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Abstract

The law of inertia has been treated as a fundamental assumption in classical physics.
However in this paper, I show that the law of inertia is completely possible to be derived,
from the homogeneity of the spacetime.

1 Introduction

The law of inertia has been treated as a fundamental assumption in the area of classical
physics. For example, in Newtonian mechanics, the law of inertia is a basic assumption for
defining the “inertial frame,” and in relativity, one use “the least time principle” to explain
the law of inertia.

However, what the law of inertia tells us, is the velocity of a free particle is constant
everywhere. Thus we should have questions, that the law of inertia is somehow related
with the space (or the spacetime).

Therefore in this paper, I will show, that the law of inertia is completely possible to be
derived, from the homogeneity of the spacetime. The only preliminary concepts we use,
are the position and the velocity of a particle, and none of additional assumptions (such
as the least time principle) is needed.

2 Time slice

First, we introduce “time slice.” Imagine a 1-dimensional space and the time. Let there
be a particle created in the origin of the spacetime. This particle is a free particle, and
vanishes in 1 second after created. Now, we let a bunch of particles be simultaneously
created at the origin, and let every particle has different velocities from each other (as
shown in Fig. 1).

Then, we concern about worldlines of the particles. From the fact that the particles
must vanish in time, we can say that the worldlines should end at certain points in the
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Figure 1: Worldlines of free particles, which vanish in 1 second. Numbers over the world-
lines are used to identify the particles.

spacetime. Note that the worldlines described in Fig. 1 can be curves, because we didn’t
assume that the law of inertia is true. (And this will be discussed in Sec. 5.)

Next, we make a curve with the vanishing points of the particles, as shown in Fig. 2.
And, we call this curve a time slice. The time slice is dependent on the vanishing time
of the particle. In other words, we will obtain a different time slice, from the time slice
described in Fig. 2, if the vanishing time changes to some other value.

Figure 2: Time slice when the vanishing time is 1 second.

According to the special theory of relativity, the time slice described in Fig. 2 should
be a hyperboloid [1]. However, in this paper we didn’t assume the special relativity is true
“yet.” (Just like the law of inertia.) Thus, the time slice doesn’t have to be a hyperboloid,
and the particles don’t have to be slower than the light.

From now, we discuss the symmetries in spacetime, using the time slice. Consider a
situation that an observer moving with “a constant velocity” observes the time slice in
Fig. 2. In perspective of the new observer, velocities of the particles will be observed
differently from the original situation, as shown in Fig. 3.

Figure 3: Worldlines of free particles, when (a) observed in a frame at rest, and (b) observed
in a moving frame. Numbers over the worldlines are used to identify the particles.

On the other hand, the new observer observes exactly the same time slice, as the original
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situation. We can prove this by the following process: From the both perspective in Fig. 3,
we compare two particles which have the same initial velocities, as shown in Fig. 4. And,
we apply the principle of relativity by the following:

1. The two observers in Fig. 3 are being affected by “the same physical laws.”

2. With the same physical laws, the same initial conditions always make the same results.

3. The two particles selected in Fig. 4, have the same initial positions1 and the same
initial velocities. (i.e. they have the same initial conditions.)

4. Thus, the two particles will vanish at the same points.

Applying this procedure to every single particle, results in the same time slices in the both
situations described in Fig. 3.

Figure 4: Time slice of a free particle, when (a) observed in a frame at rest, and (b)
observed in a moving frame. Thick lines represent worldlines of particles which have the
same initial velocities.

Here, we derived an invariance of the time slice, under the Lorentz boost. However, in
order to discuss the invariance of a time slice, we should limit our use of the term “time
slice” to the “time slice of a free particle.” Now we can say, the same physical laws should
result in the same time slice. For instance, the isotropy of the space will make the time
slice invariant under the rotation.

3 Second derivative of a time slice: tensor gµν

In this section, we discuss the invariance of time slice, with the aid of mathematics.
From the previous section, we know that, in 1-dimensional space with time, time slice is a
curve which can be described by f(t, x) = α, where f is a function and α is a constant. And,
in 3-dimensional space, we can say that the time slice can be described by f(t, x, y, z) = α.

