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Abstract: Rough sets theory is a powerful tool to deal with un-
certainty and incompleteness of knowledge in information systems.
Wang et al. proposed single valued neutrosophic sets as an extension
of intuitionistic fuzzy sets to deal with real-world problems. In this
paper, we propose the covering-based rough single valued neutro-
sophic sets by combining covering-based rough sets and single val-
ued neutrosophic sets. Firstly, three types of covering-based rough
single valued neutrosophic sets models are built and the properties

of lower/upper approximation operators are explored. Secondly, the
lower/upper approximations in two different covering approximation
spaces are studied. The sufficient and necessary condition for gener-
ating the same lower/upper approximations from two different cover-
ing approximation spaces is discussed. Moreover, the relations of the
three models are discussed and the equivalence conditions for three
models are given.
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1 Introduction
Rough set theory (RST), proposed by Pawlak[1] in 1982, is one
of the effective mathematical tools for processing fuzzy and un-
certainty knowledge. The classical rough set theory is based on
the equivalence relation on the domain. In many practical prob-
lems, the relation between objects is essentially no equivalence
relation, so this equivalence relation as the basis of the classic
rough set model cannot fully meet the actual needs. For this a
lot of extension models of Pawlak rough set are given. One ap-
proach is to extend the equivalence realtion to similarity relation-
s[2], tolerance relations[3], ordinary binary relations[4], reflex-
ive and transitive relations[5] and others. The other approach is
combining the other theory to get more flexible and expressive
framework for modeling and processing incomplete information
in information systems. Mi et al.[6] introduced the definitions
for generalized fuzzy lower and upper approximation operators
determined by a residual implication. Pei [7] studied generalized
fuzzy rough sets. Zhang et al.[8] gave a general framework of in-
tuitionistic fuzzy rough set theory. Yang et al. [9]proposed hesi-
tant fuzzy rough sets and studied the models axiomatic character-
izations by combining hesitant fuzzy sets and rough sets.Zhang et
al.[10] further gave the construction and axiomatic characteriza-
tions of interval-valued hesitant fuzzy rough sets, and illustrated
the application of the model.

Covering rough sets theory is an important rough sets theo-
ry. Covering rough set model, first proposed by Zakowski[11]
in 1983, Bonikowski et al. later studied the structures of cover-
ing[12]. Chen et al. [13]discussed the covering rough sets within
the framework of a completely distributive lattice. Zhu and Wang
[14]proposed the reduction of covering rough sets to reduce the
“redundant” members in a covering in order to find the “small-
est” covering. Deng et al. [15] established fuzzy rough set mod-
els based on a covering. Li et al. [16] proposed a generalized
fuzzy rough approximation operators based on fuzzy coverings.

Wei et al. [17]and Xu et al. [18] established the first and sec-
ond types of rough fuzzy set models based on a covering. Hu et
al.[19] proposed the third type of rough fuzzy set models based
on a covering. Tang et al. [20] gave the fourth type of rough
fuzzy set models based on a covering.

Smarandache [21] proposed neutrosophic sets to deal with
real-world problems. A neutrosophic set has three membership
functions: truth membership function, indeterminacy member-
ship function and falsity membership function, in which each
membership degree is a real standard or non-standard subset of
the nonstandard unit interval ]0−, 1 + [ . Wang et al. [22] intro-
duced single valued neutrosophic sets (SVNSs) that is a gener-
alization of intuitionistic fuzzy sets, in which three membership
functions are independent and their values belong to the unit in-
terval [0, 1]. Further studies have done in recent years. Such as,
Majumdar and Samanta [23] studied similarity and entropy of
SVNSs. Ye [24] proposed correlation coefficients of SVNSs, and
applied it to single valued neutrosophic decision-making prob-
lems, etc.

SVNSs and covering rough sets are two different tools of deal-
ing with uncertainty information. In order to use the advantages
of SVNSs and covering rough sets, we establish a hybrid model
of SVNSs and covering rough sets. Broumi and Smarandache
proposed single valued neutrosophic information systems based
on rough set theory [25]. Yang et al. proposed single valued neu-
trosophic rough set model and single valued neutrosophic refined
rough set model[26,27]. In the present paper, we shall propose
covering-based rough single valued neutrosophic sets by fusing
SVNSs and covering rough sets, and explore a general framework
of the study of covering-based rough single valued neutrosophic
sets.

The paper is organized as follows. After this introduction, In
section 2, we provide the basic notions and operations of Pawlak
rough sets, covering rough sets and SVNSs. Based on a SVNR,
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Sect. 3 proposes three types of covering-based rough single val-
ued neutrosophic sets. Properties of lower/upper approximation
operators are studied. In Sect. 4, we investigate the relations of
the three types models. The last section summarizes the conclu-
sions and gives an outlook for future research.

