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Abstract

We derive the canonical momentum πI of the gravity field eI . Then we use
it to derive the path integral of the gravity field. The canonical momentum
πI is represented in Lorentz group. We derive it from the holonomy U (γ,A)
of the connection Aia of Lorentz group. We derive the path integral of the
gravity field as known in quantum fields theory and discuss the situation of
free gravity field (like the electromagnetic field). We find that situation is
only in the background spacetime, weak gravity, the situation of low matter
density. We search for a theory in which the gravity field is dynamical at any
energy in arbitrary curved spacetime {xµ}. For that, we suggest the duality
eI ↔ ΣJK , where the field ΣIJ = eI ∧ eJ is the Area field. That duality lets to
the possibility to study both fields eI and ΣIJ in arbitrary curved spacetime.
We find eI → ΣJK in spacelike and ΣJK → eI in timelike. We find that the
tensor product of the gravity and area fields, in selfdual representation, satisfies
reality condition. We apply that to derive the static potential of exchanging
gravitons in scalar and spinor fields, the Newtonian gravitational potential.
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1 The canonical conjugate field πI and the path

integral

We search for conditions to have a dynamical gravity field. The problem of the
dynamics in general relativity is that the spacetime is itself a dynamical thing. It
interacts with the matter, it is an operator dx̂µ. Therefore we have to treat it as a
quantum field like the other fields. But where they exist, this problem is solved by
considering fields exist over fields not over the spacetime[1]. In background space-
time it is substantially different, as we will see, the gravity field becomes as usual
fields.
As usual in quantum field theory we have to find the canonical conjugate field
πI(represented in Lorentz group) acts canonically on Lorentz vectors over 3d closed
surface δM immersed in arbitrary curved spacetime xµ of manifold M . That closed
surface δM is parameterized by three parameters X1, X2, X3. In a certain gauge, we
consider them as a spatial part of Lorentz coordinate XI = X0, X1, X2, X3 with the
flat metric (−+ ++).
Therefore, the exterior derivative operator lets to the change along the norm of that
surface, so it lets to the change in time X0 direction. That lets the 3d surface ex-
tends and have four Lorentz spacetime

{
XI
}

parameterize the four dimensions xµ

of curved spacetime in the manifold M . That lets to propagation of the gravity field
from surface to another.
For that, we suggest canonical states

∣∣ẽI〉 and
∣∣πI〉 represented in Lorentz group, we

use them in deriving the path integral of the gravity field. We find that there is no
propagation over the dynamical spacetime xµ. But in background spacetime we find
that the gravity field propagates freely like the electromagnetic fields.

Although the dynamics of the gravity field is built using Lorentz group elements,
the measurements effect and depend on the dynamical spacetime xµ. Because xµ

is itself a dynamical, it interacts with all fields. Therefore our need to the Lorentz
representation is to have canonical dynamical laws, processes . . . . So we have to
distinguish between the dynamics of the general relativity and its measurements.

The holonomy of the connection A in quantum gravity is[4]

U(γ,A) = TrPei
∮
γ A (1.1)
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The path ordered P is defined in:

Pei
∮
γ A =

∞∑
n=0

1∫
0

ds1

s1∫
0

ds2...

sn−1∫
0

dsniA (γ (sn))...iA (γ (s1)) : γ̇µ (s) =
dxµ

ds

γ is a closed path in arbitrary curved spacetime xµ. In irreducible representation
in selfdual of Lorentz group we write A = Aiτ i, where τ i are Pauli matrices. The
element U(γ,A) is invariant under local Lorentz transformation V I → LIJ(x)V J and
under arbitrary changing of the coordinates dxµ → Λµ

ν(x)dxν . Therefore the quan-
tum gravity is studied using it[1].

The connection A is selfdual of Lorentz spin connection ω[1]:

Aiµ (x) =
(
P i
)
IJ
ωIJµ (x)

P i are the selfdual projectors. We can write the holonomy using the spin connection
ωIJµ dx

µ of Lorentz group. We have

U(γ, ω) = TrPei
∮
γ ω

I
J

We expect that it has the same properties of U(γ,A); satisfies the symmetries of GR.
For free gravity field, we impose the relation:

(ωµ)IJ = πK
IJeKµ

The conjugate field πK
IJ (x) is represented in Lorentz group and acts on its vectors.

Therefore we consider it as a dynamical operator. The holonomy becomes

U(γ, π, e) = TrP exp i

∮
γ

(
πK

I
J

)
eKµ dx

µ

For free gravity field, we expect that the momentum πIJK is antisymmetry. So we
can write

πIJK = πLε
LIJK

This is our starting point in studying the dynamics of the gravity. The holonomy
becomes

U (γ, π, e) = TrP exp i

∮
γ

(
πKIJ

)
eKµdx

µ = TrP exp i

∮
γ

(
εLKIJ

)
πLeKµdx

µ
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It becomes

∞∑
n=0

1∫
0

ds1

s1∫
0

ds2...

sn−1∫
0

dsn
(
iεLKIJπLeKµγ̇

µ
)

(sn)
(
iεL1K1J

J1πL1eK1µ1 γ̇
µ1
)

(sn−1)

...
(
iεLn−1Kn−1Jn−2

IπLn−1eKn−1µn−1 γ̇
µn−1

)
(s1)

where
(
iεLKIJπLeKµγ̇

µ
)

(sn) = iεLKIJπL (sn) eKµ (sn) γ̇µ (sn) with the tangent γ̇µ (s) =
dxµ

ds
on the closed path γ in the manifold M .

The integrals become over terms like

...πI(sj)e
I
µ(si)γ̇

µ (si)dsi...πJ(si)e
J
ν (sk)γ̇

ν (sk)dsk...

The holonomy U (γ, π, e) satisfies the general relativity symmetries, invariance under
local Lorentz transformation V I → LIJ(x)V J and under arbitrary changing of the
coordinates dxµ → Λµ

ν(x)dxν . Therefore we can use it in quantum gravity.

We expect πKe
K
µ dx

µ satisfies the same conditions if it is integrated over closed surface
instead of the path γ. That is because

ed4x =
1

4
d3xµ ∧ dxµ =

1

4
eεµνρσdx

ν ∧ dxρ ∧ dxσ ∧ dxµ/3!

is invariant element. Therefore we can replace πKe
K
µ dx

µ with

πKe
Kµd3xµ = πKe

Kµeεµνρσdx
ν ∧ dxρ ∧ dxσ/3!