Now the invariance of a time slice, directly goes into the invariance of the function
f . For example, an invariance of a circle (x2 + y2 = 1) under the rotation, directly goes
into the invariance of the function x2 + y2 under the rotation. From now, we discuss the
invariance of the function f , with the symbols noted by the following:

1The origin.
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- xµ: µ-th component of the original coordinate system.

- x′µ: µ-th component of the new coordinate system (after the coordinate transform).

- f(xλ): f(t, x, y, z), and f(x′λ): f(t′, x′, y′, z′).

First, from the function f(xλ), we can make a new function g(x′λ) by substituting
the coordinate components. (e.g. for f(x, y) = x + y, “x = 2x′ and y = 3y′” makes
g(x′, y′) = 2x′ + 3y′.) Since this is just a substitution, we have

g(x′λ) = f(xλ). (1)

Then, letting ∆λ ≡ xλ − x′λ and assuming ∆λ is small, result in

g(xλ) = g(x′λ + ∆λ) ∼= g(x′λ) + ∆µ∂µg(xλ). (2)

Now, by substituting Eq. (1) into the right-hand side of Eq. (2), we obtain

g(xλ)− f(xλ) = ∆µ∂µg(xλ). (3)

(See Appendix A for some examples of Eq. (3).) Thus, if a function g(xλ) is invariant
under a certain coordinate transform, then the following goes true:

∆µ∂µg(xλ) = 0. (4)

Next, we let Λ be the Jacobian matrix of a coordinate transform, where Λαµ ≡ ∂x′α/∂xµ.
And, in this section, we only discuss the “coordinate transforms without translations,”
because of the fact that the Jacobian matrix cannot describe the translation.

Now, consider a small area in the vicinity of the origin, as shown in Fig. 5. Then we

Figure 5: Time slice within the small area we consider. The area inside the thick circle
represents a small area in the vicinity of the origin.

can make a power series of the function f(xλ), when xλ is small.

f(0λ + xλ) ∼= f(0λ) + xµ
[
∂µf(xλ)

]
xλ=0λ

+
1

2
xµxν

[
∂µ∂νf(xλ)

]
xλ=0λ

, (5)
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where 0λ denotes the zero vector, which is invariant under the coordinate transform. And,
we can make a power series of g(x′λ) in the same way.

g(0λ + x′λ) ∼= g(0λ) + x′µ
[
∂′µg(x′λ)

]
x′λ=0λ

+
1

2
x′µx′ν

[
∂′µ∂

′
νg(x′λ)

]
x′λ=0λ

. (6)

Then, from f(xλ) = g(xλ) we have ∂µf(xλ) = ∂µg(xλ). Thus, we obtain[
∂µf(xλ)

]
xλ=0λ

=
[
∂µg(xλ)

]
xλ=0λ

=
[
∂′µg(x′λ)

]
x′λ=0λ

.

In the same manner, we also have[
∂µ∂νg(xλ)

]
xλ=0λ

=
[
∂′µ∂

′
νg(x′λ)

]
x′λ=0λ

=
[
∂µ∂νf(xλ)

]
xλ=0λ

.

And, applying Eq. (4) results in

xµ
[
∂µf(xλ)

]
xλ=0λ

− x′µ
[
∂′µg(x′λ)

]
x′λ=0λ

= (xµ − x′µ)
[
∂µg(xλ)

]
xλ=0λ

= ∆µ
[
∂µg(xλ)

]
xλ=0λ

= 0.

Now, we obtain the following by subtracting Eq. (6) from Eq. (5):

xµxν
[
∂µ∂νg(xλ)

]
xλ=0λ

− x′µx′ν
[
∂µ∂νg(xλ)

]
xλ=0λ

= 0. (7)

Next, we consider the covariant derivatives:

gµ ≡ ∇µg(xλ) = ∂µg(xλ),

gµν ≡ ∇µ∇νg(xλ) = ∂µgν − Γκµνgκ.