2 Preliminaries
In this section, we give basic notions and operations on Pawlak
tough sets, covering-based rough sets and SVNSs.

Definition 2.1 Let U be a non-empty finite university and R be
an equivalence relations on U . (U,R) is called a Pawlak approx-
imation space. ∀X ⊆ U , the lower and upper approximations of
X , denoted by R(X) and R(X), are defined as follows, respec-
tively:

R(X = {x ∈ U |[x]R ⊆ X},
R(X = {x ∈ U |[x]R ∩X 6= ∅},

where [x]R = {y ∈ U |(x, y) ∈ R}. R(X) and R(X) are called
as lower and upper approximations operators, respectively. The
pair (R(X), R(X)) is called a Pawlak rough set.

Definition 2.2 Let U be a non-empty finite university, C is a fam-
ily of subsets of U . If none subsets in C is empty and ∪C = U ,
then C is a covering of U .

Definition 2.3 Let C be a covering of U , x ∈ U . MdC(x) =
{K ∈ C ∧ (∀S ∈ C ∧x ∈ S ∧S ⊆ K ⇒ K = S)} is called the
minimal description of x, When the covering is clear, we omit the
lowercase C in the minimal description.

Definition 2.4 Let U be a space of points (objects), with a gener-
ic element in U denoted by u. A SVNS A in U is characterized by
three membership functions, a truth membership function TA, an
indeterminacy membership function IA and a falsity-membership
function FA, where ∀u ∈ U, TA(u), IA(u), FA(u) ∈ [0, 1]. That
is TA : U → [0, 1], IA : U → [0, 1] and FA : U → [0, 1].
There is no restriction on the sum of TA(u), IA(u) and FA(u),
thus 0 ≤ TA(u) + IA(u) + FA(u) ≤ 3.

Here A can be denoted by A =
{〈u, TA(u), IA(u), FA(u)〉|u ∈ U}, ∀u ∈ U, (TA(u),
IA(u), FA(u)) is called a single valued neutrosophic num-
ber(SVNN).

Definition 2.5 Let A and B be two SVNSs on U . If for any u ∈
U , TA(u) ≤ TB(u), IA(u) ≥ IB(u), FA(u) ≥ FB(u), then we
called A is contained in B, denoted by A b B.

If A b B and B b A, then we called A is equal to B, denoted
by A = B.

Definition 2.6 Let A be a SVNS on U. The complement of A is
denoted by Ac, where ∀u ∈ U , TAc(u) = FA(u), IAc(u) =
1− IA(u), FAc(u) = TA(u).

Definition 2.7 Let A and B be two SVNS on U . The union of A
and B is a SVNS C, denoted by C = A d B, where ∀u ∈ U ,
TC(u) = max{TA(u), TB(u)}, IC(u) = min{IA(u), IB(u)},
FC(u) = min{FA(u), FB(u)}.

The intersection of A and B is a SVNS D, denoted by D =
A eB, where ∀u ∈ U , TD(u) = min{TA(u), TB(u)}, IC(u) =
max{IA(u), IB(u)}, FC(u) = max{FA(u), FB(u)}.

Proposition 2.8 [26] Let A and B be two SVNS on U . The fol-
lowing results hold:

(1) A b A dB and B b A dB;
(2) A eB b A and A eB b B;
(3) (Ac)c = A;
(4) (A dB)c = Ac eBc;
(5) (A eB)c = Ac dBc.

3 Covering-based rough neutrosophic
sets

Definition 3.1 Let U be a non-empty finite university, C is a cov-
ering of U , (U,C) be a covering approximation space. A is a
SVNS of U . The first type of lower and upper approximations of
A with respect to (U,C), denoted by FL(A) and FU(A), are
two SVNSs whose membership functions are defined as ∀u ∈ U ,
TFL(A)(u) = inf{TA(v)|v ∈ ∪Md(u)},
IFL(A)(u) = sup{IA(v)|v ∈ ∪Md(u)},
FFL(A)(u) = sup{FA(v)|v ∈ ∪Md(u)},
TFU(A)(u) = sup{TA(v)|v ∈ ∪Md(u)},
IFU(A)(u) = inf{IA(v)|v ∈ ∪Md(u)},
FFU(A)(u) = inf{FA(v)|v ∈ ∪Md(u)}.

The pair (FL(A), FU(A)) is called the first type of rough sin-
gle valued neutrosophic set based on covering C. FL(A) and
FU(A) are called as the first lower and upper approximations
operators, respectively.

Definition 3.2 Let U be a non-empty finite university, C is a cov-
ering of U , (U,C) be a covering approximation space. A is a
SVNS of U . The second type of lower and upper approximations
of A with respect to (U,C), denoted by SL(A) and SU(A), are
two SVNSs whose membership functions are defined as ∀u ∈ U ,
TSL(A)(u) = inf{TA(v)|v ∈ ∩Md(u)},
ISL(A)(u) = sup{IA(v)|v ∈ ∩Md(u)},
FSL(A)(u) = sup{FA(v)|v ∈ ∩Md(u)},
TSU(A)(u) = sup{TA(v)|v ∈ ∩Md(u)},
ISU(A)(u) = inf{IA(v)|v ∈ ∩Md(u)},
FSU(A)(u) = inf{FA(v)|v ∈ ∩Md(u)}.

