r)− ρ0 obeying the Bohm-Poisson equation

− h̄2

2m
∇2 (

∇2
√
ρ̃√
ρ̃

) = 4πGmρ̃ (5)

and whose solution for the shifted density is given by

ρ̃ = A/r4 = ρ(r) − ρo ≤ 0, ⇒ ρ(r) =
A

r4
+ ρ0, A = − h̄2

2πGm2
(6)

It is not problematic that the terms inside the square roots are less than zero, since a
common factor of i =

√
−1 appears both in the numerator and denominator, and hence

it cancels out. The idea now is to focus on the domain of values where ρ(r) ≥ 0. And,
in doing so, it will allows to show that the value of ρ0 can be made to coincide exactly
with the (extremely small) observed vacuum energy density, by simply introducing an
ultraviolet length scale l that is very close to the Planck scale, and infrared length scale
L equal to Hubble scale RH .

In particular, the ultraviolet scale l is chosen at the node of ρ(r), so

ρ(r = l) = − h̄2

2πGm2

1

l4
+ ρo = 0 ⇒ ρo =

h̄2

2πGm2

1

l4
(7)

The domain of physical values of r must be r ≥ l in order to ensure a positive-definite
density ρ(r) ≥ 0.

In natural units of h̄ = c = 1, introducing the infrared scale L = RH in the normal-
ization condition (otherwise the mass would diverge) it yields

m =
∫ RH

l
ρ(r) 4πr2 dr =

∫ RH

l
(
A

r4
+ ρ0) 4πr2 dr =

∫ RH

l

(
− 1

2πGm2

1

r4
+ ρ0

)
4πr2 dr

(8)
Upon performing the integral in eq-(8), after plugging in the value of ρ0 derived from
eq-(7), with the provision that RH >> l, the dominant contribution to the integral stems
solely from ρo, and one ends up with the following relationship

4πR3
H

3
ρo =

4πR3
H

3

1

2πGm2l4
= m ⇒ m3 =

2

3

R3
H

Gl4
(9)

solving for m one gets

m = (
2

3Gl4
)1/3 RH (10)

One can verify that when the ultraviolet scale l is chosen to be very close to the Planck
scale, given by

l4 =
4

3
L4
P ⇒ l = (

4

3
)1/4 LP (11)
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and then upon inserting the values for m and l obtained in eqs-(10,11) into the expression
for ρo derived in eq-(7), after setting L2

p = 2G, 2 it gives in natural units of h̄ = c = 1

ρo =
1

2πGm2

1

l4
=

1

2πG
(
3 G l4

2
)2/3 1

R2
H l4

=
3

8πG

L4
p

R2
H L4

p

=
3

8πGR2
H

(12)

which is precisely equal to the observed vacuum energy density ρ = (2Λ/16πG) associated
with a cosmological constant Λ = (3/R2

H) and corresponding to a de Sitter expanding
universe whose throat size is the Hubble radius RH .

The physical reason behind the choice of the ultraviolet scale l in eq-(11) is based
on re-interpreting ρo as the uniform energy (mass) density inside a black hole region of
Schwarzschild radius R = 2Gm

ρbh =
m

(4π/3)R3
=

3

8πGR2
, L2

P = 2G, h̄ = c = 1 (13)

when R = 2Gm >> l, equating the expression for ρo in eq-(7) to ρbh in eq-(13) gives

1

2πGm2l4
=

1

2πl4
(2G)2

R2
=

1

2πl4
L4
p

R2
=

3

8πGR2
⇒ l = (

4

3
)1/4 Lp, h̄ = c = 1 (14)

leading to eq-(11). Therefore, when R = 2Gm >> l, the value of l in eqs-(11,14) is always
very close to the Planck scale, and independent of R = 2Gm, because the scale R has
decoupled in eq-(14).

In this way, one can effectively view the observable universe as a “black-hole” whose
Hubble radius RH encloses a mass MU given by 2GMU = RH . From eq-(14) it follows
that when R = RH , the black hole density ρbh = ρo = ρobs coincides with the observed
vacuum energy density. It is well known that inside the black hole horizon region the
roles of t and r are exchanged due to the switch in the signature of the gtt, grr metric
components. Cosmological solutions based on this t ↔ r exchange were provided by the
Kantowski-Sachs metric.

To sum up, after viewing the whole Universe as an effective lump of matter, whose
mass density distribution ρ(r) = Ar−4 + ρo (6) is explicitly derived from solving the
Bohm-Poisson equation (5), one is able to obtain the observed vacuum energy density.
Furthermore, the Bohm-Poisson equation allows us to find the correct physical interpre-
tation of the vacuum energy density as a repulsive gravitational force. The reasoning
goes as follows. A simple inspection of the left hand side of the Bohm-Poisson equation
(5) for ρ̃ = ρ − ρo = Ar−4 ≤ 0, allows to multiply the numerator and denominator by
i =

√
−1. Whereas in the right hand side one can simply rewrite Gρ̃ = (−G)(−ρ̃),

leading now to a Bohm-Poisson equation corresponding to a positive definite expression
−ρ̃ = ρo−ρ = −Ar−4 ≥ 0, but with a negative gravitational constant −G < 0, associated
to repulsive gravity.

2Some authors absorb the factor of 2 inside the definition of Lp
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Concluding, after applying the Bohm-Poisson equation to the observable Universe
as a whole, and by introducing an ultraviolet (very close to the Planck scale) and an
infrared (Hubble) scale, one can naturally obtain a value for the vacuum energy density
which coincides exactly with the extremely small observed vacuum energy density, and
explain the origins of its repulsive gravitational nature. Is it a numerical coincidence
or design ? Because Bohm’s formulation of QM is by construction non-local, it is this
non-locality which casts light into the crucial ultraviolet/infrared entanglement of the
Planck/Hubble scales which was required in order to obtain the observed values of the
vacuum energy density. Finally, we should add that of the many articles surveyed in
the literature pertaining the role of Bohm’s quantum potential and cosmology, [7], [8] we
did not find any related to the Bohm-Poisson equation proposed in this work. A Google
Scholar search provided the response “Bohm-Poisson equation and cosmological constant
did not match any articles”.
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