And, from the assumption that xλ is small, we have x′α = Λαµx
µ. Thus, Eq. (7) becomes

xµxν
([
gµν
]
xλ=0λ

− ΛαµΛβν
[
gαβ
]
xλ=0λ

)
= 0.

Therefore, we obtain [
gµν
]
xλ=0λ

= ΛαµΛβν
[
gαβ
]
xλ=0λ

. (8)

Here, we have shown that a second derivative of a function g(xλ), “a tensor gµν ,”
is invariant under a coordinate transform, if the function is invariant under the same
coordinate transform.
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4 Homogeneity of the spacetime and Lorentz transformation

However, the translation cannot be described by Eq. (8). Thus, from now, we discuss
the invariance of the tensor gµν , under the translation. First, consider a free particle created
at the origin. Then the time slice of this particle, can be described by the following:

g(xλ) = α. (9)

Next, consider a free particle, created at a different point. Then, from the homogeneity of
the spacetime, “Time slice of the new particle should be the translated curve of Eq. (9).”
Thus, we have

g(xλ −Dλ) = α (10)

for the time slice of a particle from a different point, where Dλ denotes a vector field
satisfying ∇κDλ = 0.2

We already showed that, if the function g(xλ) is invariant under a coordinate trans-
form, then the tensor gµν is invariant as well. Thus, we can apply the same thing to the
translation: “The tensor gµν should be invariant, if the time slice is nothing but translated.”

We will examine this argument by covariant differentiating the right-hand side of
Eq. (10) twice.

∇µ∇νg(xλ −Dλ) ∼= ∇µ∇ν
[
g(xλ)−Dα∂αg(xλ)

]
= ∇µ∇νg(xλ)−Dα∇µ∇νgα
= gµν −Dα∇µgνα.

And we resulted in the fact that a condition ∇κgµν = 0 allows our argument to stand.
Therefore, from now, we will say that the homogeneity of the spacetime always guar-

antees
∇κgµν = 0. (11)

And here, we have completely discussed, the coordinate transforms which act on the time
slice.

Now, we derive the Lorentz transformation from the results we have obtained. First,
we let Γκµν = 0 and apply Eq. (11) for the homogeneity of the spacetime. Then, we can say
that every single component of gµν is a constant. Thus we let

gµν =


T u1 u2 u3
u1 X u4 u5
u2 u4 Y u6
u3 u5 u6 Z

 (12)

2The vector field satisfying ∇κD
λ = 0 always exists, because of the local flatness of the spacetime.
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and we consider the rotation matrices, denoted by the following:

(R1)
µ
ν ≡


1 0 0 0
0 cos θ1 sin θ1 0
0 − sin θ1 cos θ1 0
0 0 0 1

 ∼=


1 0 0 0
0 1 θ1 0
0 −θ1 1 0
0 0 0 1

 ,

(R2)
µ
ν
∼=


1 0 0 0
0 1 0 0
0 0 1 θ2
0 0 −θ2 1

 ,

(R3)
µ
ν
∼=


1 0 0 0
0 1 0 −θ3
0 0 1 0
0 θ3 0 1

 .

(13)

Now, substituting Eqs. (12) and (13) into Eq. (8) results in

u1 = u2 = u3 = u4 = u5 = u6 = 0, X = Y = Z.

Next, considering only 1-dimensional space with time, we can say that every single
component of Λαµ should be a constant.3 Thus we let

gµν =

(
T 0
0 X

)
, Λαµ =

(
ξ η
ζ ω

)
, (14)

and substituting Eq. (14) into Eq. (8), with using det Λ = 1 from Eq. (8) results in

gµν = T

(
1 0
0 −A

)
, Λαµ =

1√
1−Av2

(
1 Av
v 1

)
,

where T is a constant, and A ≡ −X/T , v ≡ ζ/ω. One can let A = 1/c2 to obtain the
Lorentz transformation.

