Implementation of a Core(c) Number Sieve.

Helmut Preininger
1200 Vienna
Austria
August 28, 2017
mailto: helmut.preininger@chello.at
hosted at: ww.vixra.org

Abstract

In this paper we give an implementation of a Core(c) Number Sieve (for a given c=1,2,3,... we sift out numbers that have in there factorization a prime with a power $\alpha = c$). For c=2 we have a squarefree number sieve. (Note, that, for c=1, our implementation compute the usual prime number sieve.) Our goal is to use only one codebase and avoid extra algorithms for every c. We use some well known algorithms and adopt it for our purpose.

1 The Sieve

Let \mathbb{P} be the set of all prime numbers $p_i \in \mathbb{N}$. Every natural number $m \in \mathbb{N}$ can be expressed as $m = \Pi_i p_i^{\alpha_i}$, with $p_i \in \mathbb{P}$.

Let $c \in \mathbb{N}$, $c > 1$. Every $m \in \mathbb{N}$ can be decomposed into $m = a \cdot b$, with

$$a = \Pi_i p_i^{\alpha_i}, \alpha_i < c$$

and

$$b = \Pi_j p_j^{\alpha_j}, \alpha_j = n_j \cdot c, n_j = 1, 2, \ldots$$

Let $S(c)$ be a sieve where all numbers $m \in \mathbb{N}$ (less than an upper bound), of the form $m = \Pi_i p_i^{\alpha_i}$, $\alpha_i < c$, are marked.

In the special case $S(1)$ our implementation computes the usual prime number sieve.

1.1 Prerequisite: The programming language.

Every programming language\(^1\) that admits bitwise boolean operations, bitwise shift operations and bytewise memory copies is fine.

\(^1\)We use PureBasic, a small procedural programming language. It is bundled with a compiler, an IDE, a debugger and runs on all three major platforms.
1.2 The Data

Let $UB \in \mathbb{N}$ be the upper bound of $S(c)$. For every number $m = 0, \ldots, UB$ we only store the information: $m \in S(c)$ or $m \notin S(c)$. If the i-th bit is 0 it means $i \in S(c)$. Therefore we allocate a $UB + 1$ bit memory block. For large UB this approach is not usable.

We implement a *segmented* sieve, i.e. only a small portion of the sieve is present in the memory at one time (for more details to segmented sieves see for example [RICHJ]).

1.3 Bitwise access

It is not possible to access one bit of a memory block directly. Therefore we have to use bitwise shift and bitwise boolean operations. Fortunately this operations are very fast. To avoid a function call we realize it as macros.

If the memory is organized in 64 bit pieces, the macros are (note, that the syntax is related to PureBasic. It can be easily adopted to every other programming language which provide similar operations.):

```plaintext
Macro BitSet(_var_,_pos_)
  _var_\[(_pos_ >> 6) | (1 << ((_pos_ & 63))]
EndMacro

Macro BitRead(_var_,_pos_)
  _var_\[(_pos_ >> 6) & (1 << ((_pos_ & 63))]
EndMacro
```

Remark 1.

- _var_\[i refer to the 64 bit piece with index i of a memory block (the first piece has index 0)
- _pos_ is the $_pos__th$ bit of a memory block and is associated with the number $m = _pos_
- a >> 6$ is equivalent to $a/64$
- $1 << k$ is equivalent to 2^k
- $\&$.. bitwise boolean AND (Note, $_pos_ \& 63 = _pos_ \mod 64$.)
- $|$.. bitwise boolean OR
- $a \mid b$ is a short version of $a = a \mid b$
1.4 The Segment

A 4-tupel \([LB, UB, c, Seg]\) is called \textit{segment} where \(LB\) is the lower bound, \(UB\) the upper bound, \(c\) is the core level and \(Seg\) is a memory block of at least \(UB - LB + 1\) bits. This segment include all numbers \(m\) in the interval \([LB, UB]\) and the \(i\)-th bit of the memory block \(Seg\) is associated with the number \(m = LB + i\). Note, the first bit in the block is the 0-th bit.