With integrating it over three dimensions closed surface δM , it becomes invariant
under GR transformations because in free gravity there are no sources for the gravity
field. Therefore the flux of the vectors is invariant.
e is the determinant of the gravity field eIµ:

gµν(x) = ηIJe
I
µe
J
ν →

√
−g = e

In arbitrary transformation, we have the invariant element

√
gεi1...in =

√
g′ε′i1...in

Therefore

eεµνρσdx
ν ∧ dxρ ∧ dxσ/3! = d3xµ
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Is a co-vector, as ∂µ. By that, the integral

U(δM, π, e) = exp i

∮
δM

πIe
Iµeεµνρσdx

ν ∧ dxρ ∧ dxσ/3! = exp i

∮
δM

πIe
Iµd3xµ

Satisfies the same conditions of the holonomy U (γ,A), invariant under local Lorentz
transformation V I → LIJ(x)V J and under arbitrary changing of the coordinates
dxµ → Λµ

ν(x)dxν . That relates to physical reality, it is, the integral of free vector
fields over a closed surface δM in a manifold M is invariant if there are no sources
for those fields. It is the conversation. The spin connection ωµ and so πKe

Kµ, as
vectors, satisfy that reality in free gravity.

The equation of motion of the gravity field eI is

DeI = deI + ωIJ∧eJ = 0

With our imposing (ωµ)IJ = πK
IJeKµ , we get

deI = −πNIJeN ∧ eJ

As we know, the tensor

eN ∧ eJ = eNµ e
J
νdx

µ ∧ dxν =
1

2

(
eNµ e

J
ν − eNν eJµ

)
dxµ ∧ dxν

Measures the area in the manifold M . Therefore the changes of the gravity field
around a closed path (rotation) relate to the flux of the momentum π throw the area
which is determined by the closed path. It is like the magnetic field, generated by
straight electric current. Therefore

eN ∧ eJ → Area

deI = −πNIJeN ∧ eJ → flux throw this Area

For that reason we suggested πIJK is antisymmetry. We see that the flux depends
on the momentum π.

In the integral

exp i

∮
δM

πIe
Iµeεµνρσdx

ν ∧ dxρ ∧ dxσ/3!
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We define canonical gravity field ẽI :

ẽId3X = ẽIdX1dX2dX3 ≡ eIµeεµνρσdx
ν ∧ dxρ ∧ dxσ/3!

We get

ŨδM(δM, π, ẽ) = exp i

∮
δM

πI ẽ
Id3X

Where XI : I = 1, 2, 3 parameterize the closed surface δM in the manifold M . In
certain gauge, we consider XI : I = 1, 2, 3 as a spatial part of Lorentz spacetime
XI : I = 0, 1, 2, 3. Therefore the exterior derivative is along the time X0. The time
X0 is the direction of the norm on the surface δM(X1, X2, X3). We will see that the
result of the path integral is independent on this gauge.

The integral exp i
∮
δM

πI ẽ
Id3X satisfies the same conditions of the holonomy U(γ,A),

invariant under local Lorentz transformation and under arbitrary changing of the co-
ordinates. Therefore we consider it as a canonical dynamical element.
Comparing it with

〈φ | π〉 = exp i

∫
d3Xφ(X)π(X)/~

the dynamical relation of scalar field φ. For ~ = 1, we suggest canonical states
∣∣ẽI〉

and
∣∣πI〉 with

〈
ẽI
∣∣ πI〉δM = exp i

∫
δM

ẽI(X)πI(X)d3X

πI is canonical conjugate field of ẽI . We can write it over the surface δM like〈
ẽI
∣∣ πI〉δM = Π

n,I

〈
ẽI (xn + dxn)

∣∣ πI (xn)
〉
δM

With〈
ẽI (xn + dxn)

∣∣ πI (xn)
〉
δM

= exp iẽI(xn+dxn)πI(xn)d3X → exp iẽI(xn)πI(xn)d3X

This relation is over the surface δM . In general, for two points in adjacent surfaces
δM1 and δM2, we have〈

ẽI (xn + dxn)
∣∣ πI (xn)

〉
= exp iẽI(xn + dxn)πI(xn)d3X (1.2)
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Here the variation

ẽI(xn + dxn)− ẽI(xn)

Is exterior derivative along the time dX0 in the direction of the norm on the surface
δM1, it lets to the propagation. That lets to extend the surface: δM(X1, X2, X3)→
M(X0, X1, X2, X3).

We need to make êd4x̂ commutes with ˆ̃eId3X. For that we write

−êd4x̂ = êdx̂µ ∧ εµνρσdx̂ν ∧ dx̂ρ ∧ dx̂σ/4!

= êdx̂µ ∧ εµνρσ
4!

∂x̂ν

∂X i

∂x̂ρ

∂Xj

∂x̂σ

∂Xk

εijk

3!
d3X =

1

4
êdx̂µn̂µd

3X

The indexes ijk are Lorentz indexes for I = 1, 2, 3. As we assumed before, XI : I = 1, 2, 3
parameterize the closed surface δM in the manifold M .
We can rewrite it(in certain gauge) like

−ed4x =
1

4
edxµnµd

3X =
1

4
e
∂xµ

∂X0
nµd

3XdX0 =
1

4
eeµ0nµd

3XdX0

compare it with the term

ẽId3X = eIµeεµνρσdx
ν ∧ dxρ ∧ dxσ/3! = eeIµnµd

3X

We find it commutes with it[
êêIµn̂µd

3X, êêµ0 n̂µd
3XdX0

]
= 0→

[
ˆ̃eId3X, êd4x̂

]
= 0

Where
[
êIµ, ê

J
ν

]
= 0 . Therefore the operator êd4x̂ takes eigenvalues when it acts on

the states
∣∣ẽI〉.