The pair (SL(A), SU(A)) is called the second type of rough s-
ingle valued neutrosophic set based on covering C. SL(A) and
SU(A) are called as the second lower and upper approximations
operators, respectively.

Definition 3.3 Let U be a non-empty finite university, C is a cov-
ering of U , (U,C) be a covering approximation space. A is a
SVNS of U . The third type of lower and upper approximations
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of A with respect to (U,C), denoted by TL(A) and TU(A), are
two SVNSs whose membership functions are defined as ∀u ∈ U ,
TTL(A)(u) = supK∈Md(u){infv∈K{TA(v)}},
ITL(A)(u) = infK∈Md(u){supv∈K{IA(v)}},
FTL(A)(u) = infK∈Md(u){supv∈K{FA(v)}}.
TTU(A)(u) = infK∈Md(u){supv∈K{TA(v)}},
ITU(A)(u) = supK∈Md(u){infv∈K{IA(v)}},
FTU(A)(u) = supK∈Md(u){infv∈K{FA(v)}},

The pair (TL(A), TU(A)) is called the third type of rough sin-
gle valued neutrosophic set based on covering C. TL(A) and
TU(A) are called as the third lower and upper approximations
operators, respectively.

Example 3.4 Let U = {a, b, c, d}, K1 = {a, b},K2 =
{b, c},K3 = {c, d}, C = {K1,K2,K3}. A single val-
ued neutrosophic set A = {〈a, (0.2, 0.8, 0.1)〉, 〈b, (1, 0.3, 1)〉,
〈c, (0.5, 0.3, 0)〉, 〈d, (0.6, 0.7, 0.5)〉}, then Md(a) = {{a, b}},
Md(b) = {{a, b}, {b, c}}, Md(c) = {{b, c}, {c, d}}, Md(d) =
{{c, d}}. Thus,

TFL(A)(a) = inf{TA(v)|v ∈ ∪Md(a)} = inf{TA(a),
TA(b)} = inf{0.2, 1} = 0.2.

TFL(A)(b) = inf{TA(v)|v ∈ ∪Md(b)} = inf{TA(a),
TA(b), TA(c)} = inf{0.2, 1, 0.5} = 0.2.
TFL(A)(c) = inf{TA(v)|v ∈ ∪Md(c)} = inf{TA(b),

TA(c), TA(d)} = inf{1, 0.5, 0.6} = 0.5.
TFL(A)(d) = inf{TA(v)|v ∈ ∪Md(d)} = inf{TA(c),

TA(d))} = inf{0.5, 0.6} = 0.5.
TFU(A)(a) = sup{TA(v)|v ∈ ∪Md(a)} = sup{TA(a),

TA(b)} = sup{0.2, 1} = 1.
TFU(A)(b) = sup{TA(v)|v ∈ ∪Md(b)} = sup{TA(a),

TA(b), TA(c)} = sup{0.2, 1, 0.5} = 1.
TFU(A)(c) = sup{TA(v)|v ∈ ∪Md(c)} = sup{TA(b),

TA(c), TA(d)} = sup{1, 0.5, 0.6} = 1.
TFU(A)(d) = sup{TA(v)|v ∈ ∪Md(d)} = sup{TA(c),

TA(d))} = sup{0.5, 0.6} = 0.6.
IFL(A)(a) = sup{IA(v)|v ∈ ∪Md(a)} = sup{IA(a),

IA(b)} = sup{0.8, 0.3} = 0.8.
IFL(A)(b) = sup{IA(v)|v ∈ ∪Md(b)} = sup{IA(a),

IA(b), TA(c)} = sup{0.8, 0.3, 0.3} = 0.8.
IFL(A)(c) = sup{IA(v)|v ∈ ∪Md(c)} = sup{IA(b),

IA(c), IA(d)} = sup{0.3, 0.3, 0.7} = 0.7.
IFL(A)(d) = sup{IA(v)|v ∈ ∪Md(d)} = sup{IA(c),

IA(d))} = sup{0.3, 0.7} = 0.7.
IFU(A)(a) = inf{IA(v)|v ∈ ∪Md(a)} = inf{IA(a),

IA(b)} = inf{0.8, 0.3} = 0.3.
IFU(A)(b) = inf{IA(v)|v ∈ ∪Md(b)} = inf{IA(a),

IA(b), IA(c)} = inf{0.8, 0.3, 0.3} = 0.3.
IFU(A)(c) = inf{IA(v)|v ∈ ∪Md(c)} = inf{IA(b),

IA(c), IA(d)} = inf{0.3, 0.3, 0.7} = 0.3.
IFU(A)(d) = inf{IA(v)|v ∈ ∪Md(d)} = inf{IA(c),

IA(d))} = inf{0.3, 0.7} = 0.3.
FFL(A)(a) = sup{FA(v)|v ∈ ∪Md(a)} = sup{FA(a),

FA(b)} = sup{0.1, 1} = 1.
FFL(A)(b) = sup{FA(v)|v ∈ ∪Md(b)} = sup{FA(a),

FA(b), TA(c)} = sup{0.1, 1, 0} = 1.

