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Abstract : 

This paper explores the implications of associating the components of the wavefunction with a physical 

dimension: force per unit mass – which is, of course, the dimension of acceleration (m/s
2
) and 

gravitational fields. The classical electromagnetic field equations for energy densities, the Poynting 

vector and spin angular momentum are then re-derived by substituting the electromagnetic N/C unit of 

field strength (mass per unit charge) by the new N/kg = m/s
2
 dimension. 

The results are elegant and insightful. For example, the energy densities are proportional to the square 

of the absolute value of the wavefunction and, hence, to the probabilities, which establishes a physical 

normalization condition. Also, Schrödinger’s wave equation may then, effectively, be interpreted as a 

diffusion equation for energy, and the wavefunction itself can be interpreted as a propagating 

gravitational wave. Finally, as an added bonus, concepts such as the Compton scattering radius for a 

particle, spin angular momentum, and the boson-fermion dichotomy, can also be explained more 

intuitively. 

While the approach offers a physical interpretation of the wavefunction, the author argues that the core 

of the Copenhagen interpretations revolves around the complementarity principle, which remains 

unchallenged because the interpretation of amplitude waves as traveling fields does not explain the 

particle nature of matter.   
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Introduction 

This is not another introduction to quantum mechanics. We assume the reader is already familiar with 

the key principles and, importantly, with the basic math. We offer an interpretation of wave mechanics. 

As such, we do not challenge the complementarity principle: the physical interpretation of the 

wavefunction that is offered here explains the wave nature of matter only. It explains diffraction and 

interference of amplitudes but it does not explain why a particle will hit the detector not as a wave but 

as a particle. Hence, the Copenhagen interpretation of the wavefunction remains relevant: we just push 

its boundaries.   

The basic ideas in this paper stem from a simple observation: the geometric similarity between the 

quantum-mechanical wavefunctions and electromagnetic waves is remarkably similar. The components 

of both waves are orthogonal to the direction of propagation and to each other. Only the relative phase 

differs : the electric and magnetic field vectors (E and B) have the same phase. In contrast, the phase of 

the real and imaginary part of the (elementary) wavefunction (ψ = a·e
−i∙θ

 = a∙cosθ − a∙sinθ) differ by 90 

degrees (π/2).
1
 Pursuing the analogy, we explore the following question: if the oscillating electric and 

magnetic field vectors of an electromagnetic wave carry the energy that one associates with the wave, 

can we analyze the real and imaginary part of the wavefunction in a similar way?  

We show the answer is positive and remarkably straightforward.  If the physical dimension of the 

electromagnetic field is expressed in newton per coulomb (force per unit charge), then the physical 

dimension of the components of the wavefunction may be associated with force per unit mass (newton 

per kg).
2
 Of course, force over some distance is energy. The question then becomes: what is the energy 

concept here? Kinetic? Potential? Both?  

The similarity between the energy of a (one-dimensional) linear oscillator (E = m∙a
2
∙ω

2
/2) and Einstein’s 

relativistic energy equation E = m∙c
2
 inspires us to interpret the energy as a two-dimensional oscillation 

of mass. To assist the reader, we construct a two-piston engine metaphor.
3
 We then adapt the formula 

for the electromagnetic energy density to calculate the energy densities for the wave function. The 

results are elegant and intuitive: the energy densities are proportional to the square of the absolute 

value of the wavefunction and, hence, to the probabilities. Schrödinger’s wave equation may then, 

effectively, be interpreted as a diffusion equation for energy itself.  

As an added bonus, concepts such as the Compton scattering radius for a particle and spin angular, as 

well as the boson-fermion dichotomy can be explained in a fully intuitive way.
4
  

Of course, such interpretation is also an interpretation of the wavefunction itself, and the immediate 

reaction of the reader is predictable: the electric and magnetic field vectors are, somehow, to be looked 

at as real vectors. In contrast, the real and imaginary components of the wavefunction are not. 

However, this objection needs to be phrased more carefully. First, it may be noted that, in a classical 

                                                           
1
 Of course, an actual particle is localized in space and can, therefore, not be represented by the elementary 

wavefunction ψ = a·e
−i∙θ

 = a·e
−i[E∙t − p∙x]/ħ

 = a∙(cosθ − i∙a∙sinθ). We must build a wave packet for that: a sum of 

wavefunctions, each with its own amplitude ak and its own argument θk = (Ek∙t − pk∙x)/ħ. This is dealt with in this 

paper as part of the discussion on the mathematical and physical interpretation of the normalization condition. 
2
 The N/kg dimension immediately, and naturally, reduces to the dimension of acceleration (m/s

2
), thereby 

facilitating a direct interpretation in terms of Newton’s force law. 
3
 In physics, a two-spring metaphor is more common. Hence, the pistons in the author’s perpetuum mobile may be 

replaced by springs. 
4
 The author re-derives the equation for the Compton scattering radius in section VII of the paper. 
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analysis, the magnetic force is a pseudovector itself.
5
 Second, a suitable choice of coordinates may make 

quantum-mechanical rotation matrices irrelevant.
6
  

Therefore, the author is of the opinion that this little paper may provide some fresh perspective on the 

question, thereby further exploring Einstein’s basic sentiment in regard to quantum mechanics, which 

may be summarized as follows: there must be some physical explanation for the calculated 

probabilities.
7
  

We will, therefore, start with Einstein’s relativistic energy equation (E = mc
2
) and wonder what it could 

possibly tell us. 

  

                                                           
5
 The magnetic force can be analyzed as a relativistic effect (see Feynman II-13-6). The dichotomy between the 

electric force as a polar vector and the magnetic force as an axial vector disappears in the relativistic four-vector 

representation of electromagnetism. 
6
 For example, when using Schrödinger’s equation in a central field (think of the electron around a proton), the use 

of polar coordinates is recommended, as it ensures the symmetry of the Hamiltonian under all rotations (see 

Feynman III-19-3) 
7
 This sentiment is usually summed up in the apocryphal quote: “God does not play dice.”The actual quote comes 

out of one of Einstein’s private letters to Cornelius Lanczos, another scientist who had also emigrated to the US. 

The full quote is as follows: "You are the only person I know who has the same attitude towards physics as I have: 

belief in the comprehension of reality through something basically simple and unified... It seems hard to sneak a 

look at God's cards. But that He plays dice and uses 'telepathic' methods... is something that I cannot believe for a 

single moment." (Helen Dukas and Banesh Hoffman, Albert Einstein, the Human Side: New Glimpses from His 

Archives, 1979) 
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I. Energy as a two-dimensional oscillation of mass 

The structural similarity between the relativistic energy formula, the formula for the total energy of an 

oscillator, and the kinetic energy of a moving body, is striking: 

1. E = mc
2
 

2. E = mω
2
/2 

3. E = mv
2
/2  

In these formulas, ω, v and c all describe some velocity.
8
 Of course, there is the 1/2 factor in the E = 

mω
2
/2 formula

9
, but that is exactly the point we are going to explore here: can we think of an oscillation 

in two dimensions, so it stores an amount of energy that is equal to E = 2∙m∙ω
2
/2 = m∙ω

2
?  

That is easy enough. Think, for example, of a V-2 engine with the pistons at a 90-degree angle, as 

illustrated below. The 90° angle makes it possible to perfectly balance the counterweight and the 

pistons, thereby ensuring smooth travel at all times. With permanently closed valves, the air inside the 

cylinder compresses and decompresses as the pistons move up and down and provides, therefore, a 

restoring force. As such, it will store potential energy, just like a spring, and the motion of the pistons 

will also reflect that of a mass on a spring. Hence, we can describe it by a sinusoidal function, with the 

zero point at the center of each cylinder. We can, therefore, think of the moving pistons as harmonic 

oscillators, just like mechanical springs.  