Here, we derived the Lorentz transformation using the homogeneity (Eq. (11)), the
isotropy (Eq. (13)), and the principle of relativity (Eq. (14)). This accords with the previous
researches saying that the Lorentz transformation can be derived by assuming only three
symmetries [2, 3]. Therefore, we can conclude that Eq. (11) exactly means the homogeneity
of the spacetime.

Furthermore, we discuss the time slice in the usual spacetime (where the Lorentz trans-
formation goes true). First, we can obtain the tensor gµν in 3-dimensional space with
time.

gµν = T


1 0 0 0
0 −1/c2 0 0
0 0 −1/c2 0
0 0 0 −1/c2

 . (15)

3If Γκ
µν = 0, then ∂κΛα

µ = 0.
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And, from gµν = ∂µ∂νg(xλ) we have

g(xλ) =

∫∫
gµνdx

µdxν .

Also, from the fact that the components of gµν are constants, we obtain

g(xλ) =

{
1
2gµνx

µxν if µ = ν,

gµνx
µxν if µ 6= ν.

(16)

Now, we have the result by substituting Eq. (15) into Eq. (16):

g(xλ) = T

(
t2 − x2

c2
− y2

c2
− z2

c2

)
. (17)

Equation (17) means that the time slice of a free particle is a hyperboloid.

5 Motion of a free particle: law of inertia

According to Sec. 2, time slice should be dependent on the vanishing time of a particle.
However, Eq. (9) doesn’t seem to be dependent on such a parameter. Thus, from now,
denoting the vanishing time by τ , we describe the time slice of a free particle by the
following:

g(xλ) = α(τ). (18)

Eq. (18) has an important information about the position of the particle: Time slice
is a “location that the particle vanishes.” Thus, The particle should be located at the time
slice, at the time it vanishes. Now we have a clue to the motion of a free particle. And,
from now, we derive the equation of motion of a free particle: the law of inertia.

First, we assume that α(τ) = τ2 (the other cases will be considered in Appendix B),
and Differentiate Eq. (18) twice by τ .

gκ(xλ)

(
d2xκ

dτ2
+ Γκµν

dxµ

dτ

dxν

dτ

)
+ gµν(xλ)

dxµ

dτ

dxν

dτ
= 2. (19)

Unlike Eq. (18), there is no τ in the right-hand side of Eq. (19). That means the position
xλ and the velocity dxµ/dτ of the particle should satisfy Eq. (19), regardless of its proper
time τ .

One should note that differentiating Eq. (18) by the other parameter (other than the
proper time τ) is meaningless, because of the fact that the quantity dxµ/dτ is the velocity,
only if τ means the proper time.

Next, consider a free particle from a different point. If one assumes the homogeneity of
the spacetime, then its time slice should be described by Eq. (10), and the function g(xλ)
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should satisfy Eq. (11). Then, we let Xλ be the position of the new particle (which makes
dXµ/dτ be the velocity), and differentiate Eq. (10) twice by τ .

∇κg(Xλ −Dλ)

(
d2Xκ

dτ2
+ Γκµν

dXµ

dτ

dXν

dτ

)
+∇µ∇νg(Xλ −Dλ)

dXµ

dτ

dXν

dτ
= 2, (20)

where ∇κ means “covariant differentiation by Xκ.” (e.g. ∇κg(Xλ) = ∂g(Xλ)/∂Xκ.)
And, from the assumption that Dλ is small, we have

∇κg(Xλ −Dλ) ∼= ∇κ
[
g(Xλ)−Dα∂g(Xλ)

∂Xα

]
= ∇κg(Xλ)−Dα∇κ∇αg(Xλ)

= ∇κg(Xλ)−Dα∇α∇κg(Xλ), (21)

∇µ∇νg(Xλ −Dλ) ∼= ∇µ∇νg(Xλ). (22)

(∇µ∇νg(xλ) = ∇ν∇µg(xλ) can be derived from Γκµν = Γκνµ.) Also,

∇κg(Xλ) =
[
∇κg(xλ)

]
xλ=Xλ =

[
gκ(xλ)

]
xλ=Xλ

= gκ(Xλ),

∇µ∇νg(Xλ) =
[
∇µ∇νg(xλ)

]
xλ=Xλ

= gµν(Xλ).