FFL(A)(c) = sup{FA(v)|v ∈ ∪Md(c)} = sup{FA(b),
FA(c), FA(d)} = sup{1, 0, 0.5} = 1.
FFL(A)(d) = sup{FA(v)|v ∈ ∪Md(d)} = sup{FA(c),

FA(d))} = sup{0, 0.5} = 0.5.
FFU(A)(a) = inf{FA(v)|v ∈ ∪Md(a)} = inf{FA(a),

FA(b)} = inf{0.1, 1} = 0.1.
FFU(A)(b) = inf{FA(v)|v ∈ ∪Md(b)} = inf{FA(a),

FA(b), FA(c)} = inf{0.1, 1, 0} = 0.
FFU(A)(c) = inf{FA(v)|v ∈ ∪Md(c)} = inf{FA(b),

FA(c), FA(d)} = inf{1, 0, 0.5} = 0.
FFU(A)(d) = inf{FA(v)|v ∈ ∪Md(d)} = inf{FA(c),

FA(d))} = inf{0, 0.5} = 0.
Thus,

FL(A) = {〈a, (0.2, 0.8, 1)〉, 〈b, (0.2, 0.8, 1)〉, 〈c, (0.5, 0.7, 1)〉,
〈d, (0.5, 0.7, 0.5)〉},
FU(A) = {〈a, (1, 0.3, 0.1)〉, 〈b, (1, 0.3, 0)〉, 〈c, (1, 0.3, 0)〉,
〈d, (0.6, 0.3, 0)〉}.

Similarly,
SL(A) = {〈a, (0.2, 0.8, 1)〉, 〈b, (1, 0.3, 1)〉, 〈c, (0.5, 0.3, 0)〉,
〈d, (0.5, 0.7, 0.5)〉},
SU(A) = {〈a, (1, 0.3, 0.1)〉, 〈b, (1, 0.3, 1)〉, 〈c, (0.5, 0.3, 0)〉,
〈d, (0.6, 0.3, 0)〉}.
TL(A) = {〈a, (0.2, 0.8, 1)〉, 〈b, (0.5, 0.3, 1)〉, 〈c, (0.5, 0.3, 0.5)〉,
〈d, (0.5, 0.7, 0.5)〉},
TU(A) = {〈a, (1, 0.3, 0.1)〉, 〈b, (1, 0.3, 0.1)〉, 〈c, (0.6, 0.3, 0)〉,
〈d, (0.6, 0.3, 0)〉}.

Proposition 3.5 The first type of rough single valued neutro-
sophic lower and upper approximation operators defined in Def-
inition 3.1 has the following properties: ∀A,B ∈ SV NS(U),

(1) FL(U) = U,FU(U) = U ;
(2) FL(∅) = ∅, FU(∅) = ∅;
(3) FL(A) b A b FU(A);
(4) FL(AeB) = FL(A)eFL(B), FU(AdB) = FU(A)d

FL(B);
(5) A b B ⇒ FL(A) b FL(B), A b B ⇒ FU(A) b

FU(B);
(6) FU(AeB) b FU(A)eFU(B), FL(AdB) c FL(A)d

FL(B);
(7) FL(Ac) = (FU(A))c, FU(Ac) = (FL(A))c.

Proof: (1) TFL(U)(u) = inf{TU (v)|v ∈ ∪Md(u)} = 1,
TFU(U)(u) = sup{TU (v)|v ∈ ∪Md(u)} = 1, IFL(U)(u) =
sup{IU (v)|v ∈ ∪Md(u)} = 0, IFU(U)(u) = inf{IU (v)|v ∈
∪Md(u)} = 0, FFL(U)(u) = sup{FU (v)|v ∈ ∪Md(u)} = 0,
FFU(U)(u) = inf{FU (v)|v ∈ ∪Md(u)} = 0, thus FL(U) =
U,FU(U) = U .

(2) TFL(∅)(u) = inf{T∅(v)|v ∈ ∪Md(u)} = 0, TFU(∅)(u) =
sup{T∅(v)|v ∈ ∪Md(u)} = 0, IFL(∅)(u) = sup{I∅(v)|v ∈
∪Md(u)} = 1, IFU(∅)(u) = inf{I∅(v)|v ∈ ∪Md(u)} = 1,
FFL(∅)(u) = sup{F∅(v)|v ∈ ∪Md(u)} = 1, FFU(∅)(u) =
inf{F∅(v)|v ∈ ∪Md(u)} = 1, thus FL(∅) = ∅, FU(∅) = ∅.