The action of free gravity field is[1]

S(e, ω) =
1

16πG

∫
εIJKL

(
eI ∧ eJ ∧RKL(ω) + λeI ∧ eJ ∧ eK ∧ eL

)
We consider only the first term

S(e, ω) = c

∫
εIJKLe

I ∧ eJ ∧RKL(ω)
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C is constant. The Riemann curvature is

RKL(ω) = dωKL + ωKM ∧ ωML

Using the relation we imposed before:

(ωµ)IJ = πK
IJeKµ

the action becomes

S(e, π) = c

∫ [
εIJKLe

I ∧ eJ ∧ d
(
πM

KLeM
)

+ εIJKLe
I ∧ eJ ∧

(
πK1

K
M

)
eK1 ∧

(
πK2

ML
)
eK2
]

or

S(e, π) = c

∫ [
εIJKLe

I ∧ eJ ∧ d
(
πM

KLeM
)

+ εIJKL
(
πK1

K
M

) (
πK2

ML
)
eI ∧ eJ ∧ eK1 ∧ eK2

]
(1.3)

We find the term d
(
πM

KLeM
)

from

εIJKLd
(
eI ∧ eJ ∧ πMKLeM

)
But we assume its integral is zero at infinity. We have

εIJKLd
(
eI ∧ eJ ∧ πMKLeM

)
=εIJKL

(
deI
)
∧ eJ ∧ πMKLeM − εIJKLeI ∧

(
deJ
)
∧ πMKLeM

+ εIJKLe
I ∧ eJ ∧ d

(
πM

KLeM
)

Rewriting

−εIJKLeI ∧
(
deJ
)
∧
(
πM

KLeM
)

= −εIJKL
(
deJ
)
∧ eI ∧

(
πM

KLeM
)

= εJIKL
(
deJ
)
∧ eI ∧ πMKLeM

Therefore

εIJKLd
(
eI ∧ eJ ∧ πMKLeM

)
= 2εIJKL

(
deI
)
∧eJ∧πMKLeM+εIJKLe

I∧eJ∧d
(
πM

KLeM
)

By that we write the action as

S(e, π) = c

∫ [
−2εIJKL

(
deI
)
∧ eJ ∧

(
πM

KLeM
)

+ εIJKL
(
πK1

K
M

) (
πK2

ML
)
eI ∧ eJ ∧ eK1 ∧ eK2

]
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Using the equation of motion of the gravity field

0 = DeI = deI + ωIJ ∧ eJ = deI + πN
I
Je

N ∧ eJ

We get

deI = −πNIJeN ∧ eJ

Inserting it in the action, it becomes

S(e, π) = c

∫
2εIJKL(πN

I
B)eN ∧ eB ∧ eJ∧

(
πM

KLeM
)

+ εIJKL
(
πK1

K
M

) (
πK2

ML
)
eI ∧ eJ ∧ eK1 ∧ eK2

Or

S(e, π) = c

∫
2εIJKL

(
πN

I
B

) (
πM

KL
)
eN∧eB ∧ eJ ∧ eM

+ εIJKL
(
πK1

K
M

) (
πK2

ML
)
eI ∧ eJ ∧ eK1 ∧ eK2

Rewriting it like

S(e, π) = c

∫
2εIJKL

(
πN

I
B

) (
πM

KL
)
eB∧eJ ∧ eN ∧ eM

+ εIJKL
(
πK1

K
M

) (
πK2

ML
)
eI ∧ eJ ∧ eK1 ∧ eK2

Replacing B→← I,N → K1 and M → K2 in the first term, we get

S(e, π) = c

∫
2εBJKL

(
πK1

B
I

) (
πK2

KL
)
eI ∧ eJ ∧ eK1 ∧ eK2

+ εIJKL
(
πK1

K
M

) (
πK2

ML
)
eI ∧ eJ ∧ eK1 ∧ eK2

We replace

eI ∧ eJ ∧ eK1 ∧ eK2 → εIJK1K2e0 ∧ e1 ∧ e2 ∧ e3

We get

S(e, π) = c

∫ [
2εBJKL

(
πK1

B
I

) (
πK2

KL
)
εIJK1K2 + εIJKL

(
πK1

K
M

) (
πK2

ML
)
εIJK1K2

]
×e0 ∧ e1 ∧ e2 ∧ e3
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Using the relation πIJL = πKε
KIJL we imposed before. The action:

S(e, π) = c

∫ [
2εBJKL (πK1BI)

(
πK2

KL
)
εIJK1K2 − 2

(
πK

K
M

) (
πL

ML
)

+ 2
(
πL

K
M

) (
πK

ML
)]

×e0 ∧ e1 ∧ e2 ∧ e3

becomes:

S(e, π) = c

∫ [
2εBJKLπ

NεNK1BI

(
πK2

KL
)
εIJK1K2 + 2 (πLKM)

(
πKML

)]
e0 ∧ e1 ∧ e2 ∧ e3

Using εNK1BI = −εIK1BN = εIK1NB, εILKM = −εILMK and εJKML = −εJLMK , we
get

S(e, π) = c

∫ [
2εBJKLπ

NεIK1NB

(
πK2

KL
) (
−εIK1JK2

)
+ 2πIεILMKπJε

JLMK
]
e0 ∧ e1 ∧ e2 ∧ e3

Using the property

εIK1NBε
IK1JK2 = −2

(
δJNδ

K2
B − δ

J
Bδ

K2
N

)
and εILMKε

JLMK = −6δJI

The action becomes

S(e, π) = c

∫ [
4εK2

JKLπ
J
(
πK2

KL
)
− 12πIπ

I
]
e0 ∧ e1 ∧ e2 ∧ e3

Or

S(e, π) = c

∫ [
4εK2JKLπ

J
(
πK2KL

)
− 12π2

]
e0 ∧ e1 ∧ e2 ∧ e3

Then

S(e, π) = c

∫ [
−4εJK2KLπ

JπIε
IK2KL − 12π2

]
e0 ∧ e1 ∧ e2 ∧ e3

The action becomes

S0(e, π) = c

∫ [
24π2 − 12π2

]
e0 ∧ e1 ∧ e2 ∧ e3 = c

∫
12π2e0 ∧ e1 ∧ e2 ∧ e3

= c

∫
12π2ed4x

In the background spacetime, we have e→ 1 + δe, therefore

S0(δe, π)→
∫

12cπ2d4x+ ...
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To find its meaning we compare it with scalar field Lagrange in background space-
time, for ~ = 1:

Ld4x = (π∂0φ−H(φ, π)) d4x with H(φ, π)d4x =

(
1

2
π2 +

1

2
(∇φ)2 +

1

2
m2φ2

)
d4x

We conclude that the term∫
12cπ2d4x � 0

Is the energy of the gravity field in background spacetime. As we will find in result
of the path integral, in background spacetime limit, we have to replace c→ −c when
we compare with the electromagnetic field, therefore, in the background spacetime,
we replace

S(e, π)→ −
∫

12cπ2d4x = −
∫
Hd4x

That is not surprise, because the general relativity equation (Einstein field equation)
is derived to satisfy the energy conservation over curved spacetime:

Rµν −
1

2
Rgµν = 8πGTµν

It satisfies the energy-momentum conservation ∇µT
µν = 0. But, as we know, in

quantum field theory in background spacetime limit, we have to write the canonical
law of the conservation like

∂µ
(
T µνmatter + T µνgravity

)
= 0

Therefore we write

Tµν +
−1

8πG

(
Rµν −

1

2
Rgµν

)
= Tµν (matter) + Tµν (gravity) = constant

By that we conclude

Tµν (gravity) = − 1

8πG

(
Rµν −

1

2
Rgµν

)
Therefore we have to replace c → −c , we see that when we compare it with the
electromagnetic field in background spacetime.
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Now we derive the path integral as usual. As we saw before, the operator êd4x̂ takes
eigenvalues when it acts on the states

∣∣ẽI〉, by using (1.2) we have the amplitude〈
ẽI (x+ dx)

∣∣ eiS |πI (x)〉 →
〈
ẽI (x+ dx)

∣∣ ei12cπ̂2êd4x̂ |πI (x)〉

= exp
(
i12cπ2 (x) e (x+ dx) d4x+ iẽI (x+ dx) πI(x)d3X

)
→ exp

(
i12cπ2 (x) e (x) d4x+ iẽI (x+ dx) πI(x)d3X

)
We let the momentum πI acts on the left. The amplitude of the propagation between
two points x and x+ dx in different adjacent surfaces δM1 → δM2 is

〈ẽI (x+ dx)| eic12π̂2êd4x̂
∣∣ẽI (x)

〉
δM1→δM2

=
∫

Π
I
dπI 〈ẽI (x+ dx)| eic12π̂2êd4x̂

∣∣πI (x)
〉
δM1→δM2

〈
πI (x)

∣∣ ẽI (x)
〉
δM1

=
∫

Π
I
dπI exp

[
i12cπ2 (x) e (x+ dx) d4x+ iẽI(x+ dx)πI(x)d3X

]
exp

(
−iẽI(x)πI(x)d3X

)
→
∫

Π
I
dπI exp

[
i12cπ2 (x) e (x) d4x+ i

(
ẽI(x+ dx)− ẽI(x)

)
πI(x)d3X

]
The exterior derivative(

ẽI(x+ dx)− ẽI(x)
)
d3X =

∂ẽI(x)

∂X0
d3XdX0 = dẽI(x)d3X

Is along the time dX0 in the direction of the norm of the surface δM(X1, X2, X3),
therefore it lets to propagate from surface to another.

We write the amplitude like

〈ẽI (x+ dx)| eic12π̂2êd4x̂
∣∣ẽI (x)

〉
δM1→δM2

=

∫
Π
I
dπI exp

[
i12cπ2 (x) e (x) d4x+ iπI(x)dẽI(x)d3X

]
The path integral is the integral of ordered product of those amplitudes over all
spacetime points(over all ordered 3d surfaces).

WST =

∫
Π
I
DẽIDπI exp i

∫ (
12cπ2ed4x+ πIdẽ

Id3X
)

=

∫
Π
I
DẽIDπI exp i

∫ (
12cπ2e0 ∧ e1 ∧ e2 ∧ e3 + πIdẽ

Id3X
)
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For selfdual representation, we consider that propagation in the direction of expand-
ing of the surface(positive direction).

There is no problem with Lorentz non-invariance in ∂ẽI(x)
∂X0 d

3XdX0 because the equa-
tion of motion, we find in the result of the path integral, is

∂ẽI(x)

∂X0
∝ −πI

Therefore

∂ẽI(x)

∂X0
πId

3XdX0 ∝ −πIπId3XdX0

This is Lorentz invariant. This is like the equation of motion of the scalar field
π = ∂0φ which solves the same problem.

In our gauge we have

πIπ
Id3XdX0 → π2dX0 ∧ dX1 ∧ dX2 ∧ dX3 = π2e0

µe
1
νe

2
ρe

3
σdx

µ ∧ dxν ∧ dxρ ∧ dxσ

= π2e0
µe

1
νe

2
ρe

3
σε

µνρσd4x = π2ed4x

It is invariant element; we find it in the path integral.
The path integral:

WST =

∫ ∏
I

DẽIDπI exp i

∫ (
12cπ2e0 ∧ e1 ∧ e2 ∧ e3 + πIdẽ

Id3X
)

Vanishes unless

δ

δπI

(
12cπ2e0 ∧ e1 ∧ e2 ∧ e3 + πIdẽ

Id3X
)

= 24cπIe0 ∧ e1 ∧ e2 ∧ e3 + dẽId3X = 0

Therefore we have the path(equation of motion)

π̂I =
−1

24c

(
ê0 ∧ ê1 ∧ ê2 ∧ ê3

)−1
dˆ̃eId3X (1.4)

Or

πIπJ =
1

(24c)2

(
e0 ∧ e1 ∧ e2 ∧ e3

)−2
dẽId3XdẽJd3X (1.5)
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Therefore

12cπ2e0 ∧ e1 ∧ e2 ∧ e3 + πIdẽ
Id3X =

1

48c

(
e0 ∧ e1 ∧ e2 ∧ e3

)−1 (
dẽId

3X
) (
dẽId3X

)
− 1

24c

(
e0 ∧ e1 ∧ e2 ∧ e3

)−1 (
dẽId

3X
) (
dẽId3X

)
The path integral becomes

WST =

∫ ∏
I

DẽIExp
−i
48c

∫ (
e0 ∧ e1 ∧ e2 ∧ e3

)−1 (
dẽId

3X
) (
dẽId3X

)
The canonical field ẽI is defined in

ẽKd3X = eKµeεµνρσdx
ν ∧ dxρ ∧ dxσ/3!