1.5 The Basic Algorithm

\textbf{Note}, we mark all numbers \(m\) that are not in \(S(c)\). (i.e. if \(m \notin S(c)\) the \(m\)-th bit is set to 1)

The basic algorithm:
For all primes \(p_i\) with \(p_i^{\text{max}(2,c)} \leq UB\) (since for \(c = 1\) we have \(p_i^c\)) we process the following procedure:
First we calculate the \textit{offset} (starting value), where we begin to mark. This value \(offset\) is a function of \(c\) and \(LB\). Now we marked every number \(m\), \(offset \leq m \leq UB\) with \(m\) is a multiple of \(p_i^c\) as \(m \notin S(c)\).

Unfortunately the algorithm is slow and needs some improvements. We observe, that for all primes \(p_i\), the mark pattern of \(p_i^c\) is periodic with length \(k_i\). All our improvements rely on this fact. Note, that this improvements are well known (see, for example, [RICHJ]).

1.5.1 Helper: CopySieveBytes

The helper function \textit{CopySieveBytes} has three parameters:
- \texttt{Sieve} .. The address of the memoryblock + offset
- \texttt{n} .. The length, in bytes, of the smallest period.
- \texttt{MaxBytes} .. The length of the memoryblock (in bytes) = \texttt{SegmentBytes - offset}

The algorithm: \texttt{CopySieveBytes(Sieve,n,MaxBytes)}
1. \texttt{kNow = n}
2. \texttt{kEnd = kNow * 2}
 IF \texttt{kEnd} \(\geq\) \texttt{MaxBytes}
 \texttt{Goto Step 4}
 ENDIF
3. \texttt{CopyMemory(Sieve,Sieve + kNow,kNow)}
 \texttt{kNow = kEnd}
 \texttt{Goto Step 2}
4. IF \texttt{kNow} < \texttt{MaxBytes}
 \texttt{CopyMemory(Sieve,Sieve + kNow,MaxBytes - kNow)}
How does it work? We assume, that the first \(n \) bytes of the memory block are correctly marked (Step 1). We want to fill the memory block with this pattern. Each copy doubles the size of the correct pattern \((k\text{Now})\) (Step 2 - Step 3). Therefore we have only \(O(ln_2(k)) \) copy operations, where \(k = (\text{length of the memory block in bytes}) / n \). In Step 4 we fill the rest.

1.5.2 Helper: GetStart

The helper function \texttt{GetStart} has three parameters:
- \(c \) .. The ”core level”
- \(\text{SegNr} \) .. The segment number (the first segment has \(\text{SegNr} = 1 \))
- \(\text{Prime} \) .. The prime number.

and returns the value of the first marked number, in relation to \(c,\text{SegNr},\text{Prime} \).

The algorithm:

\[
\text{GetStart}(c,\text{SegNr},\text{Prime})
\]

1. IF \(c = 1 \) AND \(\text{SegNr} = 1 \)
 \[k\text{Num} = \text{Prime}^2 \]
 ELSE
 \[k\text{Num} = \text{Prime}^c \]
 ENDIF

2. IF \(\text{SegNr} = 1 \)
 \[\text{Start} = k\text{Num} \]
 ELSE
 \[\text{Start} = \text{mod} ((LB - 1), k\text{Num}) \]
 IF \(\text{Start} > 0 \)
 \[\text{Start} = k\text{Num} - \text{Start} - 1 \]
 ENDIF
 ENDIF

3. RETURN \(\text{Start} \)

How does it work? We estimate \(\text{Start} \) (the starting value) where we begin to mark numbers. In Step 1 we handle the special case \(c = 1 \) and \(\text{SegNr} = 1 \) and set the temporary variable \(k\text{Num} \). In Step 2 we compute the offset corresponding with the lower bound \(LB \) of the segment.