Figure 1: Oscillations in two dimensions 

 

If we assume there is no friction, we have a perpetuum mobile here. The compressed air and the 

rotating counterweight (which, combined with the crankshaft, acts as a flywheel
10

) store the potential 

energy. The moving masses of the pistons store the kinetic energy of the system.
11

  

                                                           
8
 Of course, both are different velocities: ω is an angular velocity, while v is a linear velocity: ω is measured in 

radians per second, while v is measured in meter per second. However, the definition of a radian implies radians 

are measured in distance units. Hence, the physical dimensions are, effectively, the same. As for the formula for 

the total energy of an oscillator, we should actually write: E = m∙a
2
∙ω

2
/2. The additional factor (a) is the (maximum) 

amplitude of the oscillator. 
9
 We also have a 1/2 factor in the E = mv

2
/2 formula. Two remarks may be made here. First, it may be noted this is 

a non-relativistic formula and, more importantly, incorporates kinetic energy only. Using the Lorentz factor (γ), we 

can write the relativistically correct formula for the kinetic energy as K.E. = E − E0 = mvc
2
 − m0c

2
 = m0γc

2
 − 

m0c
2
 = m0c

2
(γ − 1). As for the exclusion of the potential energy, we may note that we may choose our reference 

point for the potential energy such that the kinetic and potential energy mirror each other. The energy concept 

that then emerges is the one that is used in the context of the Principle of Least Action: it equals E = mv
2
. Appendix 

1 provides some notes on that. 
10

 Instead of two cylinders with pistons, one may also think of connecting two springs with a crankshaft. 
11

 It is interesting to note that we may look at the energy in the rotating flywheel as potential energy because it is 

energy that is associated with motion, albeit circular motion. In physics, one may associate a rotating object with 

kinetic energy using the rotational equivalent of mass and linear velocity, i.e. rotational inertia (I) and angular 

velocity ω. The kinetic energy of a rotating object is then given by K.E. = (1/2)∙I∙ω
2
.  
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At this point, it is probably good to quickly review the relevant math. If the magnitude of the oscillation 

is equal to a, then the motion of the piston (or the mass on a spring) will be described by x = a∙cos(ω∙t + 

Δ).
12

 Needless to say, Δ is just a phase factor which defines our t = 0 point, and ω is the natural angular 

frequency of our oscillator. Because of the 90° angle between the two cylinders, Δ would be 0 for one 

oscillator, and –π/2 for the other. Hence, the motion of one piston is given by x = a∙cos(ω∙t), while the 

motion of the other is given by x = a∙cos(ω∙t–π/2) = a∙sin(ω∙t).    

The kinetic and potential energy of one oscillator (think of one piston or one spring only) can then be 

calculated as: 

1. K.E. = T = m∙v
2
/2 = (1/2)∙m∙ω

2
∙a

2
∙sin

2
(ω∙t + Δ) 

2. P.E. = U = k∙x
2
/2 = (1/2)∙k∙a

2
∙cos

2
(ω∙t + Δ)   

The coefficient k in the potential energy formula characterizes the restoring force: F = −k∙x. From the 

dynamics involved, it is obvious that k must be equal to m∙ω
2
. Hence, the total energy is equal to: 

E = T + U = (1/2)∙ m∙ω
2
∙a

2
∙[sin

2
(ω∙t + Δ) + cos

2
(ω∙t + Δ)] = m∙a

2
∙ω

2
/2 

To facilitate the calculations, we will briefly assume k = m∙ω
2
 and a are equal to 1. The motion of our 

first oscillator is given by the cos(ω∙t) = cosθ function (θ = ω∙t), and its kinetic energy will be equal 

to sin
2
θ. Hence, the (instantaneous) change in kinetic energy at any point in time will be equal to: 

d(sin
2
θ)/dθ = 2∙sinθ∙d(sinθ)/dθ = 2∙sinθ∙cosθ 

Let us look at the second oscillator now. Just think of the second piston going up and down in the V-2 

engine. Its motion is given by the sinθ function, which is equal to cos(θ−π /2). Hence, its kinetic energy is 

equal to sin
2
(θ−π /2), and how it changes – as a function of θ – will be equal to: 

2∙sin(θ−π /2)∙cos(θ−π /2) = = −2∙cosθ∙sinθ = −2∙sinθ∙cosθ 

We have our perpetuum mobile! While transferring kinetic energy from one piston to the other, the 

crankshaft will rotate with a constant angular velocity: linear motion becomes circular motion, and vice 

versa, and the total energy that is stored in the system is T + U = ma
2
ω

2
.   

We have a great metaphor here. Somehow, in this beautiful interplay between linear and circular 

motion, energy is borrowed from one place and then returns to the other, cycle after cycle. We know 

the wavefunction consist of a sine and a cosine: the cosine is the real component, and the sine is the 

imaginary component. Could they be equally real? Could each represent half of the total energy of our 

particle? Should we think of the c in our E = mc
2
 formula as an angular velocity? 

These are sensible questions. Let us explore them. 

  

                                                           
12

 Because of the sideways motion of the connecting rods, the sinusoidal function will describe the linear motion 

only approximately, but you can easily imagine the idealized limit situation. 



 

II. The wavefunction as a two

The elementary wavefunction is written as

ψ = a·e
−i[E∙t − p∙x]/ħ

 = a·e

When considering a particle at rest (

ψ = a·e
−i∙E∙t/ħ

 = a∙cos(

Let us remind ourselves of the geometry involved, which is illustrated below.

the wavefunction rotates clockwise

phase angle (ϕ) is counter-clockwise.

If we assume the momentum p is all in the 

direction, and p∙x/ħ reduces to p∙x/ħ.

else, t. Alternatively, one can google

dimensional oscillation here. These two dimensions are perpendicular to the direction of propagation of 

the wavefunction. For example, if the

are along the y- and z-axis, which we may refer to as the real and imaginary axis.

difference between the cosine and the sine  

to give some spin to the whole. I will come back to this.  

Figure 3: 

Hence, if we would say these oscillations carry half of the total energy of the particle, then we 

to the real and imaginary energy of the particle respectively, and the interplay between the real and the 

imaginary part of the wavefunction

Let us consider, once again, a particle

to ψ = a·e
−i∙E∙t/ħ

. Hence, the angular 

Now, the energy of our particle includes all of the energy 

therefore, equal to E = mc
2
.  

The wavefunction as a two-dimensional oscillation 

The elementary wavefunction is written as: 

a·e
−i[E∙t − p∙x]/ħ

 = a∙cos(p∙x/ħ − E∙t/ħ) + i∙a∙sin(p∙x/ħ − E∙t

a particle at rest (p = 0) this reduces to: 

∙cos(−E∙t/ħ) + i∙a∙sin(−E∙t/ħ) = a∙cos(E∙t/ħ) − i∙a∙sin(E∙t/ħ)

remind ourselves of the geometry involved, which is illustrated below. Note that the argument of 

clockwise with time, while the mathematical convention for measuring the 

ckwise. 

Figure 2: Euler’s formula  

 

is all in the x-direction, then the p and x vectors will have the same 

∙x/ħ. Most illustrations – such as the one below – will 

google web animations varying both. The point is: we also

dimensional oscillation here. These two dimensions are perpendicular to the direction of propagation of 

the wavefunction. For example, if the wavefunction propagates in the x-direction, then the oscillations 

axis, which we may refer to as the real and imaginary axis. Note how the phase 

difference between the cosine and the sine  – the real and imaginary part of our wavefu

to give some spin to the whole. I will come back to this.   

: Geometric representation of the wavefunction 

 

we would say these oscillations carry half of the total energy of the particle, then we 

to the real and imaginary energy of the particle respectively, and the interplay between the real and the 

wavefunction may then describe how energy propagates through

particle at rest. Hence, p = 0 and the (elementary) wavefunction

 velocity of both oscillations, at some point x, is given

Now, the energy of our particle includes all of the energy – kinetic, potential and rest energy 

5 

t/ħ) 

∙t/ħ)   

Note that the argument of 

with time, while the mathematical convention for measuring the 

vectors will have the same 

 either freeze x or, 

The point is: we also have a two-

dimensional oscillation here. These two dimensions are perpendicular to the direction of propagation of 

direction, then the oscillations 

Note how the phase 

the real and imaginary part of our wavefunction – appear 

we would say these oscillations carry half of the total energy of the particle, then we may refer 

to the real and imaginary energy of the particle respectively, and the interplay between the real and the 

through space over time.  

wavefunction reduces 

given by ω = −E/ħ. 

kinetic, potential and rest energy – and is, 
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Can we, somehow, relate this to the m∙a
2
∙ω

2
 energy formula for our V-2 perpetuum mobile? Our 

wavefunction has an amplitude too. Now, if the oscillations of the real and imaginary wavefunction 

store the energy of our particle, then their amplitude will surely matter. In fact, the energy of an 

oscillation is, in general, proportional to the square of the amplitude: E ∝ a
2
. We may, therefore, think 

that the a
2
 factor in the E = m∙a

2
∙ω

2
 energy will surely be relevant as well. 

However, here is a complication: an actual particle is localized in space and can, therefore, not be 

represented by the elementary wavefunction. We must build a wave packet for that: a sum of 

wavefunctions, each with their own amplitude ak, and their own ωi = −Ei/ħ. Each of these wavefunctions 

will contribute some energy to the total energy of the wave packet. To calculate the contribution of each 

wave to the total, both ai as well as Ei will matter.  