Now, we obtain the result by substituting Eqs. (21) and (22) into Eq. (20):

gκ(Xλ)

(
d2Xκ

dτ2
+ Γκµν

dXµ

dτ

dXν

dτ

)
+ gµν(Xλ)

dXµ

dτ

dXν

dτ

−Dαgακ(Xλ)

(
d2Xκ

dτ2
+ Γκµν

dXµ

dτ

dXν

dτ

)
= 2. (23)

Thus, the position Xλ and the velocity dXµ/dτ of the new particles should satisfy Eq. (23),
regardless of its proper time τ .

Then, we let the two particles coincide at a certain point rλ. Now the positions of the
particles are determined, thus Eq. (19) becomes

gκ(rλ)

(
d2xκ

dτ2
+ Γκµν

dxµ

dτ

dxν

dτ

)
+ gµν(rλ)

dxµ

dτ

dxν

dτ
= 2. (24)

And, Eq. (23) becomes

gκ(rλ)

(
d2Xκ

dτ2
+ Γκµν

dXµ

dτ

dXν

dτ

)
+ gµν(rλ)

dXµ

dτ

dXν

dτ

−Dαgακ(rλ)

(
d2Xκ

dτ2
+ Γκµν

dXµ

dτ

dXν

dτ

)
= 2. (25)
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In the meanwhile, the two particles are free particles. Thus, the only parameter we can
distinguish them is “the velocity.” Therefore, if we let there be a free particle, which is
“created at the point rλ,” then the following goes true: (The particle from the origin will
be called ‘A’, the particle from the other point will be called ‘B’, and the particle from rλ

will be called ‘C’.)

1. If A and C have the same velocities, then we cannot distinguish them.

2. Thus, if A and C have the same velocities, then the motion of C will satisfy Eq. (24).

3. And, if B and C have the same velocities, then the motion of C will satisfy Eq. (25).

4. Therefore, the motion of C will satisfy either of Eq. (24) or Eq. (25), depending on
its initial velocity.

However, we want to figure out the motion of C, regardless of its initial velocity. Thus,
we have to find an equation of motion, which satisfies both of Eqs. (24) and (25). Then,
if we let drµ/dτ be the velocity of C, then we can obtain the equation of motion of C, at
the point rλ, by subtracting Eq. (25) from Eq. (24).

Dαgακ(rλ)

(
d2rκ

dτ2
+ Γκµν

drµ

dτ

drν

dτ

)
= 0. (26)

And, Eq. (26) must be true for an arbitrary vector field Dα. Therefore,

gακ(rλ)

(
d2rκ

dτ2
+ Γκµν

drµ

dτ

drν

dτ

)
= 0. (27)

Here we derived the equation of motion of a free particle. If we let Γκµν = 0, then we can
obtain the law of inertia.

d2rκ

dτ2
= 0.

6 Conclusion

In this paper, we have derived the equation of motion of a free particle (Eq. (27)), from
the homogeneity of the spacetime (Eq. (11)). Now, we review the result in a qualitative
view. Equation (27) means the velocity drµ/dτ is being parallel transported along the path
of the particle. In other words, Eq. (27) says that the velocity of the particle is always
constant along its path [4].

Thus, we can say,

Equation (27): The velocity of a particle is constant everywhere.

What we can find is, Eq. (27) means a “constancy” of some physical quantity everywhere,
which is in accord with the argument we made in Sec. 2: Equation (11) means the homo-
geneity of the spacetime.
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Appendix A

Consider a function f(x, y) = x2 + y2, and let x′, y′ be the new coordinate components
after a rotation of angle ϕ. Then we obtain{

x′ = x cosϕ+ y sinϕ,

y′ = −x sinϕ+ y cosϕ,

{
x = x′ cosϕ− y′ sinϕ,
y = x′ sinϕ+ y′ cosϕ.