Therefore(
dˆ̃eK

)
d3X =

(
D̂µ1 ê

Kµ
)
êεµνρσdx̂

µ1 ∧ dx̂ν ∧ dx̂ρ ∧ dx̂σ/3!

Where D is the co-variant derivative defined in

DV I = dV I + ωIJ ∧ V J

We have(
e0 ∧ e1 ∧ e2 ∧ e3

)−1 (
dẽId

3X
) (
dẽId3X

)
=

(dẽId
3X)

(
dẽId3X

)
e0 ∧ e1 ∧ e2 ∧ e3

It becomes(
D̂µ1 ê

µ
I

)
êεµνρσdx̂

µ1 ∧ dx̂ν ∧ dx̂ρ ∧ dx̂σ
(
D̂µ2 ê

Iµ′
)
êεµ′ν′ρ′σ′dx̂

µ2 ∧ dx̂ν′ ∧ dx̂ρ′ ∧ dx̂σ′

3!3!ê0
µ3
ê1
ν3
ê2
ρ3
ê3
σ3
dx̂µ3 ∧ dx̂ν3 ∧ dx̂ρ3 ∧ dx̂σ3

Define the inverse:(
e0
µe

1
νe

2
ρe

3
σdx

µ ∧ dxν ∧ dxρ ∧ dxσ
)−1

= Eµ′

0 E
ν′

1 E
ρ′

2 E
σ′

3

∂

∂xσ′
∧ ∂

∂xρ′
∧ ∂

∂xν′
∧ ∂

∂xµ′

We write it in the form

e0
µe

1
νe

2
ρe

3
σdx

µ ∧ dxν ∧ dxρ ∧ dxσ =
1

4
ed3xµ ∧ dxµ

14



Actually, we have to write the tensors εµνρσ and εµνρσ like e−1εµνρσ and eεµνρσ but
here we neglect that, because it gives the same results.

Therefore we write

Eµ′

0 E
ν′

1 E
ρ′

2 E
σ′

3 ∂σ′ ∧ ∂ρ′ ∧ ∂ν′ ∧ ∂µ′ = E∂ν ∧ ∂3ν

With inner product like(
E∂ν ∧ ∂3ν

)(1

4
ed3xµ ∧ dxµ

)
=

1

4
Ee∂ν∧∂3νd3xµ∧dxµ =

1

4
Ee
(
δνµ
)
∂νdx

µ = Ee = 1

also we can write it like(
E∂ν ∧ ∂3ν

) (
ed3xµ′ ∧ dxµ

)
= Ee∂ν ∧ ∂3νd3xµ′ ∧ dxµ = Eeδνµ′∂νdx

µ = δµµ′

We can write

(Dµ1e
µ
I ) eεµνρσdx

µ1∧dxν∧dxρ∧dxσ/3!→ (Dµ1e
µ
I ) edxµ1∧d3xµ = − (Dµ1e

µ
I ) ed3xµ∧dxµ1

Also (
Dµ2e

Iµ′
)
eεµ′ν′ρ′σ′dx

µ2 ∧ dxν′ ∧ dxρ′ ∧ dxσ′/3!→ −
(
Dµ2e

Iµ′
)
ed3xµ′ ∧ dxµ2

We conclude

d3xµ ∧ dxµ = −dxµ ∧ d3xµ → d3xµ ∧ dxµ1 = −dxµ ∧ d3xµ1

Therefore

− (Dµ1e
µ
I ) ed3xµ ∧ dxµ1 → (Dµ1e

µ
I ) edxµ ∧ d3xµ1

By that the term(
D̂µ1 ê

µ
I

)
êεµνρσdx̂

µ1 ∧ dx̂ν ∧ dx̂ρ ∧ dx̂σ
(
D̂µ2 ê

Iµ′
)
êεµ′ν′ρ′σ′dx̂

µ2 ∧ dx̂ν′ ∧ dx̂ρ′ ∧ dx̂σ′

3!3!ê0
µ3
ê1
ν3
ê2
ρ3
ê3
σ3
dx̂µ3 ∧ dx̂ν3 ∧ dx̂ρ3 ∧ dx̂σ3

becomes

−
(
E∂ν ∧ ∂3ν

) (
(Dµ1e

µ
I ) edxµ ∧ d3xµ1

) ((
Dµ2e

Iµ′
)
ed3xµ′ ∧ dxµ2

)
= (Dµ1eIµ)

(
Dµ2e

Iµ′
)
e
(
∂ν ∧ ∂3ν

) (
d3xµ1 ∧ dxµ

) (
d3xµ′ ∧ dxµ2

)
15



We used

−dxµ ∧ d3xµ1 = d3xµ1 ∧ dxµ = d3xµ1 ∧ dxµ

therefore we can write

(dẽId
3X)

(
dẽId3X

)
e0 ∧ e1 ∧ e2 ∧ e3

→ (Dµ1eIµ)
(
Dµ2e

Iµ′
)
e
(
∂ν ∧ ∂3ν

) (
d3xµ1 ∧ dxµ

) (
d3xµ′ ∧ dxµ2

)
We can choose the contraction:(

∂ν ∧ ∂3ν
) (
d3xµ1 ∧ dxµ

) (
d3xµ′ ∧ dxµ2

)
=
(
∂ν ∧ ∂3νd3xµ1 ∧ dxµ

) (
d3xµ′ ∧ dxµ2

)
= δνµ1 (∂ν ∧ dxµ)

(
d3xµ′ ∧ dxµ2

)
= δνµ1 (−dxµ ∧ ∂ν)

(
−dxµ2 ∧ d3xµ′

)
= δνµ1dx

µ ∧ ∂νdxµ2 ∧ d3xµ′ = δνµ1δ
µ2
ν dx

µ ∧ d3xµ′

Therefore we can write

(dẽId
3X)

(
dẽId3X

)
e0 ∧ e1 ∧ e2 ∧ e3

→ (Dµ1eIµ)
(
Dµ2e

Iµ′
)
eδνµ1δ

µ2
ν dx

µ ∧ d3xµ′

= (DνeIµ)
(
DνeIµ

′
)
edxµ ∧ d3xµ′ = − (DνeIµ)

(
DνeIµ

′
)
ed3xµ′ ∧ dxµ

= − (DνeIµ)
(
DνeIµ

′
)
eδµµ′d

4x = − (DνeIµ)
(
DνeIµ

)
ed4x

We can also choose another contraction:

(Dµ1eIµ)
(
Dµ2e

Iµ′
)
e
(
∂ν ∧ ∂3ν

) (
d3xµ1 ∧ dxµ

) (
d3xµ′ ∧ dxµ2

)
→

(Dµ1eIµ)
(
Dµ2e

Iµ′
)
e
(
∂ν ∧ ∂3νd3xµ1 ∧ dxµ

) (
d3xµ′ ∧ dxµ2

)
= (Dµ1eIµ)

(
Dµ2e

Iµ′
)
e
(
δνµ1∂ν ∧ dx

µ
) (
d3xµ′ ∧ dxµ2

)
= δνµ1δ

µ
ν (Dµ1eIµ)

(
Dµ2e

Iµ′
)
e
(
d3xµ′ ∧ dxµ2

)
It becomes

(dẽId
3X)

(
dẽId3X

)
e0 ∧ e1 ∧ e2 ∧ e3

→ (DµeIµ)
(
Dµ′e

Iµ′
)
ed4x

By the two possible contractions, we can write the final result as(
e0 ∧ e1 ∧ e2 ∧ e3

)−1 (
dẽId

3X
) (
dẽId3X

)
=
−1

2

(
Dµe

ν
ID

µeIν −Dµe
ν
IDνe

Iµ
)
ed4x
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This Lagrange is like the Lagrange of the electromagnetic field. Also it is indepen-
dent on the gauge we chose for the surface δM . it is invariant under local Lorentz
transformation V I → LIJ(x)V J and any coordinate transformation V µ → ∂xµ

∂x′ν
V ′ν .

The path integral of the gravity field becomes, after replacing c→ −c.

WST =

∫
Π
I
DeI exp

i

48c

1

2

(
−Dµe

ν
ID

µeIν +Dµe
ν
IDνe

Iµ
)
ed4x

With the free gravity field Lagrange

Ld4x =
1

48c

1

2

(
−Dµe

ν
ID

µeIν +Dµe
ν
IDνe

Iµ
)
ed4x (1.6)

We determine the constant c in the Newtonian gravitational potential c � 0.
In background spacetime, weak gravity, Dµ → ∂µ and e→ 1 + δe, we have

L→ 1

48c

1

2

(
−∂µeνI∂µeIν + ∂µe

ν
I∂νe

Iµ
)

Or

L0 =
1

48c

1

2
ηIJe

I
µ

(
gµν∂2 − ∂µ∂ν

)
eJν

Without background spacetime approximation, in strong gravity field, we have prob-
lem with the determinant e, it is

WST =

∫ ∏
I

DeIexp
i

48c

∫
1

2

(
−Dµe

ν
ID

µeIν +Dµe
ν
IDνe

Iµ
)
e0
µ1
e1
ν1
e2
ρe

3
σε

µ1ν1ρσd4x

with η0123 = −1 we rewrite

WST =

∫ ∏
I

DeIexp
i

48c

∫
1

2

(
−Dµe

ν
ID

µeIν +Dµe
ν
IDνe

Iµ
)

(−ηI1JKL) eI1µ1e
J
ν1
eKρ e

L
σε

µ1ν1ρσd4x/4!

Always there is a field eKρ which is different from eIµ and eIν therefore the integral
over it gives delta Dirac:∫ ∏

I

DeIexp
i

48c

∫
1

2

(
−Dµe

ν
ID

µeIν +Dµe
ν
IDνe

Iµ
)

(−ηI1JKL) eI1µ1e
J
ν1
eKρ e

L
σε

µ1ν1ρσd4x/4!
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→ δ
(
−Dµe

ν
ID

µeIν +Dµe
ν
IDνe

Iµ
)

→ −Dµe
ν
ID

µeIν +Dµe
ν
IDνe

Iµ = 0

it gives

π2 = 0 → S (π, e) = c

∫
12π2ed4x = 0 → H (π, e) = 0

This path integral is trivial, there is no propagation because there is no gravity en-
ergy H (π, e) = 0. Like Wheeler-DeWitt equation Ĥψ = 0. The reason is that
because the gravity field eIµ has the entity of the spacetime, it is impossible for the
spacetime to be a dynamical over itself, to propagate over itself.

But if we write eIµ(x) → δIµ + hIµ(x) the path integral exists, the propagation is
possible. Therefore the dynamics of the gravity is being only over background space-
time. This is the situation of weak gravity (low energy densities). In this situation
the gravity field becomes like the other fields.

Latter we will search for conditions to make the gravity field propagate over xµ,
for that we impose the duality; Gravity-Area.

The path integral of weak gravity field in background spacetime is

w =

∫ ∏
I

DeI expi

∫
1

48c

1

2
eIµ
(
ηIJg

µν∂2 − ηIJ∂µ∂ν
)
eJνd

4x (1.7)

The gravity field propagator, g = η and kµe
µI = 0, is

∆µν
IJ(x2 − x1) = 48c

∫
d4k

(2π)4

ηIJg
µνeik(x2−x1)

k2 − iε

Or

∆µν
ρσ(x2 − x1) = 48c

∫
d4k

(2π)4

gρσg
µνeik(x2−x1)

k2 − iε
(1.8)

We will use this propagation in the gravity interaction with the scalar and spinor
fields.
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2 The need to the duality Gravity-Area

We search for conditions to have a dynamical gravity field in arbitrary curved space-
time without spacetime background approximation. We found that the spacetime
path integral WST is trivial. There is no propagation without spacetime background.
We can solve that problem by assuming that the fields exist over themselves not in
the spacetime[1]. Therefore the spacetime is measured thing by its interactions with
the matter.

According to general relativity, the length, the area and the volume are another
form of the gravity. We can explain that by the duality gravity ↔ areas and vol-
umes. We try to find this duality using the trivial path integral WST by finding
conditions allow the gravity field to propagate. That propagation is eI ↔ ΣJK it
means they propagate when they change to each other. Also we find that the tensor
product of them

∣∣eI〉⊗ ∣∣ΣJK
〉
, in selfdual representation, satisfies the reality condi-

tion.