What is Ei? Ei varies around some average E, which we can associate with some average mass m: m = 

E/c
2
. The Uncertainty Principle kicks in here. The analysis becomes more complicated, but a formula 

such as the one below might make sense:  

E =  � m� ∙ ��	 · ω�	 = � E�
�	 ∙ ��	 · E�	

ħ	  

We can re-write this as:  

�	ħ	 = ∑ ��	 ∙ E��
E ⟺ �	ħ	E = � ��	 ∙ E�� 

What is the meaning of this equation? We may look at it as some sort of physical normalization 

condition when building up the Fourier sum. Of course, we should relate this to the mathematical 

normalization condition for the wavefunction. Our intuition tells us that the probabilities must be 

related to the energy densities, but how exactly? We will come back to this question in a moment. Let us 

first think some more about the enigma: what is mass? 

Before we do so, let us quickly calculate the value of c
2
ħ

2
: it is about 1×10

−51
 N

2
∙m

4
. Let us also do a 

dimensional analysis: the physical dimensions of the E = m∙a
2
∙ω

2
 equation make sense if we express m in 

kg, a in m, and ω in rad/s. We then get: [E] = kg∙m
2
/s

2
 = (N∙s

2
/m)∙m

2
/s

2
 = N∙m = J. The dimensions of the 

left- and right-hand side of the physical normalization condition is N
3
∙m

5
. 
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III. What is mass? 

We came up, playfully, with a meaningful interpretation for energy: it is a two-dimensional oscillation of 

mass. But what is mass? A new aether theory is, of course, not an option, but then what is it that is 

oscillating? To understand the physics behind equations, it is always good to do an analysis of the 

physical dimensions in the equation. Let us start with Einstein’s energy equation once again. If we want 

to look at mass, we should re-write it as m = E/c
2
: 

[m] = [E/c
2
] = J/(m/s)

2
 = N∙m∙s

2
/m

2
 = N∙s

2
/m = kg 

This is not very helpful. It only reminds us of Newton’s definition of a mass: mass is that what gets 

accelerated by a force. At this point, we may want to think of the physical significance of the absolute 

nature of the speed of light. Einstein’s E = mc
2
 equation implies we can write the ratio between the 

energy and the mass of any particle is always the same, so we can write, for example: 

���������
���������

= �������
�������

= �������
�������

= ���� ��������
���� ��������

= �	 

This reminds us of the ω
2
= C

−1
/L or ω

2
 = k/m of harmonic oscillators once again.

13
 The key difference is 

that the ω
2
= C

−1
/L and ω

2
 = k/m formulas introduce two or more degrees of freedom.

14
 In contrast, c

2
= 

E/m for any particle, always. However, that is exactly the point: we can modulate the resistance, 

inductance and capacitance of electric circuits, and the stiffness of springs and the masses we put on 

them, but we live in one physical space only: our spacetime. Hence, the speed of light c emerges here as 

the defining property of spacetime – the resonant frequency, so to speak. We have no further degrees 

of freedom here. 

In this regard, we should highlight another interesting implication of de Broglie’s E = h∙f = ω∙ħ equation 

for the matter wave, which boldly generalizes the Planck-Einstein relation for a photon E = h∙f = ω∙ħ to 

encompass matter waves too: it gives us the frequency of the matter wave. Now, f is the number of 

oscillations per second, which we may write as f = n/s. Hence, we can write: 

E/n = (E/f)∙(1 s) = h∙(1 s) = (6.626070040(81)×10
−34

 J∙s)∙(1 s) = 6.626070040(81)×10
−34

 J 

This is an amazing result: our particle – be it a photon or a matter-particle – will 

always pack 6.626070040(81)×10
−34

 joule in one oscillation. Of course, the obvious question is: what 

is one oscillation? The matter wave comes as a wave packet and, therefore, the oscillations will not have 

the same amplitude. In fact, the Uncertainty Principle tells us we will not be able to define an exact 

period. Nevertheless, the result stands.
15

 

                                                           
13

 The ω
2
= 1/LC formula gives us the natural or resonant frequency for a electric circuit consisting of a resistor (R), 

an inductor (L), and a capacitor (C). Writing the formula as ω
2
= C

−1
/L introduces the concept of elastance, which is 

the equivalent of the mechanical stiffness (k) of a spring. 
14

 The resistance in an electric circuit introduces a damping factor. When analyzing a mechanical spring, one may 

also want to introduce a drag coefficient. Both are usually defined as a fraction of the inertia, which is the mass for 

a spring and the inductance for an electric circuit. Hence, we would write the resistance for a spring as γm and as R 

= γL respectively.  
15

 Photons are emitted by atomic oscillators: atoms going from one state (energy level) to another. Feynman 

(Lectures, I-33-3) shows us how to calculate the Q of these atomic oscillators: it is of the order of 10
8
, which means 

the wave train will last about 10
–8 

seconds (to be precise, that is the time it takes for the radiation to die out by a 

factor 1/e). For example, for sodium light, the radiation will last about 3.2×10
–8 

seconds (this is the so-called decay 

time τ). Now, because the frequency of sodium light is some 500 THz (500×10
12 

oscillations per second), this makes 

for some 16 million oscillations. There is an interesting paradox here: the speed of light tells us that such wave 
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The Planck-Einstein relation (for photons) and the de Broglie equation (for matter-particles) have 

another interesting feature: both imply that the energy of the oscillation is proportional to the 

frequency, with Planck’s constant as the constant of proportionality. Now, for one-dimensional 

oscillations – think of a guitar string, for example – we know the energy will be proportional to the 

square of the frequency.
16

 It is a remarkable observation: the two-dimensional matter-wave, or the 

electromagnetic wave, gives us two waves for the price of one, so to speak, each carrying half of 

the total energy of the oscillation but, as a result, we get an E ∝ f instead of an E ∝ f
2
 proportionality.  

However, such reflections do not answer the fundamental question we started out with: what is mass? 

At this point, it is hard to go beyond the circular definition that is implied by Einstein’s formula: energy is 

a two-dimensional oscillation of mass, and mass packs energy, and c emerges us as the property of 

spacetime that defines how exactly.  

When everything is said and done, this does not go beyond stating that mass is some scalar field. Now, a 

scalar field is, quite simply, some real number that we associate with a position in spacetime. The Higgs 

field is a scalar field but, of course, the theory behind it goes much beyond stating that we should think 

of mass as some scalar field. The fundamental question is: why and how does energy, or matter, 

condense into elementary particles? That is what the Higgs mechanism is about but, as this paper is 

exploratory only, we cannot even start explaining the basics of it. 

What we can do, however, is look at the wave equation again (Schrödinger’s equation), as we can now 

analyze it as an energy diffusion equation. 

  

                                                                                                                                                                                    

train will have a length of about 9.6 m! How is that to be reconciled with the pointlike nature of a photon? The 

paradox can only be explained by relativistic length contraction: in an analysis like this, one need to distinguish the 

reference frame of the photon – riding along the wave as it is being emitted, so to speak – and our stationary 

reference frame, which is that of the emitting atom.  
16

 This is a general result and is reflected in the K.E. = T = (1/2)∙m∙ω
2
∙a

2
∙sin

2
(ω∙t + Δ) and the P.E. = U = k∙x

2
/2 = 

(1/2)∙ m∙ω
2
∙a

2
∙cos

2
(ω∙t + Δ) formulas for the linear oscillator.    
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IV. Schrödinger’s equation as an energy diffusion equation 

The interpretation of Schrödinger’s equation as a diffusion equation is straightforward. Feynman 

(Lectures, III-16-1) briefly summarizes it as follows:  

“We can think of Schrödinger’s equation as describing the diffusion of the probability amplitude 

from one point to the next. […] But the imaginary coefficient in front of the derivative makes the 

behavior completely different from the ordinary diffusion such as you would have for a gas 

spreading out along a thin tube. Ordinary diffusion gives rise to real exponential solutions, 

whereas the solutions of Schrödinger’s equation are complex waves.”
17

   

Let us review the basic math. For a particle moving in free space – with no external force fields acting on 

it – there is no potential (U = 0) and, therefore, the Uψ term disappears. Therefore, Schrödinger’s 

equation reduces to: 

∂ψ(x, t)/∂t = i∙(1/2)∙(ħ/meff)∙∇2
ψ(x, t) 

The ubiquitous diffusion equation in physics is: 

∂φ(x, t)/∂t = D·∇2
φ(x, t) 

The structural similarity is obvious. The key difference between both equations is that the wave 

equation gives us two equations for the price of one. Indeed, because ψ is a complex-valued function, 

with a real and an imaginary part, we get the following equations
18

:  

1. Re(∂ψ/∂t) = −(1/2)∙(ħ/meff)∙Im(∇2
ψ) 

2. Im(∂ψ/∂t) = (1/2)∙(ħ/meff)∙Re(∇2
ψ) 

These equations make us think of the equations for an electromagnetic wave in free space (no 

stationary charges or currents): 

1. ∂B/∂t = –∇×E 

2. ∂E/∂t = c
2∇×B 

The above equations effectively describe a propagation mechanism in spacetime, as illustrated below.  