1.6 Improvement: The Even Prime

Let \(\text{SegNr} \) be the index of the current segment. The first segment has \(\text{SegNr} = 1 \). We mark all even numbers \(m \) of the segment (except for \(c = 1 \) and \(\text{SegNr} = 1 \) the number 2).
The Function EvenPrime has two parameters:

- c . . The "core level"
- MaxBytes . . The length of the Segment in Bytes.

The algorithm: EvenPrime(c, MaxBytes)

1. offset = 0
 kBytes = 1
2. IF SegNr = 1
 SELECT c
 CASE 1
 BitSet(0, 1, 4, 6, 8, 10, 12, 14)
 offset = 1
 CASE 2
 BitSet(0, 4)
 OTHERWISE
 BitSet(0)
 kBytes = \(\lfloor \frac{2^c}{8} \rfloor \)
ENDSELECT
GOTO 4
ENDIF
3. SELECT c
 CASE 1
 BitSet(0, 2, 4, 6)
 CASE 2
 BitSet(0, 4)
 CASE 3
 BitSet(0)
 OTHERWISE
 offset = \(\lfloor \text{Rem}(LB, 2^c)/8 \rfloor \)
 IF offset > 0
 offset = p^c/8 - offset
 ENDIF
 BitSet(offset * 8)
 kBytes = p^c/8
 ENDSELECT
4. CopySieveBytes(Sieve + offset, kBytes, SegmentBytes - offset)

How does it work? First we compute the offset (starting value) in bytes and the period kBytes. The offset depends on c and SegNr. In Step 2 we handle SegNr = 1. Note, if c = 1, then the number 2 is not marked. In Step 3 we handle the other segments. Only if \(2^c > 8 \) then kBytes > 1 and therefore the offset depends on the lower bound LB of the segment.
1.7 Improvement: The Small Odd Primes

The Function SmallOddPrimes has two parameters:
- \(c \) .. The "core level" i.e. \(p^c \)
- MaxBytes .. The length of the segment in bytes.

and return the smallest prime which is not processed.

The algorithm: SmallOddPrimes(c,MaxBytes)

1. \(kProd = 2^c \)
 - IF \(kProd < 8 \)
 - \(kProd = 8 \)
 - ENDIF ;
 - Prime = 3
 - \(kProd = kProd \times Prime^c \)
2. IF \(kProd > (SegmentLength / 4) \)
 - GOTO Step 5
3. IF \((k \times Prime^c) + BeginPeriod) \geq EndPeriod \)
 - GOTO Step 4
4. BeginByte = \(\lfloor BeginPeriod/8 \rfloor \)
 - CopySieveBytes(Sieve + BeginBytes, \(\lfloor EndPeriod/8 \rfloor \), MaxBytes - BeginBytes)
 - Prime = Nextprime()
 - \(kProd = kProd \times Prime^c \)
 - GOTO Step 2
5. RETURN Prime

How does it work? For example, the period (in bytes) of \(3^c \cdot 5^c \) is \(kBytes = 15^c \cdot \max(8, 2^c) \) (Since we copy bytes we have \(\max(8, 2^c) \)). In general we have \(kBytes = \max(8, 2^c)\Pi p_i^c \) with \(i > 1 \). Up to an appropriate limit of kBytes we can also use the CopySieveBytes method.

In Step 1 we set the period (we start with \(Prime = 3 \)). In Step 2 we test the terminate condition and set the bounds of the period. In Step 3 we mark only the period. In Step 4 we copy the pattern of the period to the rest of the memory block and choose the next prime.
1.8 Improvement: The Wheel

Our implementation of the wheel is in some sense generic, i.e. it depends on \(c \) (the core).

The constants are:
- \(c \) . The ”core level”
- UBPrime . An upper bound for the maximal \(wheel = \Pi p_i^c \) with \(p_i < UBPrime \).
- SegLength . The length of the segment.
- UpperBound . The maximum of the segment.
- LowerBound . The minimum of the segment.
- kSqrt . Process only primes \(p \) with \(p \leq \max(2^{c}, c) \sqrt{UpperBound} \)

The variables are:
- From . The actual number that is performed.
- FullStep . The length of the actual wheel.
- NumList(p) . A list of all \(p_i \leq p \).
- StepList() . A list of numbers \(1 \leq m \leq FullStep \) with \(m \nmid FullStep \).
- WList(p) . A list of numbers \(w_i = m_i \cdot p^c \) for all \(m_i \in StepList() \), and \(p \) is a given prime.