As we saw in the path integral of gravity field over curved spacetime we have problem
in e0 ∧ e1 ∧ e2 ∧ e3. All of them must be different, the integral over one of them is
delta Dirac. This is trivial path integral WST . Therefore there must be a new field,
it is the area field ΣKJ = eK ∧ eJ by that the path integral of the gravity field exists.
It means that the gravity field is dynamical over the area field not over the spacetime.

Starting from the full Lagrange (1.6):

Ld4x =
1

48c

1

2

(
−Dµe

ν
ID

µeIν +Dµe
ν
IDνe

Iµ
)
ed4x

The covariant derivative is

DeI = deI + ωIJ ∧ eJ

Using our assuming

ωIJ = πK
IJeK

The covariant derivative becomes

DeI = deI +
(
πK

I
J

)
eK ∧ eJ

The Area field is anti-symmetry field:

ΣIJ
µν =

1

2

(
eIµe

J
ν − eIνeJµ

)
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Inserting it in the covariant derivative, it becomes

DeI = deI +
(
πK

I
J

)
ΣKJ = deI + πKIJΣKJ

Using our assumption

πIJK = πLε
LIJK

The derivative becomes

DeI = deI + πKIJΣKJ = deI + πLε
LKIJΣKJ = deI + εILKJπLΣKJ

By that we have two fields eI and ΣKJ in the Lagrange. They interact, that lets to
the duality eI ↔ ΣKJ .

The full Lagrange of the gravity field is

Ld4x =
1

48c

1

2

(
−Dµe

ν
ID

µeIν +Dµe
ν
IDνe

Iµ
)
ed4x

We have

−Dµe
ν
ID

µeIν +Dµe
ν
IDνe

Iµ = −Dµe
ν
I

(
DµeIν −Dνe

Iµ
)

It becomes

−
(
∂µe

ν
I + εIJKLπ

JΣKLν
µ

) (
∂µeIν + εIJ1K1L1πJ1Σ

µ
K1L1ν

− ∂νeIµ − εIJ1K1L1πJ1ΣK1L1ν
µ
)

Or

−
(
∂µe

ν
I + εIJKLπ

JΣKLν
µ

) (
∂µeIν − ∂νeIµ + 2εIJ1K1L1πJ1Σ

µ
K1L1ν

)
It becomes

− (∂µe
ν
I )
(
∂µeIν − ∂νeIµ

)
− 2εIJ1K1L1 (∂µe

ν
I )πJ1Σ

µ
K1L1ν

− 2εIJKLΣKLν
µ πJ

(
∂µeIν − ∂νeIµ

2

)
− 2εIJ1K1L1εIJKLΣKLν

µ πJπJ1Σ
µ
K1L1ν

To complete it, we need to replace the momentum πI by its value, we had before
(1.4) and (1.5):

πIπJ =
−1

(48c)2

1

2

(
Dµe

IνDµeJν −Dµe
IνDνe

Jµ
)
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We consider

πIπJ =
−1

(48c)2

1

2

(
∂µe

Iν∂µeJν
)

We expect the contraction

2εIJ1K1L1 (∂µe
ν
I ) πJ1Σ

µ
K1L1ν

→ −1

(48c)2 ε
IJ1K1L1 (∂µe

ν
I ) (∂µeρJ1) Σρ

K1L1ν

Therefore we rewrite

− (∂µe
ν
I )
(
∂µeIν − ∂νeIµ

)
+

2

(48c)2 ε
IJ1K1L1 (∂µe

ν
I ) (∂µeρJ1) Σρ

K1L1ν

+
1

(48c)2 ε
IJ1K1L1εIJKLΣKLν

µ

(
∂σe

J
ρ

) (
∂σeρJ1

)
Σµ
K1L1ν

The Lagrange

Ld4x =
1

48c

1

2

(
−Dµe

ν
ID

µeIν +Dµe
ν
IDνe

Iµ
)
ed4x

Becomes

Ld4x→ 1

48c

−1

2
(∂µe

ν
I )
(
∂µeIν

)
ed4x+

1

(48c)3 ε
IJ1K1L1 (∂µe

ν
I ) (∂µeρJ1) Σρ

K1L1ν
ed4x

+
1

2 ∗ (48c)3 ε
IJ1K1L1εIJKL

(
∂σe

J
ρ

) (
∂σeρJ1

)
ΣKL
µν Σµν

K1L1
ed4x

We used the gauge ∂µe
Iµ = 0.

Now we use the selfdual projection. For any real anti-symmetry tensor T IJ we
can write it in two unmixed representation, selfdual and anti-selfdual. In general
relativity the selfdual is chosen, its projector is[1](

P i
)
jk

=
1

2
εijk ,

(
P i
)

0j
=
i

2
δij : i = I for I = 1, 2, 3

We see that these projectors satisfy

2i
(
P i
)IJ

(Pi)
KL − 2i

(
P̄ i
)IJ (

P̄i
)KL → εIJKL

It is a projection from I 6= J and K 6= L in the left to I 6= J 6= K 6= L in the right.
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The second term is for the anti-selfdual. Therefore we consider only the first term,
we replace

εIJKL → 2i
(
P i
)IJ

(Pi)
KL

We use it in the determinant e:

e = e0
µe

1
νe

2
ρe

3
σε

µνρσ → −εIJKLeIµeJν eKρ eLσεµνρσ/4! : ε0123 = −1

With selfdual projection, we have

e = −εIJKLeIµeJν eKρ eLσεµνρσ/4!→ −2i
(
P i
)
IJ

(Pi)KL e
I
µe
J
ν e

K
ρ e

L
σε

µνρσ/4!

We can rewrite

eIµe
J
ν e

K
ρ e

L
σε

µνρσ =
1

2

(
eIµe

J
ν − eIνeJµ

)
eKρ e

L
σε

µνρσ =
1

2

(
eIµe

J
ν − eIνeJµ

) 1

2

(
eKρ e

L
σ − eKσ eLρ

)
εµνρσ

By that we can rewrite it using the area field ΣIJ

eIµe
J
ν e

K
ρ e

L
σε

µνρσ = ΣIJ
µνΣ

KL
ρσ ε

µνρσ

Therefore the determinant e becomes

e = −εIJKLeIµeJν eKρ eLσεµνρσ/4!→ −2i

4!

(
P i
)
IJ

(Pi)KL ΣIJ
µνΣ

KL
ρσ ε

µνρσ (2.1)

Now we can write the area field as a vector i = 1, 2, 3 in the selfdual representation

Σi
µν =

(
P i
)
IJ

ΣIJ
µν

Therefore the determinant e becomes

e→ −2i

4!