                                                           
17

 Feynman further formalizes this in his Lecture on Superconductivity (Feynman, III-21-2), in which he refers to 

Schrödinger’s equation as the “equation for continuity of probabilities”. The analysis is centered on the local 

conservation of energy, which confirms the interpretation of Schrödinger’s equation as an energy diffusion 

equation. 
18

 The meff is the effective mass of the particle, which depends on the medium. For example, an electron traveling 

in a solid (a transistor, for example) will have a different effective mass than in an atom. In free space, we can drop 

the subscript and just write meff = m. Appendix 2 provides some additional notes on the concept. As for the 

equations, they are easily derived from noting that two complex numbers a + i∙b and c + i∙d are equal if, and only if, 

their real and imaginary parts are the same. Now, the ∂ψ/∂t = i∙(ħ/meff)∙∇2
ψ equation amounts to writing 

something like this: a + i∙b = i∙(c + i∙d). Now, remembering that i
2
 = −1, you can easily figure out that i∙(c + i∙d) = i∙c 

+ i
2
∙d = − d + i∙c. 
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Figure 4: Propagation mechanisms 

 

The Laplacian operator (∇2
), when operating on a scalar quantity, gives us a flux density, i.e. something 

expressed per square meter (1/m
2
). In this case, it is operating on ψ(x, t), so what is the dimension of 

our wavefunction ψ(x, t)? To answer that question, we should analyze the diffusion constant in 

Schrödinger’s equation, i.e. the (1/2)∙(ħ/meff) factor: 

1. As a mathematical constant of proportionality, it will quantify the relationship between both 

derivatives (i.e. the time derivative and the Laplacian); 

2. As a physical constant, it will ensure the physical dimensions on both sides of the equation are 

compatible. 

Now, the ħ/meff factor is expressed in (N∙m∙s)/(N∙ s
2
/m) = m

2
/s. Hence, it does ensure the dimensions on 

both sides of the equation are, effectively, the same: ∂ψ/∂t is a time derivative and, therefore, its 

dimension is s
−1

 while, as mentioned above, the dimension of ∇2
ψ is m

−2
. However, this does not solve 

our basic question: what is the dimension of the real and imaginary part of our wavefunction? 

At this point, mainstream physicists will say: it does not have a physical dimension, and there is no 

geometric interpretation of Schrödinger’s equation. One may argue, effectively, that its argument, (p∙x − 

E∙t)/ħ, is just a number and, therefore, that the real and imaginary part of ψ is also just some number. 

To this, we may object that ħ may be looked as a mathematical scaling constant only. If we do that, the 

argument of ψ will, effectively, be expressed in action units, i.e. in N∙m∙s. It then does make sense to 

also associate a physical dimension with the real and imaginary part of ψ. What could it be?  

We may have a closer look at Maxwell’s equations for inspiration here. The electric field vector is 

expressed in newton (the unit of force) per unit of charge (coulomb). Now, there is something 

interesting here. The physical dimension of the magnetic field is N/C divided by m/s.
19

 We may write B 

as the following vector cross-product: B = (1/c)∙ex×E, with ex the unit vector pointing in the x-direction 

(i.e. the direction of propagation of the wave). Hence, we may associate the (1/c)∙ex× operator, which 

amounts to a rotation by 90 degrees, with the s/m dimension. Now, multiplication by i also amounts to a 

rotation by 90° degrees. Hence, we may boldly write: B = (1/c)∙ex×E = (1/c)∙i∙E. This allows us to also 

geometrically interpret Schrödinger’s equation in the way we interpreted it above (see Figure 3).
20

 

                                                           
19

 The dimension of B is usually written as N/(m∙A), using the SI unit for current, i.e. the ampere (A). However, 1 C = 

1 A∙s and, hence, 1 N/(m∙A) = 1 (N/C)/(m/s).      
20

 Of course, multiplication with i amounts to a counterclockwise rotation. Hence, multiplication by −i also amounts 

to a rotation by 90 degrees, but clockwise. Now, to uniquely identify the clockwise and counterclockwise 

directions, we need to establish the equivalent of the right-hand rule for a proper geometric interpretation of 

Schrödinger’s equation in three-dimensional space: if we look at a clock from the back, then its hand will be 

moving counterclockwise. When writing B = (1/c)∙i∙E, we assume we are looking in the negative x-direction. If we 
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Still, we have not answered the question as to what the physical dimension of the real and imaginary 

part of our wavefunction should be. At this point, we may be inspired by the structural similarity 

between Newton’s and Coulomb’s force laws: 

� =  �
!" ∙ !	

#	  

� = $ �" ∙ �	
#	  

Hence, if the electric field vector E is expressed in force per unit charge (N/C), then we may want to 

think of associating the real part of our wavefunction with a force per unit mass (N/kg). We can, of 

course, do a substitution here, because the mass unit (1 kg) is equivalent to 1 N∙s
2
/m. Hence, our N/kg 

dimension becomes: 

N/kg = N/(N∙s
2
/m)= m/s

2
 

What is this: m/s
2
? Is that the dimension of the a∙cosθ term in the a∙e

−iθ 
= a∙cosθ − i∙a∙sinθ 

wavefunction?  

My answer is: why not? Think of it: m/s
2
 is the physical dimension of acceleration: the increase or 

decrease in velocity (m/s) per second. It ensures the wavefunction for any particle – matter-particles or 

particles with zero rest mass (photons) – and the associated wave equation (which has to be the same 

for all, as the spacetime we live in is one) are mutually consistent. 

In this regard, we should think of how we would model a gravitational wave. The physical dimension 

would surely be the same: force per mass unit. It all makes sense: wavefunctions may, perhaps, be 

interpreted as traveling distortions of spacetime, i.e. as tiny gravitational waves.  

                                                                                                                                                                                    

are looking in the positive x-direction, we should write: B = −(1/c)∙i∙E. Of course, Nature does not care about our 

conventions. Hence, both should give the same results in calculations. We will show in a moment they do. 
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V. Energy densities and flows 

Pursuing the geometric equivalence between the equations for an electromagnetic wave and 

Schrödinger’s equation, we can now, perhaps, see if there is an equivalent for the energy density. For an 

electromagnetic wave, we know that the energy density is given by the following formula: 

% = &'
2 ) ∙ ) + &' ∙ �	

2 + ∙ + 

E and B are the electric and magnetic field vector respectively. The Poynting vector will give us the 

directional energy flux, i.e. the energy flow per unit area per unit time. We write: 

,%
,- = −∇ ∙ / 

Needless to say, the ∇∇∇∇∙ operator is the divergence and, therefore, gives us the magnitude of a (vector) 

field’s source or sink at a given point. To be precise, the divergence gives us the volume density of the 

outward flux of a vector field from an infinitesimal volume around a given point. In this case, it gives us 

the volume density of the flux of S.  

We can analyze the dimensions of the equation for the energy density as follows: 

1. E is measured in newton per coulomb, so [E∙E] = [E
2
] = N

2
/C

2
. 

2. B is measured in (N/C)/(m/s), so we get [B∙B] = [B
2
] = (N

2
/C

2
)∙(s

2
/m

2
). However, the dimension of 

our c
2
 factor is (m

2
/s

2
) and so we’re also left with N

2
/C

2
. 

3. The ϵ0 is the electric constant, aka as the vacuum permittivity. As a physical constant, it should 

ensure the dimensions on both sides of the equation work out, and they do: [ε0] = C
2
/(N∙m

2
) 

and, therefore, if we multiply that with N
2
/C

2
, we find that u is expressed in J/m

3
.
21

 

Replacing the newton per coulomb unit (N/C) by the newton per kg unit (N/kg) in the formulas above 

should give us the equivalent of the energy density for the wavefunction. We just need to substitute ϵ0 

for an equivalent constant. We may to give it a try. If the energy densities can be calculated – which are 

also mass densities, obviously – then the probabilities should be proportional to them.  

Let us first see what we get for a photon, assuming the electromagnetic wave represents its 

wavefunction. Substituting B for (1/c)∙i∙E or for −(1/c)∙i∙E gives us the following result: 

% = &'
2 ) ∙ ) + &' ∙ �	

2 + ∙ + = &'
2 ) ∙ ) + &' ∙ �	

2
0 ∙ )

�
0 ∙ )

� = &'
2 ) ∙ ) − &'

2 ) ∙ ) = 0 

Zero!? An unexpected result! Or not? We have no stationary charges and no currents: only an 

electromagnetic wave in free space. Hence, the local energy conservation principle needs to be 

respected at all points in space and in time. The geometry makes sense of the result: for an 

electromagnetic wave, the magnitudes of E and B reach their maximum, minimum and zero point 

simultaneously, as shown below.
22

 This is because their phase is the same. 

