The difference of any real transcendental number and complex number e^i is always a complex transcendental number.

Charanjeet Singh Bansrao
bansrao357@gmail.com
September 11, 2017

From Euler’s formula,

$$e^{ix} = \cos x + isinx$$

we can derive the following equation

$$ae^{ix} = 2c - a + 2i\sqrt{ca - c^2}$$

Where, a, c, and x are real numbers such that

$$x = \cos^{-1} \frac{2c-a}{a} \quad \text{and} \quad c = \frac{a(cosx+1)}{2}$$

The above equation can be obtained as follows. Consider the following circle on a complex plane with center O touching the imaginary axis at zero.

Let length LM is c and MN is b then diameter LN should be $c+b$ and radius OP or ON is $\frac{c+b}{2}$. In this way, the length OM is
OM = ON – MN

\[OM = \frac{c+b}{2} - b = \frac{c-b}{2} \]

Using Pythagoras theorem, the length PM can be obtained as follows:

\[PM = \sqrt{OP^2 - OM^2} \]

\[PM = \sqrt{\left(\frac{c+b}{2}\right)^2 - \left(\frac{c-b}{2}\right)^2} = \sqrt{cb} \]

Hence

\[\sin x = \frac{PM}{OP} = \frac{2\sqrt{cb}}{c+b} \]

(1)

and

\[\cos x = \frac{OM}{OP} = \frac{c-b}{c+b} \]

(2)

Insert (1) and (2) in Euler’s formula to get

\[e^{ix} = \frac{c-b}{c+b} + i \frac{2\sqrt{cb}}{c+b} \]

\[(c+b)e^{ix} = c - b + 2i\sqrt{cb} \]

Let \(c + b = a \) then \(b = a - c \); so we have,

\[ae^{ix} = c - (a - c) + 2i\sqrt{c(a-c)} \]

Or

\[ae^{ix} = 2c - a + 2i\sqrt{ca - c^2} \]

(3)

Lemma 1. If \(x \) is algebraic and \(x \in \left\{ \cos^{-1} \frac{2c-a}{a} \right\} \) then \(a \) is algebraic and \(c \) is transcendental.

Proof: Consider equation 2

\[\cos x = \frac{c-b}{c+b} \]

Or \(\cos x = \frac{c-b}{a} = \frac{2c-a}{a} \) because \(b = a - c \).

Therefore \(x = \cos^{-1} \frac{2c-a}{a} \)
According to Lindemann’s theorem, for all algebraic values of x the trigonometric function $\cos x$ is transcendental. But $\frac{2c-a}{a}$ can always be transcendental only if a is algebraic and c is transcendental. This implies that set of algebraic values of x is subset of $\left\{ \cos^{-1} \frac{2c-a}{a} \right\}$ when a is algebraic and c is transcendental.

It is not impossible to make number a algebraic of any desired value by adding some unknown transcendental number b in c. Similarly we can obtain any desired algebraic value of x by adjusting the value of the number a.

Lemma 2. $2i\sqrt{ca - c^2}$ is always transcendental if a is algebraic and c is transcendental.

Proof. Let $ca - c^2 = y$

Where we assume y is algebraic. We get the following quadratic equation:

$$c^2 - ac + y = 0$$

Therefore

$$c = \frac{-(a) \pm \sqrt{(-a)^2 - 4y}}{2}$$ \hspace{1cm} (4)

Since c is transcendental and a is algebraic then equation (4) can only be transcendental if y is transcendental. Therefore our assumption that y or $ca - c^2$ is algebraic is wrong. Hence term $2i\sqrt{ca - c^2}$ is transcendental.

Proposition: $c - e^{i}$ is a complex transcendental number where c is any real transcendental number.

Proof: We can re-write equation 3 as follows:

$$a = 2i\sqrt{ca - c^2} + 2c - ae^{ix}$$ \hspace{1cm} (5)

Let a is algebraic and c is transcendental.

We have $x = \cos^{-1} \frac{2c-a}{a}$

According to lemma 1 we can make x algebraic of value of one radian by adjusting the value of a. Hence equation 5 becomes—

$$a = 2i\sqrt{ca - c^2} + 2c - ae^{i}$$
Since a is algebraic therefore both the terms $2i\sqrt{ca - c^2}$ and $2c - ae^i$ should be algebraic or transcendental.

But from lemma 2 we know $2i\sqrt{ca - c^2}$ is transcendental therefore $2c - ae^i$ is also transcendental.

We can adjust the values of coefficients 2 and a to make them equal to some algebraic number n without affecting the value of the term $2c - ae^i$. Hence we can write --

$$n(c - e^i) = 2c - ae^i$$

In this way we conclude that the difference $c - e^i$ is a complex transcendental number where c is any real transcendental number.