(3) Being u ∈ ∪Md(u), so TFL(A)(u) = inf{TA(v)|v ∈
∪Md(u)} ≤ TA(u) ≤ TFU(A)(u) = sup{TA(v)|v ∈
∪Md(u)} =, IFL(A)(u) = sup{IA(v)|v ∈ ∪Md(u)} ≥
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IA(u) ≥ IFU(A)(u) = inf{IA(v)|v ∈ ∪Md(u)} =,
FFL(A)(u) = sup{FA(v)|v ∈ ∪Md(u)} ≥ FA(u) ≥
FFU(A)(u) = inf{FA(v)|v ∈ ∪Md(u)} =, thus, FL(A) b
A b FU(A).

(4) TFL(A e B)(u) = inf{TAeB(v)|v ∈ ∪Md(u)} =
inf{min{TA(v), TB(v)}|v ∈ ∪Md(u)} = min{inf{TA(v)|v ∈
∪Md(u)}, inf{TB(v)}|v ∈ ∪Md(u)} = min{TFL(A)(u),
TFL(B)(u)}.
IFL(A e B)(u) = sup{IAeB(v)|v ∈ ∪Md(u)}

= sup{max{IA(v), IB(v)}|v ∈ ∪Md(u)} =
max{sup{IA(v)|v ∈ ∪Md(u)}, sup{IB(v)}|v ∈ ∪Md(u)}
= max{IFL(A)(u), IFL(B)(u)}.
FFL(A e B)(u) = sup{FAeB(v)|v ∈ ∪Md(u)}

= sup{max{FA(v), FB(v)}|v ∈ ∪Md(u)} =
max{sup{FA(v)|v ∈ ∪Md(u)}, sup{FB(v)}|v ∈ ∪Md(u)}
= max{FFL(A)(u), FFL(B)(u)}. Thus, FL(A e B) =
FL(A) e FL(B).

TFU (A d B)(u) = sup{TAdB(v)|v ∈ ∪Md(u)}
= sup{max{TA(v), TB(v)}|v ∈ ∪Md(u)} =
max{sup{TA(v)|v ∈ ∪Md(u)}, sup{TB(v)}|v ∈ ∪Md(u)}
= max{TFU(A)(u), TFU(B)(u)}.

IFU (A d B)(u) = inf{IAdB(v)|v ∈ ∪Md(u)}
= inf{min{IA(v), IB(v)}|v ∈ ∪Md(u)} =
min{inf{IA(v)|v ∈ ∪Md(u)}, inf{IB(v)}|v ∈ ∪Md(u)}
= min{IFU(A)(u), IFU(B)(u)}.
FFU (A d B)(u) = inf{FAdB(v)|v ∈ ∪Md(u)} =

inf{min{FA(v), FB(v)}|v ∈ ∪Md(u)} = min{inf{FA(v)|v ∈
∪Md(u)}, inf{FB(v)}|v ∈ ∪Md(u)} = min{FFL(A)(u),
FFL(B)(u)}. Thus, FL(A dB) = FL(A) d FL(B).

So (4) holds.
(5) If A b B, then TFL(A)(u) = inf{TA(v)|v ∈ ∪Md(u)}
≤ inf{TB(v)|v ∈ ∪Md(u)} = TFL(B)(u), IFL(A)(u) =
sup{IA(v)|v ∈ ∪Md(u)} ≥ sup{IB(v)|v ∈ ∪Md(u)} =
IFL(B)(u), FFL(A)(u) = sup{FA(v)|v ∈ ∪Md(u)} ≥
sup{FB(v)|v ∈ ∪Md(u)} = FFL(B)(u). So, FL(A) b
FL(B).

The similar method we can get A b B ⇒ FU(A) b FU(B).
So (5) holds.

(6) Being A e B b A b A d B, A e B b B b A d B, from
(5), (6) holds.

(7) TFL(Ac)(u) = inf{TAc(v)|v ∈ ∪Md(u)} =
inf{FA(v)|v ∈ ∪Md(u)} = FFU(A)(u) = T(FU(A))c)(u).
IFL(Ac)(u) = sup{IAc(v)|v ∈ ∪Md(u)} = sup{1 −

IA(v)|v ∈ ∪Md(u)} = 1 − inf{IA(v)|v ∈ ∪Md(u)} =
1− IFU(A))(u) = I(FU(A))c(u).
FFL(Ac)(u) = sup{FAc(v)|v ∈ ∪Md(u)} = sup{TA(v)|v ∈

∪Md(u)} = TFU(A)(u) = F(FU(A))c)(u).
So, FL(Ac) = (FU(A))c. The similar method we can get

FU(Ac) = (FL(A))c, thus (7) holds.
Remark: FL(FL(A)) = FL(A) and FU(FU(A)) =

FU(A) do not hold generally.
Similarly, we can get the following proposition.