                                                           
21

 In fact, when multiplying C
2
/(N∙m

2
) with N

2
/C

2
, we get N/m

2
, but we can multiply this with 1 = m/m to get the 

desired result. It is significant that an energy density (joule per unit volume) can also be measured in newton (force 

per unit area.  
22

 The illustration shows a linearly polarized wave, but the obtained result is general. 



 

Figure 

Should we expect a similar result for the energy densities that we would associate with the real and 

imaginary part of the matter-wave? 

and a∙sinθ, which gives a different picture of the 

geometry of the suggestion suggests some inherent spin, which is in

Let us first guess those densities. Making abstraction 

% = �	2�34θ6
We get what we hoped to get: the abso

This is very deep. A photon has no rest mass, so it borrows and returns energy from empty space as it 

travels through it. In contrast, a matter

therefore associated with an energy density, and this energy density gives us the probabilities. Of 

course, we need to fine-tune the analysis to account for the fact that we have a wave packet rather than 

a single wave, but that should be feasible

As mentioned, the phase difference between the real and imaginary part of our wavefunction (a cosine 

and a sine function) appear to give some spin to our particle. We do not have this particularity for a 

photon. Of course, photons are bosons, i.e. spin

fermions with spin-1/2. Hence, our geometric interpretation of the wavefunction suggests that, after all, 

there may be some more intuitive explanation of the fun

fermions, which puzzled even Feynman: 

“Why is it that particles with half

integral spin are Bose particles? We apologize for the fact that we cannot give you a

elementary explanation. An explanation has been worked out by Pauli from complicated 

arguments of quantum field theory and relativity. He has shown that the two must necessarily 

go together, but we have not been able to find a way of reproducing his argu

elementary level. It appears to be one of the few places in physics where there is a rule which 

can be stated very simply, but for which no one has found a simple and easy explanation. The 

explanation is deep down in relativistic quantum mechan

not have a complete understanding of the fundamental principle involved.” (Feynman, 

III-4-1) 

                                                          
23

 The sine and cosine are essentially the same functions, except for the difference in the phase: sinθ = cos(θ

Figure 5: Electromagnetic wave: E and B 

 

Should we expect a similar result for the energy densities that we would associate with the real and 

wave? For the matter-wave, we have a phase difference between 

θ, which gives a different picture of the propagation of the wave (see Figure 3

geometry of the suggestion suggests some inherent spin, which is interesting. I will come back to this. 

Making abstraction of any scaling constants, we may 

6	 + �	2−0 ∙ 407θ6	 � �	 2�34	θ * 407	θ6 � �	 

the absolute square of our amplitude is, effectively, an energy density !

|ψ|
2 

 = |a·e
−i∙E∙t/ħ

|
2 

= a
2 

= u 

deep. A photon has no rest mass, so it borrows and returns energy from empty space as it 

travels through it. In contrast, a matter-wave carries energy and, therefore, has some (

therefore associated with an energy density, and this energy density gives us the probabilities. Of 

tune the analysis to account for the fact that we have a wave packet rather than 

feasible. 

As mentioned, the phase difference between the real and imaginary part of our wavefunction (a cosine 

and a sine function) appear to give some spin to our particle. We do not have this particularity for a 

Of course, photons are bosons, i.e. spin-zero particles, while elementary matter

1/2. Hence, our geometric interpretation of the wavefunction suggests that, after all, 

there may be some more intuitive explanation of the fundamental dichotomy between bosons and 

fermions, which puzzled even Feynman:  

“Why is it that particles with half-integral spin are Fermi particles, whereas particles with 

integral spin are Bose particles? We apologize for the fact that we cannot give you a

elementary explanation. An explanation has been worked out by Pauli from complicated 

arguments of quantum field theory and relativity. He has shown that the two must necessarily 

go together, but we have not been able to find a way of reproducing his arguments on an 

elementary level. It appears to be one of the few places in physics where there is a rule which 

can be stated very simply, but for which no one has found a simple and easy explanation. The 

explanation is deep down in relativistic quantum mechanics. This probably means that we do 

not have a complete understanding of the fundamental principle involved.” (Feynman, 

                   

are essentially the same functions, except for the difference in the phase: sinθ = cos(θ

13 

Should we expect a similar result for the energy densities that we would associate with the real and 

ve, we have a phase difference between a∙cosθ 

3).
23

 In fact, the 

I will come back to this. 

 write: 

lute square of our amplitude is, effectively, an energy density !  

deep. A photon has no rest mass, so it borrows and returns energy from empty space as it 

(rest) mass. It is 

therefore associated with an energy density, and this energy density gives us the probabilities. Of 

tune the analysis to account for the fact that we have a wave packet rather than 

As mentioned, the phase difference between the real and imaginary part of our wavefunction (a cosine 

and a sine function) appear to give some spin to our particle. We do not have this particularity for a 

matter-particles are 

1/2. Hence, our geometric interpretation of the wavefunction suggests that, after all, 

damental dichotomy between bosons and 

, whereas particles with 

integral spin are Bose particles? We apologize for the fact that we cannot give you an 

elementary explanation. An explanation has been worked out by Pauli from complicated 

arguments of quantum field theory and relativity. He has shown that the two must necessarily 

ments on an 

elementary level. It appears to be one of the few places in physics where there is a rule which 

can be stated very simply, but for which no one has found a simple and easy explanation. The 

ics. This probably means that we do 

not have a complete understanding of the fundamental principle involved.” (Feynman, Lectures, 

are essentially the same functions, except for the difference in the phase: sinθ = cos(θ−π /2). 
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The physical interpretation of the wavefunction, as presented here, may provide some better 

understanding of ‘the fundamental principle involved’: the physical dimension of the oscillation is just 

very different. That is all: it is force per unit charge for photons, and force per unit mass for matter-

particles. We will examine the question of spin somewhat more carefully in section VII. Let us first 

examine the matter-wave some more. 
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VI. Group and phase velocity of the matter-wave 

The geometric representation of the matter-wave (see Figure 3) suggests a traveling wave and, yes, of 

course: the matter-wave effectively travels through space and time. But what is traveling, exactly? It is 

the pulse – or the signal – only: the phase velocity of the wave is just a mathematical concept and, even 

in our physical interpretation of the wavefunction, the same is true for the group velocity of our wave 

packet. The oscillation is two-dimensional, but perpendicular to the direction of travel of the wave. 

Hence, nothing actually moves with our particle. 

Here, we should also reiterate that we did not answer the question as to what is oscillating up and down 

and/or sideways: we only associated a physical dimension with the components of the wavefunction – 

newton per kg (force per unit mass), to be precise. We were inspired to do so because of the physical 

dimension of the electric and magnetic field vectors (newton per coulomb, i.e. force per unit charge) we 

associate with electromagnetic waves which, for all practical purposes, we currently treat as the 

wavefunction for a photon. This made it possible to calculate the associated energy densities and 

a Poynting vector for energy dissipation. In addition, we showed that Schrödinger's equation itself then 

becomes a diffusion equation for energy. However, let us now focus some more on the asymmetry 

which is introduced by the phase difference between the real and the imaginary part of the 

wavefunction. Look at the mathematical shape of the elementary wavefunction once again: 

ψ = a·e
−i[E∙t − p∙x]/ħ

 = a·e
−i[E∙t − p∙x]/ħ

 = a·cos(p∙x/ħ − E∙t/ħ) + i·a·sin(p∙x/ħ − E∙t/ħ) 

The minus sign in the argument of our sine and cosine function defines the direction of travel: an 

F(x−v∙t) wavefunction will always describe some wave that is traveling in the positive x-direction (with 

c the wave velocity), while an F(x+v∙t) wavefunction will travel in the negative x-direction. For a 

geometric interpretation of the wavefunction in three dimensions, we need to agree on how to define 

i or, what amounts to the same, a convention on how to define clockwise and counterclockwise 

directions: if we look at a clock from the back, then its hand will be moving counterclockwise. So we 

need to establish the equivalent of the right-hand rule. However, let us not worry about that now. Let us 

focus on the interpretation. To ease the analysis, we'll assume we're looking at a particle at rest. Hence, 

p = 0, and the wavefunction reduces to: 

ψ = a·e
−i∙E∙t/ħ

 = a·cos(−E∙t/ħ) + i·a·sin(−E0∙t/ħ) = a·cos(E0∙t/ħ) − i·a·sin(E0∙t/ħ) 

E0 is, of course, the rest mass of our particle and, now that we are here, we should probably 

wonder whose time t we are talking about: is it our time, or is the proper time of our particle? Well... In 

this situation, we are both at rest so it does not matter: t is, effectively, the proper time so perhaps we 

should write it as t0. It does not matter. You can see what we expect to see: E0/ħ pops up as the 

natural frequency of our matter-particle: (E0/ħ)∙t = ω∙t. Remembering the ω = 2π∙f = 2π/T and T = 

1/f formulas, we can associate a period and a frequency with this wave, using the ω = 2π∙f = 2π/T. 

