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Abstract

To construct quantum gravity we introduce the quantum gravity state as function
of particle coordinates and functional of fields, We add metric as the new argument of

state:
U =U(t,21,...00, {A7(2)}, {gu(z)})

we calculate the cosmological constant assuming that the quantum state is a function

of time and radius of universe (mini-superspace)
U =U(t a)

To avoid infinities in the solutions, we substitute the usual equation for propagotor
with initial value Cauchy problem, which has finite and unique solution, for example

we substitute the equation for Dirac electron propagator
(Y'pu — me)K(t, x, to, 20) = 8(Z — 20)0(t — to)
which already has infinity at the start ¢ = £y, with the initial value Cauchy problem

(H - iha/at)K(t,{B,to,a}o) = 0,
K(t,aﬁ,to,l‘o) :(5(52"—.7}_6), t:to,

which has finite and unique solution.
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1. Introduction

The new and equivalent formulation of quantum electrodynamics is given in terms of

space of states.

U= Ut a1, ..., {A7(2)}) (1)

where A7 is the electromagnetic field. To construct quantum gravity we add metric as the

new argument of state. The quantum gravity state is



U= \I/(t,xl,...xn,{A“’(x)},{gW(x)}) (2>

For example, the mean value of metric at point x( at time t

(G (to, o)) = /Dxl...D:L'nD{AV(:c)}D{gW(x)}\IJ*(t)gu,,(xo)\lf(t) (3)

The quantum gravity must me completely field theory, we substitute particle coordinates
with the mass fields.

U = Ut {1 (2)}, o Du(2)} A (2)}, {0 () (4)

To find the equation of motion we use the approach
Action — Lagrangian — Hamiltonian — Quantization.

The lagrangian density participates in the integral

5= / dtdSz L (5)

The momentum density

oL
Po = 5a) (6)
where ¢ are the all fields.
o= (9", A", b1, ... 0n), (7)
where ¢1, ...¢, are the mass fields.
The Hamiltonian density
H=pohe—-L (8)

The Hamiltonian

H= / Hd>x (9)

To perform quantization we substitute the fields and the momentum of fields with the

operators.
oAt
= H(t _— 10
H H( 7Ia90(l')7p¢(x)7 8:16“5%,) ( )
We introduce the operator of the field value at the point xg
S(xo) : U — p(x0) ¥ (11)



The momentum operator of the field value at the point zg

V(o) +go(x — x0)}) — V({e(2)}))

Po(x0) : ¥ —> —zhclllir[l) . (12)
The momentum and coordinate operators satisfy
(N .
= [Po(x), p(o] = d(x — o) (13)

h

The terms 9%g,,,/0x3 are not so well for quantization, so we perform integration by parts,

after the gravity action is ready for quantization, and we construct quantum gravity theory,

2. Relativistic invariance

To achieve the relativistic invariance we represent our manifold as set of slices, with

invariant parameter w-number of slices,and the invariant points M on each slices:

U = U(w, My, ..M, {A7(M)}) (14)

3. The quantization of gravity

The problem while quantization of gravity is presence of second time terms in action (we

will integrate by parts to eliminate them)

S:/&&:/R%%@ (15)

where R = R%;, g"™d! is the scalar curvature. The curvature tensor
Cori arh, |
ZKlm = al’lm - oxm + F;lrr’;{m - F;m 7Il(l (16)

The table of Christobel symbols I'%, is a tensor up to linear transformations, so applica-
tion of the covariant derivative to Christobel symbols is possible in this narrow sence, and

is also a tensor . .
o, Ol

Sl = Ol + Fga ?('m - ?('lriam - F?nlrz}(a (17)
Then after changing indices
ST or , , ,
K — + Fina (Il(l - %(m al ?;nFZK(x (18>

sxm  Oxm
The substraction gives

5F2Km (SFZKl 8FZKm aFZKl « 7 a T
Sl - Sm = Ol - orm +2FKm al_2FKlFo¢m (19)
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Then, obviously,

7 5FZ m 5Fz « I a T
Kim — 651 - 5£Cm I‘Kml—‘oal + FKlFozm (20)

Then after substituting this into the action S; = [(RdSY) = [{R%;,,,0lg"™\/—gdz}, after

integrating the covariant derivative by parts, we see that it vanishes ( the covariant derivative

of metric is zero), the only term remains:

ng/( L 4T Y gR T/ —gda? (21)

The action now does not contain second derivatives, only up to first, now we can construct

Hamilton formalism, the lagrangian density participates in the integral

Sy = / dtd’zL, (22)
The momentum density
p = oL (23)
99

where ¢’ is the time derivative of metric
The density of gravity Hamiltonian (the other parts of the entire Hamiltonian including

interaction part, the Hamltonian of other fields we have written in previous section)
Hy =1"g, — Ly (24)
The Hamiltonian
H, = / H,d>x (25)

The problem while constructing Hamiltonian is to write velocities g;,, as functions of mo-
mentum p"”, before the lagrangian contains terms 0,1,2 power of velocities, the Hamiltonian

before transition from velocities to momenta
Hy=Ho+ Hi+ Ho (26)
The construction of Hamiltonian from lagrangian gives vanishing of linear terms:
H, =0 (27)

The zero term of Hamiltonian does not contain velocities, so it is equal to zero term of
lagrangian
Ho = —Lo (28)

The construction of second term of Hamiltonian is complex, it is equal to second term of

lagrangian, but still transition from velocities to momenta is not clear
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Hy = Lo = 1/2(0°L/09,,094) 9y Yo (29)

The matrix there is Hessian W of Lagrange function, the elements there are zero, if at
least one of indices is zero, W is irreversible, so we can not transit from all velocities to all
momenta, nevertheless if we remove those zero elements from W, which can not contribute to
Hamiltonian, then the remaining matrix W’ is reversible, we can now transit from velocities
to momenta, the construction of gravity Hamiltonian is over, the construction of entire
Hamiltonian is written in the previous section.