And, from ∆µ = xµ − x′µ we have ϕ2 ≈ 0, thus{
x′ ∼= x+ ϕy,

y′ ∼= −ϕx+ y,

{
x ∼= x′ − ϕy′,
y ∼= ϕx′ + y′.

(A1)

Next, using Eq. (A1), we change the variables of f(x, y) from x, y into x′, y′, and obtain
g(x′, y′) ∼= x′2 + y′2. Thus we have g(x, y) = x2 + y2. Also, from Eq. (A1) we have{

∆1 = x− x′ = −ϕy,
∆2 = y − y′ = ϕx,

and we substitute them into Eq. (3).

(LHS) = g(x, y)− f(x, y) = (x2 − y2)− (x2 − y2)
= 0,

(RHS) = ∆ν∂νg(x, y) = ∆1∂g(x, y)

∂x
+ ∆2∂g(x, y)

∂y
= −ϕy · 2x+ ϕx · 2y
= 0.

Here, we showed an example of Eq. (3).
And, for another example, consider a function F (x, y) = x+ y and apply Eq. (A1).

G(x′, y′) ∼= x′(1 + ϕ) + y′(1− ϕ),

G(x, y) = x(1 + ϕ) + y(1− ϕ).

Then, substituting them into Eq. (3) results in

(LHS) = G(x, y)− F (x, y)

= [x(1 + ϕ) + y(1− ϕ)]− (x+ y)

= ϕx− ϕy,

(RHS) = ∆ν∂νG(x, y) = ∆1∂G(x, y)

∂x
+ ∆2∂G(x, y)

∂y

= −ϕy · (1 + ϕ) + ϕx · (1− ϕ)

= ϕx− ϕy.

Equation (3) also stands for this example.
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Appendix B

Let α(τ) = τN , where N is a natural number. Then, Eq. (9) becomes

g(xλ) = τN , (B1)

and we have to differentiate Eq. (B1) N times by τ , in order to make τ vanish in the
right-hand side. First, we assume Γκµν = 0 and N = 3. Then we have

gκ(xλ)
d3xκ

dτ3
+ 3gµν(xλ)

d2xµ

dτ2
dxν

dτ
= (constant),

and obtain an equation of motion of a free particle, by using the same method.

d3rκ

dτ3
= 0. (B2)

And for N = 4, we have
d4rκ

dτ4
= 0,

then we have an equation of a free particle when α(τ) = τN .

dNrκ

dτN
= 0. (B3)

Next, we integrate Eq. (B3) N times by τ .

rκ = CκτN−1 + · · · , (B4)

where Cκ is a constant. Then, we substitute Eq. (B4) into Eq. (16).

g(xλ) =

{
1
2gµνC

µCντ2N−2 + · · · if µ = ν,

gµνC
µCντ2N−2 + · · · if µ 6= ν.

Thus,
g(xλ) ∼ τ2N−2, (B5)

and comparing Eqs. (B1) and (B5) results in

N = 2.

Here, we showed that α(τ) = τ2 is the only possible case.
Finally, we review this result in a qualitative viewpoint. A particle’s initial condition is

determined by the position and the velocity. However, Eq. (B2) tells us “a time derivative
of the acceleration is zero,” which means we cannot determine the acceleration, because
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the “initial acceleration” is undetermined. Thus we cannot determine the position and the
velocity neither, because of the fact that the acceleration is undetermined.

From the same reason, Eq. (B3) can only be valid when N = 2, because it is the
only case that the “initial acceleration” is determined. If N 6= 2, then the position of
a free particle will not be determined, and the time slice will remain undetermined as
well. Therefore, we conclude that the time slice of a free particle should be described by
g(xλ) = τ2.

Acknowledgements

The author thanks to Hongbin Kim, and Sangwoon Kwon.

References

[1] Robert Geroch, General Relativity from A to B (University of Chicago Press, Chicago,
1978), p. 98.

[2] A. R. Lee and T. M. Kalotas, Am. J. Phys. 43, 434 (1975).
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