Noting that ħ = h/2π, we find the following: 

T = 2π∙(ħ/E0) = h/E0 ⇔ f = E0/h = m0c
2
/h 

This is interesting, because we can look at the period as a natural unit of time for our particle. What 

about the wavelength? That is tricky because we need to distinguish between group and phase velocity 

here. The group velocity (vg) should be zero here, because we assume our particle does not move. In 
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contrast, the phase velocity is given by vp = λ∙f = (2π/k)∙(ω/2π) = ω/k. In fact, we've got something funny 

here: the wavenumber k = p/ħ is zero, because we assume the particle is at rest, so p = 0. So we have a 

division by zero here, which is rather strange. What do we get assuming the particle is not at rest? We 

write: 

vp = ω/k = (E/ħ)/(p/ħ) = E/p = E/(m∙vg) = (m∙c
2
)/(m∙vg) = c

2
/vg 

This is interesting: it establishes a reciprocal relation between the phase and the group velocity, with 

c as a simple scaling constant. Indeed, the graph below shows the shape of the function does not change 

with the value of c, and we may also re-write the relation above as: 

vp/c = βp = c/vp = 1/βg = 1/(c/vp) 

Figure 6: Reciprocal relation between phase and group velocity  

 

We can also write the mentioned relationship as vp∙vg = c
2
, which reminds us of the relationship between 

the electric and magnetic constant (1/ε0)∙(1/μ0) = c
2
. This is interesting in light of the fact we can re-write 

this as (c∙ε0)∙(c∙μ0) = 1, which shows electricity and magnetism are just two sides of the same coin, so to 

speak.
24

  

Interesting, but how do we interpret the math? What about the implications of the zero value for 

wavenumber k = p/ħ. We would probably like to think it implies the elementary wavefunction should 

always be associated with some momentum, because the concept of zero momentum clearly leads to 

weird math: something times zero cannot be equal to c
2
! Such interpretation is also consistent with the 

Uncertainty Principle: if Δx∙Δp ≥ ħ, then neither Δx nor Δp can be zero. In other words, the Uncertainty 

Principle tells us that the idea of a pointlike particle actually being at some specific point in time and in 

space does not make sense: it has to move. It tells us that our concept of dimensionless points in time 

and space are mathematical notions only. Actual particles - including photons - are always a bit spread 

out, so to speak, and - importantly - they have to move. 

                                                           
24

 I must thank a physics blogger for re-writing the 1/(ε0∙μ0) = c
2
 equation like this. See: 

http://reciprocal.systems/phpBB3/viewtopic.php?t=236 (retrieved on 29 September 2017).  
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For a photon, this is self-evident. It has no rest mass, no rest energy, and, therefore, it is going to move 

at the speed of light itself. We write: p = m∙c = m∙c
2
/c = E/c. Using the relationship above, we get: 

vp = ω/k = (E/ħ)/(p/ħ) = E/p = c ⇒ vg = c
2
/vp = c

2
/c = c 

This is good: we started out with some reflections on the matter-wave, but here we get an 

interpretation of the electromagnetic wave as a wavefunction for the photon. But let us get back to our 

matter-wave. In regard to our interpretation of a particle having to move, we should remind ourselves, 

once again, of the fact that an actual particle is always localized in space and that it can, therefore, not 

be represented by the elementary wavefunction ψ = a·e
−i[E∙t − p∙x]/ħ

 or, for a particle at rest, the ψ = 

a·e
−i∙E∙t/ħ

 function. We must build a wave packet for that: a sum of wavefunctions, each with their own 

amplitude ai, and their own ωi = −Ei/ħ. Indeed, in section II, we showed that each of these wavefunctions 

will contribute some energy to the total energy of the wave packet and that, to calculate the 

contribution of each wave to the total, both ai as well as Ei matter. This may or may not resolve the 

apparent paradox. Let us look at the group velocity.  

To calculate a meaningful group velocity, we must assume the vg = ∂ωi/∂ki = ∂(Ei/ħ)/∂(pi/ħ) = ∂(Ei)/∂(pi) 

exists. So we must have some dispersion relation. How do we calculate it? We need to calculate ωi as a 

function of ki here, or Ei as a function of pi. How do we do that? Well... There are a few ways to go about 

it but one interesting way of doing it is to re-write Schrödinger's equation as we did, i.e. by 

distinguishing the real and imaginary parts of the ∂ψ/∂t =i∙[ħ/(2m)]∙∇2
ψ wave equation and, hence, re-

write it as the following pair of two equations: 

1. Re(∂ψ/∂t) = −[ħ/(2meff)]∙Im(∇2
ψ) ⇔ ω∙cos(kx − ωt) = k

2
∙[ħ/(2meff)]∙cos(kx − ωt) 

2. Im(∂ψ/∂t) = [ħ/(2meff)]∙Re(∇2
ψ) ⇔ ω∙sin(kx − ωt) = k

2
∙[ħ/(2meff)]∙sin(kx − ωt) 

Both equations imply the following dispersion relation: 

ω = ħ∙k
2
/(2meff) 

Of course, we need to think about the subscripts now: we have ωi, ki, but... What about meff or, dropping 

the subscript, m? Do we write it as mi? If so, what is it? Well... It is the equivalent mass of Ei obviously, 

and so we get it from the mass-energy equivalence relation: mi = Ei/c
2
. It is a fine point, but one most 

people forget about: they usually just write m. However, if there is uncertainty in the energy, then 

Einstein's mass-energy relation tells us we must have some uncertainty in the (equivalent) mass too. 

Here, I should refer back to Section II: Ei varies around some average energy E and, therefore, the 

Uncertainty Principle kicks in.  

  



 

VII. Explaining spin 

The elementary wavefunction vector

rotates around the x-axis, which gives us the direction of propagation of the wave (see 

magnitude remains constant. In contrast, the magnitude of the electromagnetic

vector sum of the electric and magnetic fi

Figure 5). 

We already mentioned that the rotation 

particle. Of course, a circularly polarized wave

vectors rotating around the direction of propagation 

sideways only). In fact, a circularly polarized light does

of its energy may be thought of as rotating as well. But so here we are

The basic idea is the following: if we 

oscillation of mass, to be precise – then

propagation with some torque. The

Figure 

A torque on some mass about a fixed axis gives it

cross-product L = r×p or, perhaps easier for our purposes here as the 

and rotational inertia (I), aka as the

Note we can write L and ω in boldface

magnitudes only, we write L = I∙ω (no boldface).

angular velocity. In our previous posts, we showed that the

2π∙(ħ/E0). Hence, the angular velocity must be equal to:

We also know the distance r, so that is

so that is the magnitude of ψ = a·e
−

in this case, the tangential velocity 

quantities, then the (tangential) velocity is given by 

should use for m or, if we want to work with the 

need to make some assumption about the mass (or energy) 

to assume the energy in the oscillation 

we may use the formula for the angular mass of a s

relativistic, then m = m0. Of course, 

what we get: 

vector – i.e. the vector sum of the real and imaginary component 

ich gives us the direction of propagation of the wave (see 

In contrast, the magnitude of the electromagnetic vector

sum of the electric and magnetic field vectors – oscillates between zero and some maximum

rotation of the wavefunction vector appears to give some 

polarized wave would also appear to have spin (think of the 

the direction of propagation - as opposed to oscillating up and down or 

circularly polarized light does carry angular momentum, as the 

of its energy may be thought of as rotating as well. But so here we are looking at a matter

we look at ψ = a·e
−i∙E∙t/ħ

 as some real vector – as a two

then we may associate its rotation around the direction of 

. The illustration below reminds of the math here. 