Proposition 3.6 The second type of rough single valued neutro-
sophic lower and upper approximation operators defined in Def-

inition 3.2 has the following properties: ∀A,B ∈ SV NS(U),
(1) SL(U) = U, SU(U) = U ;
(2) SL(∅) = ∅, SU(∅) = ∅;
(3) SL(A) b A b SU(A);
(4) SL(AeB) = SL(A)e SL(B), SU(AdB) = SU(A)d

SL(B);
(5) A b B ⇒ SL(A) b SL(B), A b B ⇒ SU(A) b

SU(B);
(6) SU(AeB) b SU(A)eSU(B), SL(AdB) c SL(A)d

SL(B);
(7) SL(Ac) = (SU(A))c, SU(Ac) = (SL(A))c.

Proposition 3.7 The third type of rough single valued neutro-
sophic lower and upper approximation operators defined in Def-
inition 3.3 has the following properties: ∀A,B ∈ SV NS(U),

(1) TL(U) = U, TU(U) = U ;
(2) TL(∅) = ∅, TU(∅) = ∅;
(3) TL(A) b A b TU(A);
(4) A b B ⇒ TL(A) b TL(B), A b B ⇒ TU(A) b

TU(B);
(5) TU(AeB) b TU(A)eFU(B), TL(AdB) c TL(A)d

TL(B);
(6) TL(Ac) = (TU(A))c, TU(Ac) = (TL(A))c.
(7) TL(TL(A)) = TL(A), TU(TU(A)) = TU(A).

Proof: The proofs of (1)-(6) are similar to the Proposition 3.5,
we only show (7).

Let u ∈ U,Md(u) = {K1,K2, · · · ,Km}.
TTL(A)(u) = supK∈Md(u){infv∈K(T(A)(v))}

= sup{infv1∈K1
{TA(v1)}, infv2∈K2

{TA(v2)},
· · · , infvm∈Km

{TA(vm)}, }. Without loss of generality,
let Ki ∈ Md(u), TTL(A)(u) = infvi∈Ki

{TA(vi)}, then
for j 6= i, infvi∈Ki{TA(vi)} ≥ infvj∈Kj{TA(vj)}. Let
vi ∈ Ki, from Definition 3.3, we have TTL(A)(vi) =
supK∈Md(vi){infv∈K(T(A)(v))} ≥ infvi∈Ki

(T(A)(vi))
= TTL(A)(u). Being ∀vi∈Ki

(TTL(A)(vi) ≥ TTL(A)(u)), so
infvi∈Ki

{TTL(A)(vi)} = TTL(A)(u). Let vj ∈ Kj , j 6= i,
so infyj∈Kj

{TTL(A)(vj)} ≤ TTL(A))(u) holds. Thus,
TTL(TL(A))(u) = supK∈Md(u){infv∈K{TTL(A)(v)}}
= sup{infv1∈K1{TTL(A)(v1)}, infv2∈K2{TTL(A)(v2)}, · · · ,
infvm∈Km

{TTL(A)(vm)}} = TTL(A)(u).
ITL(A)(u) = infK∈Md(u){supv∈K(I(A)(v))}

= inf{supv1∈K1
{IA(v1)}, supv2∈K2

{IA(v2)},
· · · , supvm∈Km

{IA(vm)}, }. Without loss of generality,
let Ki ∈ Md(u), ITL(A)(u) = supvi∈Ki

{IA(vi)}, then
for j 6= i, supvi∈Ki

{IA(vi)} ≤ supvj∈Kj
{IA(vj)}. Let

vi ∈ Ki, from Definition 3.3, we have ITL(A)(vi) =
infK∈Md(vi){supv∈K(I(A)(v))} ≤ supvi∈Ki

(I(A)(vi)) =
ITL(A)(u). Being ∀vi∈Ki

(ITL(A)(vi) ≤ ITL(A)(u)), so
supvi∈Ki

{ITL(A)(vi)} = ITL(A)(u). Let vj ∈ Kj , j 6= i,
so supyj∈Kj

{ITL(A)(vj)} ≥ ITL(A))(u) holds. Thus,
ITL(TL(A))(u) = infK∈Md(u){supv∈K{ITL(A)(v)}}
= inf{supv1∈K1

{ITL(A)(v1)}, supv2∈K2
{ITL(A)(v2)}, · · · ,

supvm∈Km
{ITL(A)(vm)}} = ITL(A)(u).
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FTL(A)(u) = infK∈Md(u){supv∈K(F(A)(v))}
= inf{supv1∈K1