The construction of Quantum Gravity is over.

4. The calculation of cosmological constant

To calculate the cosmological constant we perform the quantization of Friedman model.

Suppose that the state is the function of time and the universe curvature radius.

U =V(t,a) (30)

To calculate the quantum Hamiltonian we use our scheme:
Action — Lagrangion — Hamiltonian — Quantization.

As well known, the amount of the visible matter in universe is less then 5 %. We assume

that the universe is massless and the Einstein-Hilbert action given by

o o .
S = 167TG’/dQR: T6nC /dtdx\/—gR (31)

3
L c
L= /dxmﬂG\/—gR (32)

If we substitute into the action the Friedman metric (open case)
d?s = 2dt* — a*(t)(dx® + sinh®x*(d©? + sin*Od¢?)) (33)

If we introduce the new variable n which satisfies the differential relation adn = cdt

d’s = a*(n)(dn?* — dx* — sinh*x(d©* + sin’Ody?)) (34)
Then the calculation gives

6(a — ar(n))

R= ,g = —a®sinh*ysin’© (35)



Taking the integral of the angles, we have:

S=w / dna(a — an(n)) = w / dn(a® + ar®) = / dnL, (36)

where the Lagrangian is
L=a’t+a*=E-U (37)

is the Lagrangian of the particle in the accelerating potential
U=—a’ (38)

Suppose that quantum mean values obey the Eirenfest theorems which are our case the

Euler-Lagrange equations,which give
<all>—-—<a>=0 (39)

Their general solution is

a=ae’ + aze™" (40)

[. Case 1(the initial radius of Universe is no-zero and positive:a; > 0, as > 0) Making a shift

of 1, we can make

ap = as (41)
so that
a = aie" + aje”"" = agcoshn, al = agsinhn (42)
The neighboring geodesics equations
D2AxY N
D—T2 = Rlﬁnlj VﬁAan (43)

In the case of zero spatial velocities we have

DAz
D7'2 = RgO'y(l/O)QA:E’y (44)

The sign of Ry, shows if the universe accelerates

al all al

)+ =

- - - 2+ 1=—tanh’n+1>0 (45)

RgOn = _(

We observe the positive acceleration of the universe, which has not ever been given by any
theory.
I. Case 2(the initial radius of Universe is zero:a; > 0,as < 0) Making a shift of 7, we can
make
a; = as (46)

so that

a = aie" —aje”" = agsinhn, al = agcoshn (47)
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The neighboring geodesics equations
D2 A\x? N
D—T2 = Rlﬁny I/’BA.%'n (48)
In the case of zero spatial velocities we have
D2 Az

DTQ = RgOW(VO)QAx’Y (49)

The sign of R, shows if the universe accelerates

al all al

)? + —(

- - ” 22 4+1=—ctanh’n+1<0 (50)

RgOU = _(

We see that if at the starting time the universe was at one point then we would not see
the acceleration of Universe. We can see the accelerating Universe only if the initial radius

of Universe is not zero(see case 1).This is the argument against Big Bang.

5. The Cosmological Constant
In Case 1 of the accelerating Universe
a = agcoshn (51)
Remembering that adn = cdt and integrating we obtain
ct = agsinhn (52)

The Hubble constant
_ da/dt _ cda/dn _ cat

H = 53
a a? a? (53)
Substituting there again (31)and using (32), we have:
H— cczzosini; n_ sinh?n _ tanh?n (54)
agcosh?n  tcosh?n t
From where we have:
n = arctanh(Ht)"/? (55)
If we suppose Ht=2/3 we have
n = arctanh(2/3)"? ~ 1.15 (56)
Using neighboring geodesics equation (28) and (29) we see that the sign
D*(Ax") A al all ?
—pa /A= R0, (0°)? = ;((—5)2 t—)= —H? + pe (57)



Using equation for Hubble constant, we obtain

DQI()Af“/)/Ax7 _ _(c_al)2 N c_2 _ A(—ar* + a?) _ caj c? (58)
T

a? a? at a*  adcoshnt

Using (32),we receive

2 - 2 2 2 2
D (AxV)/AI,Y _ (sinhn) _ (tanh n) _ (Ht) . f (59)
D72 t2coshn*  t2coshn?  t?coshn?  coshn?
Substituting the values of n and H, we have according to the theory
D?*(Ax") H? a6 1
Experiment gives the following value of Universe Expansion acceleration
D?(Ax7) 27Gper a6 1

Conclusion

The construction of quantum gravity is possible if we stand on very good land of quantum

states, this path now has shown the way to calculate the cosmological constant
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