Figure 7: Torque and angular momentum vectors 

 

A torque on some mass about a fixed axis gives it angular momentum, which we can write as the vector 

or, perhaps easier for our purposes here as the product of an angular

rotational inertia (I), aka as the moment of inertia or the angular mass. We write: 

L = I∙ω 

boldface here because they are (axial) vectors. If we consider their 

L = I∙ω (no boldface). We can now do some calculations. Let us

angular velocity. In our previous posts, we showed that the period of the matter-wave is equal to T = 

). Hence, the angular velocity must be equal to: 

ω = 2π/[2π∙(ħ/E0)] = E0/ħ 

that is the magnitude of r in the L = r×p vector cross-product: 
−i∙E∙t/ħ

. Now, the momentum (p) is the product of a linear

velocity - and some mass (m): p = m∙v. If we switch to scalar

quantities, then the (tangential) velocity is given by v = r∙ω. So now we only need to think about what we 

should use for m or, if we want to work with the angular velocity (ω), the angular mass (I). 

ed to make some assumption about the mass (or energy) distribution. Now, it may or may not sense 

the energy in the oscillation – and, therefore, the mass – is distributed uniformly. In that case, 

we may use the formula for the angular mass of a solid cylinder: I = m∙r
2
/2. If we keep the analysis non

Of course, the energy-mass equivalence tells us that m0 = E0/c

18 

he real and imaginary component – 

ich gives us the direction of propagation of the wave (see Figure 3). Its 

vector – defined as the 

zero and some maximum (see 

of the wavefunction vector appears to give some spin to the 

would also appear to have spin (think of the E and B 

as opposed to oscillating up and down or 

, as the equivalent mass 

matter-wave.  

two-dimensional 

associate its rotation around the direction of 

can write as the vector 

angular velocity (ω) 

 

. If we consider their 

Let us start with the 

wave is equal to T = 

product: it is just a, 

linear velocity (v) - 

scalar instead of vector 

∙ω. So now we only need to think about what we 

mass (I). Here we 

Now, it may or may not sense 

distributed uniformly. In that case, 

/2. If we keep the analysis non-

c
2
. Hence, this is 
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L = I∙ω = (m0∙r
2
/2)∙(E0/ħ) = (1/2)∙a

2
∙(E0/c

2
)∙(E0/ħ) = a

2
∙E0

2
/(2∙ħ∙c

2
)  

Does it make sense? Maybe. Maybe not. Let us do a dimensional analysis: that won’t check our logic, but 

it makes sure we made no mistakes when mapping mathematical and physical spaces. We have m
2
∙J

2
 = 

m
2
∙N

2
∙m

2
 in the numerator and N∙m∙s∙m

2
/s

2
 in the denominator. Hence, the dimensions work out: we 

get N∙m∙s as the dimension for L, which is, effectively, the physical dimension of angular momentum. It 

is also the action dimension, of course, and that cannot be a coincidence. Also note that the E = 

mc
2
 equation allows us to re-write it as: 

L = a
2
∙E0

2
/(2∙ħ∙c

2
) 

Of course, in quantum mechanics, we associate spin with the magnetic moment of a charged particle, 

not with its mass as such. Is there way to link the formula above to the one we have for the quantum-

mechanical angular momentum, which is also measured in N∙m∙s units, and which can only take on one 

of two possible values: J = +ħ/2 and −ħ/2? It looks like a long shot, right? How do we go from 

(1/2)∙a
2
∙m0

2
/ħ to ± (1/2)∙ħ? Let us do a numerical example. The energy of an electron is typically 0.510 

MeV ≈ 8.1871×10
−14

 N∙m, and a… What value should we take for a? 

We have an obvious trio of candidates here: the Bohr radius, the classical electron radius (aka the 

Thompon scattering length), and the Compton scattering radius. 

Let us start with the Bohr radius, so that is about 0.×10
−10

 N∙m. We get L = a
2
∙E0

2
/(2∙ħ∙c

2
) = 9.9×10

−31
 

N∙m∙s. Now that is about 1.88×10
4
 times ħ/2. That is a huge factor. The Bohr radius cannot be right: we 

are not looking at an electron in an orbital here. To show it does not make sense, we may want to 

double-check the analysis by doing the calculation in another way. We said each oscillation will always 

pack 6.626070040(81)×10
−34

 joule in energy. So our electron should pack about 1.24×10
−20

 oscillations. 

The angular momentum (L) we get when using the Bohr radius for a and the value of 6.626×10
−34

 joule 

for E0 and the Bohr radius is equal to 6.49×10
−59

 N∙m∙s. So that is the angular momentum per oscillation. 

When we multiply this with the number of oscillations (1.24×10
−20

), we get about 8.01×10
−51

 N∙m∙s, so 

that is a totally different number.  

The classical electron radius is about 2.818×10
−15

 m. We get an L that is equal to about 2.81×10
−39

 N∙m∙s, 

so now it is a tiny fraction of ħ/2! Hence, this leads us nowhere. Let us go for our last chance to get a 

meaningful result! Let us use the Compton scattering length, so that is about 2.42631×10
−12

 m.  

This gives us an L of 2.08×10
−33

 N∙m∙s, which is only 20 times ħ. This is not so bad, but it is good 

enough? Let us calculate it the other way around: what value should we take for a so as to ensure L = 

a
2
∙E0

2
/(2∙ħ∙c

2
) = ħ/2? Let us write it out: 

�	 ∙ E'	
2 ∙ ℏ ∙ �	 = ℏ

2 ⟺ �	 = ℏ	 ∙ �	
E'	 = ℏ	

m'	 ∙ �	 ⟺ � = ℏ
m' ∙ � 

In fact, this is the formula for the so-called reduced Compton wavelength. This is perfect. We found what 

we wanted to find. Substituting this value for a (you can calculate it: it is about 3.8616×10
−33

 m), we get 

what we should find: 

; �
�	 ∙ E'	
2 ∙ ℏ ∙ �	 = < = ℏ

2 = 5.272859 × 10D�EN ∙ m ∙ s 

This is a rather spectacular result, and one that would – a priori – support the interpretation of the 

wavefunction that is being suggested in this paper. 
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VIII. The boson-fermion dichotomy 

Let us do some more thinking on the boson-fermion dichotomy. Again, we should remind ourselves that 

an actual particle is localized in space and that it can, therefore, not be represented by the elementary 

wavefunction ψ = a·e
−i[E∙t − p∙x]/ħ

 or, for a particle at rest, the ψ = a·e
−i∙E∙t/ħ

 function. We must build a 

wave packet for that: a sum of wavefunctions, each with their own amplitude ai, and their own ωi = 

−Ei/ħ. Each of these wavefunctions will contribute some energy to the total energy of the wave packet. 

Now, we can have another wild but logical theory about this.  

Think of the apparent right-handedness of the elementary wavefunction: surely, Nature can't be 

bothered about our convention of measuring phase angles clockwise or counterclockwise. Also, the 

angular momentum can be positive or negative: J = +ħ/2 or −ħ/2. Hence, we would probably like to think 

that an actual particle - think of an electron, or whatever other particle you'd think of - may consist of 

right-handed as well as left-handed elementary waves. To be precise, we may think they either consist 

of (elementary) right-handed waves or, else, of (elementary) left-handed waves. An elementary right-

handed wave would be written as: 

ψ(θi) = ai∙(cosθi + i·sinθi) 

In contrast, an elementary left-handed wave would be written as: 

ψ(θi) = ai∙(cosθi − i·sinθi) 

How does that work out with the E0·t argument of our wavefunction? Position is position, and direction 

is direction, but time? Time has only one direction, but Nature surely does not care how we count time: 

counting like 1, 2, 3, etcetera or like −1, −2, −3, etcetera is just the same. If we count like 1, 2, 3, 

etcetera, then we write our wavefunction like: 

ψ = a·cos(E0∙t/ħ) − i·a·sin(E0∙t/ħ) 

If we count time like −1, −2, −3, etcetera then we write it as: 

 ψ = a·cos(−E0∙t/ħ) − i·a·sin(−E0∙t/ħ)= a·cos(E0∙t/ħ) + i·a·sin(E0∙t/ħ) 

Hence, it is just like the left- or right-handed circular polarization of an electromagnetic wave: we can 

have both for the matter-wave too! This, then, should explain why we can have 

either positive or negative quantum-mechanical spin (+ħ/2 or −ħ/2). It is the usual thing: we have 

two mathematical possibilities here, and so we must have two physical situations that correspond to it.  

It is only natural. If we have left- and right-handed photons - or, generalizing, left- and right-handed 

bosons - then we should also have left- and right-handed fermions (electrons, protons, etcetera). Back 

to the dichotomy. The textbook analysis of the dichotomy between bosons and fermions may be 

epitomized by Richard Feynman’s Lecture on it (Feynman, III-4), which is confusing and – I would dare to 

say – even inconsistent: how are photons or electrons supposed to know that they need to interfere 

with a positive or a negative sign? They are not supposed to know anything: knowledge is part of 

our interpretation of whatever it is that is going on there.  