{FA(v1)}, supv2∈K2
{FA(v2)},

· · · , supvm∈Km
{FA(vm)}, }. Without loss of generality,

let Ki ∈ Md(u), FTL(A)(u) = supvi∈Ki
{FA(vi)}, then

for j 6= i, supvi∈Ki
{FA(vi)} ≤ supvj∈Kj

{FA(vj)}. Let
vi ∈ Ki, from Definition 3.3, we have FTL(A)(vi) =
infK∈Md(vi){supv∈K(F(A)(v))} ≤ supvi∈Ki

(F(A)(vi))
= FTL(A)(u). Being ∀vi∈Ki(FTL(A)(vi) ≤ FTL(A)(u)), so
supvi∈Ki

{FTL(A)(vi)} = FTL(A)(u). Let vj ∈ Kj , j 6= i,
so supyj∈Kj

{FTL(A)(vj)} ≥ FTL(A))(u) holds. Thus,
FTL(TL(A))(u) = infK∈Md(u){supv∈K{FTL(A)(v)}}
= inf{supv1∈K1

{FTL(A)(v1)}, supv2∈K2
{FTL(A)(v2)} · · · ,

supvm∈Km
{FTL(A)(vm)}} = FTL(A)(u).

That is, TL(TL(A)) = TL(A), the similar way we can get
TU(TU(A)) = TU(A). So (7) holds.

Remark: TL(AeB) = TL(A)eTL(B) and TU(AdB) =
TU(A) d TL(B) do not hold generally.

4 The relations among the three types
of covering-based rough single valued
neutrosophic sets models

Definition 4.1 Let C1, C2 are two coverings on a non-empty fi-
nite university U , u ∈ U , ∀K ∈ MdC1

(u), there exists K ′ ∈
MdC2

(u), such that K ′ ⊆ K, which is called C2 is thinner than
C1, denoted by C2 � C1. If C2 � C1 and C1 � C2, which is
called C1 equals C2, denoted by C1 = C2. otherwise, which is
called C1 does not equal C2, denoted by C1 6= C2. If C2 ≤ C1

and C1 6= C2, it is called C2 is strict thinner than C1, denoted
by C2 < C1. If ∀K ∈ U,K ∈ C1 ⇔ K ∈ C2, it is called C1

identity to C2, denoted by C1 ≡ C2.

Proposition 4.2 Let C1, C2 are two coverings on a non-empty
finite university U , C1 � C2, A is a single valued neutrosophic
set on U . We have:

(1) FLC2(A) b FLC1(A) b A b FUC1(A) b FUC2(A);
(2) SLC2

(A) b SLC1
(A) b A b SUC1

(A) b SUC2
(A);

(3) TLC2
(A) b TLC1

(A) b A b TUC1
(A) b TUC2

(A).

Proof: We only show (3).
Let u ∈ U , TTLC1

(A)(u) = supK∈Md(u){inf{TA(v)|v ∈
K}}, TTLC2

(A)(u) = supK′∈Md(u) {inf{TA(v)|v ∈ K ′}},
being C1 � C2, then ∀K ′ ∈ MdC2(u),∃K ∈
MdC1(u), such that K ⊆ K ′, so infv∈K{TA(v)} ≥
infv∈K′{TA(v)}. So supK∈MdC1

(u){infv∈K{TA(v)}} ≥
supK′∈MdC2

(u){infv∈K′{TA(v)}}, that is TTLC1
(A) ≥

TTLC2
(A).

ITLC1
(A)(u) = infK∈Md(u){sup{IA(v)|v ∈ K}},

ITLC2
(A)(u) = infK′∈Md(u){sup{IA(v)| v ∈ K ′}},

being C1 � C2, then ∀K ′ ∈ MdC2
(u),∃K ∈

MdC1(u), such that K ⊆ K ′, so supv∈K{IA(v)} ≤
supv∈K′{TA(v)}. So infK∈MdC1

(u){supv∈K{IA(v)}} ≤
infK′∈MdC2

(u) {supv∈K′{IA(v)}}, that is ITLC1
(A) ≤

ITLC2
(A).

FTLC1
(A)(u) = infK∈Md(u){sup{FA(v)|v ∈ K}},

FTLC2
(A)(u) = infK′∈Md(u){sup{FA(v)| v ∈ K ′}},

being C1 � C2, then ∀K ′ ∈ MdC2
(u),∃K ∈

MdC1
(u), such that K ⊆ K ′, so supv∈K{FA(v)} ≤

supv∈K′{TA(v)}. So infK∈MdC1
(u){supv∈K{IA(v)}} ≤

infK′∈MdC2
(u) {supv∈K′{FA(v)}}, that is FTLC1

(A) ≤
FTLC2

(A).
Thus we can get TLC2(A) b TLC1(A), the similar way we

can get TUC1(A) b TUC2(A). According Proposition 3.7, we
can get TLC2

(A) b TLC1
(A) b A b TUC1

(A) b TUC2
(A)

holds.