The algorithm: SingleWheel(Prime)
1. \(WList(Prime) /* Fill WList() with all primes \(p_i \leq Prime */ \)
 - Adder = FullStep * \(Prime^c \)
 - Limit = SegLength - Adder
2. IF From > Limit
 GOTO Step 3
ENDIF
 FOR EACH w IN WList()
 - BitSet(From + w)
ENDFOR
 From = From + Adder
 GOTO Step 2
3. /*mark the rest, if any*/
 FOR EACH w IN WList()
 - IF (From + w) >= Limit
 GOTO Step 4
 ENDIF
 - BitSet(From + w)
ENDFOR
4. Terminate

How it works? In Step 1 we fill some variables and the WList(). Note, the StepList is already filled. In Step 2 we mark all elements of WList added with an offset. In Step 3 we
mark the rest.

The algorithm: AllWheels(StartPrime)
1. \(kPrime = \text{StartPrime} \)
2. SetNumList(kPrime)
 \[
 \text{FullStep} = \prod_{p \in \text{NumList}} p^c
 \]
 SetStepList(FullStep)
3. IF \(kPrime > kSqrt \)
 GOTO Step 7
 ENDIF
 From = GetStart(kPrime)
4. IF \((\text{GCD(From,FullStep)} = 1) \) OR \((\text{From} > \text{UpperBound})\)\)
 GOTO Step 6
 ENDIF
5. BitSet(From - LowerBound)
 From = From + \(kPrime^c \)
 GOTO Step 4
6. IF From < SegLength
 Wheel()
 kPrime = NextPrime(kPrime)
 IF kPrime < UBPrime
 GOTO Step 2
 ELSE
 GOTO Step 3
 ENDIF
7. Terminate

How it works? Let \(c = 1 \) and let \(\text{NumList} = \{2,3\} \), i.e. all numbers \(m \in \text{Segment} \) with \(\text{gcd}(m,2 \cdot 3) > 1 \) are marked. Thus, the mark schema has the period \(2 \cdot 3 \), i.e. only the numbers of the form \(6k + 1 \) and \(6k + 5 \), \(k = 0,1,.. \), are not marked. Therefore we have \(\text{StepList} = \{1,5\} \).

Now we handle a prime \(p > 3 \). The variable \(\text{FullStep} \) is \(\text{FullStep} = 6*p \). First we mark all numbers up to the smallest number of the segment with \(\text{gcd}(\text{From}, \text{FullStep}) = \text{FullStep} \) in the usual way (in function \(\text{AllWheels}() \)). Then we mark all numbers \(m \) of the form \((\text{FullStep} \cdot k + 1 \cdot p) + \text{From} \) and \((\text{FullStep} \cdot k + 5 \cdot p) + \text{From} \), with \(k = 0,1,.. \) (in function \(\text{SingleWheel}() \)).

1.9 The Main procedure: SegSieve

Finally the Main procedure, that puts everything together, is given by:
Sieve .. A global variable, the address of the memory block

c .. The "core level"

MaxBytes .. The length of the segment in bytes

The main procedure SegSieve has one parameter:

Sieve .. The address of the memory block

Item .. The number Item has to be in the computed segment.

The algorithm: SegSieve(Item)
1. SegNr = (Item / SegLength) - 1
 LowerBound = (SegNr - 1) * SegLength
 UpperBound = LowerBound + SegLength + 1
2. EvenPrime(c,MaxBytes)
 Prime = SmallOddPrimes(c,MaxBytes)
 AllWheels(Prime)

How does it work? In Step 1 we set appropriate constants. In Step 2 we call the, above defined, procedures and compute the segment.

References