Hence, it is probably best to keep it simple, and think of the dichotomy in terms of the different physical 

dimensions of the oscillation: newton per kg versus newton per coulomb. And then, of course, we 

should also note that matter-particles have a rest mass and, therefore, actually carry charge. Photons do 

not. But both are two-dimensional oscillations, and the point is: the so-called vacuum - and the 

rest mass of our particle (which is zero for the photon and non-zero for everything else) - give us the 

natural frequency for both oscillations, which is beautifully summed up in that remarkable equation for 

the group and phase velocity of the wavefunction, which applies to photons as well as matter-particles: 
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(vphase∙c)∙(vgroup∙c) = 1 ⇔ vp∙vg = c
2
 

The final question then is: why are photons spin-zero particles? Well... We should first remind ourselves 

of the fact that they do have spin when circularly polarized.
25

 Here we may think of the rotation of the 

equivalent mass of their energy. However, if they are linearly polarized, then there is no spin. Even for 

circularly polarized waves, the spin angular momentum of photons is a weird concept. If photons have 

no (rest) mass, then they cannot carry any charge. They should, therefore, not have any magnetic 

moment. Indeed, what I wrote above shows an explanation of quantum-mechanical spin requires both 

mass as well as charge.
26

  

  

                                                           
25

 A circularly polarized electromagnetic wave may be analyzed as consisting of two perpendicular electromagnetic 

plane waves of equal amplitude and 90° difference in phase. 
26

 Of course, the reader will now wonder: what about neutrons? How to explain neutron spin? Neutrons are 

neutral. That is correct, but neutrons are not elementary: they consist of (charged) quarks. Hence, neutron spin 

can (or should) be explained by the spin of the underlying quarks. 



 

IX. Concluding remarks 

There are, of course, other ways to look at the matter

dimensional oscillations as circular 

mass stays where it is, as depicted below. Any rotation 

a rotation around the two other axes. Hence, we may want to think of a two

an oscillation of a polar and azimuthal angle. 

Figure 

The point of this paper is not to make any definite statements. That would be foolish. Its objective is just 

to challenge the simplistic mainstream viewpoint on the 

mathematical construct only without 

That is, clearly, a non-sustainable proposition.

The interpretation that is offered here looks at amplitude 

dimension may be expressed in force per mass unit, as opposed to electromagnetic waves, whose 

amplitudes are expressed in force per (electric) 

incorporate a phase factor, but this may actually explain the rather enigmatic dichotomy between 

fermions and bosons and is, therefore, an added bonus.

The interpretation that is offered here has some advantages over other explanations, as it explains the 

how of diffraction and interference. However, while it offers a great explanation of the wave nature of 

matter, it does not explain its particle nature: while we think of the energy as being spread out, we will 

still observe electrons and photons as pointlike particles once th

detector can sort of ‘hook’ the whole blob of energy, so to speak? 

The interpretation of the wavefunction that is offered here does 

complementarity principle of the Copenhagen interpretati

relevant.   

There are, of course, other ways to look at the matter – literally. For example, we can imagine two

circular rather than linear oscillations. Think of a tiny ball, whose center of 

mass stays where it is, as depicted below. Any rotation – around any axis – will be some combination of 

a rotation around the two other axes. Hence, we may want to think of a two-dimensional

imuthal angle.  

Figure 8: Two-dimensional circular movement 

 

The point of this paper is not to make any definite statements. That would be foolish. Its objective is just 

to challenge the simplistic mainstream viewpoint on the reality of the wavefunction. Stating that it is a 

mathematical construct only without physical significance amounts to saying it has no meaning at all. 

sustainable proposition. 

The interpretation that is offered here looks at amplitude waves as traveling fields. Their physical 

dimension may be expressed in force per mass unit, as opposed to electromagnetic waves, whose 

amplitudes are expressed in force per (electric) charge unit. Also, the amplitudes of matter

, but this may actually explain the rather enigmatic dichotomy between 

fermions and bosons and is, therefore, an added bonus. 

The interpretation that is offered here has some advantages over other explanations, as it explains the 

d interference. However, while it offers a great explanation of the wave nature of 

explain its particle nature: while we think of the energy as being spread out, we will 

electrons and photons as pointlike particles once they hit the detector. Why is it that a 

detector can sort of ‘hook’ the whole blob of energy, so to speak?  

The interpretation of the wavefunction that is offered here does not explain this. Hence, the 

of the Copenhagen interpretation of the wavefunction surely remains 

 

22 

For example, we can imagine two-

, whose center of 

will be some combination of 

dimensional oscillation as 

The point of this paper is not to make any definite statements. That would be foolish. Its objective is just 

of the wavefunction. Stating that it is a 

amounts to saying it has no meaning at all. 

waves as traveling fields. Their physical 

dimension may be expressed in force per mass unit, as opposed to electromagnetic waves, whose 

unit. Also, the amplitudes of matter-waves 

, but this may actually explain the rather enigmatic dichotomy between 

The interpretation that is offered here has some advantages over other explanations, as it explains the 

d interference. However, while it offers a great explanation of the wave nature of 

explain its particle nature: while we think of the energy as being spread out, we will 

Why is it that a 

explain this. Hence, the 

on of the wavefunction surely remains 
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Appendix 1: The de Broglie relations and energy 

The 1/2 factor in Schrödinger’s equation is related to the concept of the effective mass (meff). It is easy to 

make the wrong calculations. For example, when playing with the famous de Broglie relations – aka as 

the matter-wave equations – one may be tempted to derive the following energy concept: 

1. E = h∙f and p = h/λ. Therefore, f = E/h and λ = p/h. 

2. v = f·λ = (E/h)∙(p/h) = E/p 

3. p = m∙v. Therefore, E = v∙p = m∙v
2
 

E = m∙v
2
? This resembles the E = mc

2
 equation and, therefore, one may be enthused by the discovery, 

especially because the m∙v
2
 also pops up when working with the Least Action Principle in classical 

mechanics, which states that the path that is followed by a particle will minimize the following integral: 

H �  I 2KE − PE6L-
�M

�N
 

Now, we can choose any reference point for the potential energy but, to reflect the energy conservation 

law, we can select a reference point that ensures the sum of the kinetic and the potential energy is zero 

throughout the time interval. If the force field is uniform, then the integrand will, effectively, be equal to 

KE − PE = m·v
2
.
27

 

However, that is classical mechanics and, therefore, not so relevant in the context of the de Broglie 

equations, and the apparent paradox should be solved by distinguishing between the group and the 

phase velocity of the matter wave. 
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 We detailed the mathematical framework and detailed calculations in the following online article: 

https://readingfeynman.org/2017/09/15/the-principle-of-least-action-re-visited. 
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Appendix 2: The concept of the effective mass 

The effective mass – as used in Schrödinger’s equation – is a rather enigmatic concept. To make sure we 

are making the right analysis here, I should start by noting you will usually see Schrödinger’s equation 

written as: 

0ħ
∂ψ

∂t =  − ħ	
2mRSS

∇	ψ + Uψ 

This formulation includes a term with the potential energy (U). In free space (no potential), this term 

disappears, and the equation can be re-written as:  

∂ψ(x, t)/∂t = i∙(1/2)∙(ħ/meff)∙∇
2
ψ(x, t) 

We just moved the i∙ħ coefficient to the other side, noting that 1/i = −i. Now, in one-dimensional space, 

and assuming ψ is just the elementary wavefunction (so we substitute a·e
−i∙[E∙t − p∙x]/ħ

 for ψ), this implies 

the following: 

−a∙i∙(E/ħ)∙e
−
i·

[E∙t − p∙x]/ħ
 = −i∙(ħ/2meff)∙a∙(p

2
/ħ

2
)∙ e

−i∙[E∙t − p∙x]/ħ  

⇔ E = p
2
/(2meff) ⇔ meff = m∙(v/c)

2
/2 = m∙β

2
/2 

It is an ugly formula: it resembles the kinetic energy formula (K.E. = m∙v
2
/2) but it is, in fact, something 

completely different. The β
2
/2 factor ensures the effective mass is always a fraction of the mass itself. To 

get rid of the ugly 1/2 factor, we may re-define meff as two times the old meff (hence, meff
NEW

 = 2∙meff
OLD

), 

as a result of which the formula will look somewhat better: 

meff = m∙(v/c)
2
 = m∙β

2
 

We know β varies between 0 and 1 and, therefore, meff will vary between 0 and m. Feynman drops the 

subscript, and just writes meff as m in his textbook (see Feynman, III-19). On the other hand, the electron 

mass as used is also the electron mass that is used to calculate the size of an atom (see Feynman, III-2-

4). As such, the two mass concepts are, effectively, mutually compatible. It is confusing because the 

same mass is often defined as the mass of a stationary electron (see, for example, the article on it in the 

online Wikipedia encyclopedia
28

). 

In the context of the derivation of the electron orbitals, we do have the potential energy term – which is 

the equivalent of a source term in a diffusion equation – and that may explain why the above-mentioned 

meff = m∙(v/c)
2
 = m∙β

2
 formula does not apply.
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 https://en.wikipedia.org/wiki/Electron_rest_mass (retrieved on 29 September 2017). 
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