Definition 4.3 Let C be a covering of a domain U and K ∈ C.
If K is a union of some sets in C −K, we say K is reducible in
C, otherwise K is irreducible. Let C be a covering of U . If every
element in C is irreducible, we say C is irreducible; otherwise C
is reducible. ∀K ∈ C, if K is reducible in C, then we can omit
K from C, until C is irreducible, which is called a reduction of
C, denoted by reduct(C).

Let (U,C) be a covering approximation space, reduct(C) is
the reduction of C, being ∀u ∈ U , Md(u) is same in C and
reduct(C), so C = reduct(C), so we can get the following
result.

Proposition 4.4 Let (U,C) be a covering approximation space,
reduct(C) is the reduction of C, then ∀A ∈ SV NS(U), C and
reduct(C) generate the same covering-based lower/upper ap-
proximations for each type of covering-base rough single valued
neutrosophic set.

Proposition 4.5 Let C1, C2 are two coverings on a non-empty
finite university U , then ∀A, the lower/upper approximations for
each type of covering-base rough single valued neutrosophic set
are same in (U,C1) and (U,C2) iff reduct(C1) = reduct(C2).

Proof:⇐ Being reduct(C1) = reduct(C2), ∀A, A is a single
valued neutrosophic set on U , from Proposition 4.2 we can get
the results hold.
⇒We just prove the third types of rough single valued neutro-

sophic set model, the others are similarly.
Proof by contradiction. Assume reduct(C1) 6= reduct(C2),

let K ∈ reduct(C1),K 6∈ reduct(C2). We have
FLreduct(C1)(K) = K (here K be a single valued neutro-
sophic set, TK(u) = 1, if u ∈ K, otherwise TK(u) = 0.
IK(u) = 0, if u ∈ K, otherwise IK(u) = 1. FK(u) = 0,
if u ∈ K, otherwise FK(u) = 1). From Proposition 4.4, if
K has the same covering-based rough single valued neutrosoph-
ic set in (U,C1) and (U,C2), then K has the same covering-
based rough single valued neutrosophic set in (U, reduct(C1))
and (U, reduct(C2)), so FLreduct(C2)(K) = K. Being K 6∈
reduct(C2), then there exist k1, k2, · · · , kn ∈ reduct(C2), such
that K = ∪1≤i≤nki. For each ki ∈ reduct(C2), there exist
ki1, ki2, · · · , kimi ∈ reduct(C1), such that ki = ∪1≤j≤mikij ,
so K = ∪1≤i≤n ∪1≤j≤mi kij , that is K is reducible in
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reduct(C1), which is contradiction that reduct(C) is a reduc-
tion of C. So the result holds.
∀u ∈ U,∀K ∈ Md(u), it is obviously that ∩Md(u) ⊆ K ⊆
∪Md(u), so we can get the following proposition.

Proposition 4.6 Let (U,C) be a covering approximation space,
A is a single valued neutrosophic set, then FL(A) b TL(A) b
SL(A) b A b SU(A) b TU(A) b FU(A).

Proposition 4.7 Let (U,C) be a covering approximation space,
A is a single valued neutrosophic set, then the three types
covering-based rough single valued neutrosophic sets are equiv-
alence iff ∀u ∈ U , inf{A(v)|v ∈ ∪Md(u)} = inf{A(v)|v ∈
∩Md(u)} and ∀u ∈ U , sup{A(v)|v ∈ ∪Md(u)} =
sup{A(v)|v ∈ ∩Md(u)}

Proof: ⇐ From Proposition 4.6 we can get TLC2
(A) b

TLC1
(A) b A b TUC1

(A) b TUC2
(A), being ∀u ∈ U ,

inf{A(v)|v ∈ ∪Md(u)} = inf{A(v)|v ∈ ∩Md(u)}, from Def-
inition 3.1, 3.2, 3.3, we can get FL(A) = SL(A) = TL(A) and
FU(A) = SU(A) = TU(A) .
⇒ If the three types covering-based rough single valued neu-

trosophic sets are same, from Definition 3.1, 3.2, 3.3, we can
easily get ∀u ∈ U , inf{A(v)|v ∈ ∪Md(u)} = inf{A(v)|v ∈
∩Md(u)} and sup{A(v)|v ∈ ∪Md(u)} = sup{A(v)|v ∈
∩Md(u)}.

5 Conclusion
In this paper, we proposed the hybrid models of single valued 
neutrosophic refined sets, covering-based rough sets and 
covering-based rough single valued neutrosophic sets. 
Specifically, we explored the hybrid models through three 
different definitions and give the basic properties. Moreover, 
we discussed the relations of the three models. For the future 
prospects, we plan to explore the application of the proposed 
model to data mining and attribute reduction.
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