(
Σi
)
µν

(Σi)ρσ ε
µνρσ or − 2i

4!
Σi
µνΣiρσε

µνρσ (2.2)

We wrote it in this form to get rid of the gravity field in the path integral. As we
saw it lets to delta Dirac, it cancels the propagation.

By that, the full Lagrange of the gravity field:

Ld4x→ 1

48c

−1

2
(∂µe

ν
I )
(
∂µeIν

)
ed4x+

1

(48c)3 ε
IJ1K1L1 (∂µe

ν
I ) (∂µeρJ1) Σρ

K1L1ν
ed4x

+
1

2 ∗ (48c)3 ε
IJ1K1L1εIJKL

(
∂σe

J
ρ

) (
∂σeρJ1

)
ΣKL
µν Σµν

K1L1
ed4x

22



becomes

Ld4x→ 1

48c

−1

2
(∂µe

ν
I )
(
∂µeIν

)(
−2i

4!
Σi
µνΣiρσε

µνρσ

)
d4x

+
1

(48c)3

(
2ipIJ1i

)
(∂µe

ν
I ) (∂µeρJ1) Σiρ

ν

(
−2i

4!
Σi
µνΣiρσε

µνρσ

)
d4x

− 2

(48c)3 (pi)
IJ1 (pj)IJ

(
∂σe

J
ρ

) (
∂σeρJ1

)
Σj
µνΣ

iµν

(
−2i

4!
Σi
µνΣiρσε

µνρσ

)
d4x

Or

Ld4x→ 2i

48c

1

2
(∂µe

ν
I )
(
∂µeIν

) (
Σi
µνΣiρσε

µνρσ/4!
)
d4x

+
4

(48c)3 (pi)
IJ1 (∂µe

ν
I ) (∂µeρJ1) Σiρ

ν

(
Σi
µνΣiρσε

µνρσ/4!
)
d4x

+
4i

(48c)3 (pi)
IJ1 (pj)IJ

(
∂σe

J
ρ

) (
∂σeρJ1

)
Σj
µνΣ

iµν
(
Σi
µνΣiρσε

µνρσ/4!
)
d4x

It is quadratic in eI therefore its integral is not trivial. Here we can consider the area
field Σi as a background field that the gravity field propagate over it. Or suggest the
duality eI ↔ Σi, by that the amplitude of propagation of eI between x and x + dx
is
〈
eI(x+ dx)

∣∣ Σi(x)
〉
.

If we considered the first term. To discover its behavior, we test one wave cos (kµx
µ).

We have

(∂µe
ν
I )
(
∂µeIν

)
→ −eνI∂µ∂µeIν → −∂µ∂µ cos (kµx

µ) = kµk
µ cos (kµx

µ)

Therefore

ei
∫
Ld4x → exp

∫
2

48c

i2

2

(
kµk

µeνIe
I
ν

) (
Σi
µνΣiρσε

µνρσ/4!
)
d4x+ ...

→ exp

∫
2

48c

1

2
(−kµkµ)

(
eνIe

I
ν

) (
Σi
µνΣiρσε

µνρσ/4!
)
d4x+ ...

Or

eiS → exp

∫
2

48c

1

2

(
k2

0 − ~k2
) (
eνIe

I
ν

) (
Σi
µνΣiρσε

µνρσ/4!
)
d4x+ ... (2.3)

We consider the area field is in the positive direction Re
(
Σi
µνdx

µ ∧ dxν
)
� 0, the

direction of the expanding, then Re
(
Σi
µνΣiρσε

µνρσ
)
� 0.
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We find, in time-like k2
0 − ~k2 � 0 the gravity field is created. And in the space-

like k2
0−~k2 ≺ 0 the gravity field is annihilated eIµ → Σi

νρ, oppositely to the area field,
as we will see. This is the duality eIµ ↔ Σi

νρ. It is like to say, in time-like we find the
gravity field and in the space-like we find the area field.
The time-like phase is the phase of exchanging the energies (interactions). While the
space-like is the phase of the static fields, the situation of located matter. Therefore
the spacetime in which the matter is located is consisted of quanta of area and vol-
ume. The duality eIµ ↔ Σi

νρ, as we will see, satisfies the reality, it is like the right
and left spinor fields.

3 The Lagrange of the Area field

We derive the Lagrange of the area field, we find that in the background spacetime it
is like the electromagnetic field but with opposite sign in the Lagrange. We can get
rid of that opposite sign by replacing ∂µ → i∂µ it is equivalent to replace kµ → ikµ
in the free solutions: eikx → e−kx or ekx. We find the behavior of the area field is
opposite to the gravity behavior. For that reason we suggest the duality gravity-area,
which satisfies the realty.

The area field is defined in

ΣIJ = eI ∧ eJ with ΣIJ
µν =

1

2

(
eIµe

I
ν − eIνeIµ

)
Starting with the Lagrange (1.3)

S(e, π) = c

∫ [
εIJKLe

I ∧ eJ ∧ d
(
πM

KLeM
)

+ εIJKLe
I ∧ eJ ∧

(
πK1

K
M

)
eK1 ∧

(
πK2

ML
)
eK2
]

As before we assume the integral of

εIJKLd
(
eI ∧ eJ ∧

(
πM

KLeM
))

= εIJKLd
(
ΣIJ ∧

(
πM

KLeM
))

is zero at infinity, it becomes

dΣIJ∧
(
πM

KL
)
eM+eI∧eJ∧d

(
πM

KLeM
)

= −
(
πM

KL
)
eM∧dΣIJ+eI∧eJ∧d

(
πM

KLeM
)

The Action becomes

S(e, π) = c

∫ [
εIJKL

(
πM

KL
)
eM ∧ dΣIJ + εIJKLΣIJ ∧

(
πK1

K
M

) (
πK2

ML
)
eK1 ∧ eK2

]
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Or

S(e, π) = c

∫ [
εIJKL

(
πM

KL
)
eM ∧ dΣIJ + εIJKL

(
πK1

K
M

) (
πK2

ML
)

ΣIJ ∧ ΣK1K2
]

Using our imposing

πIJK = πLε
LIJK

We get

εIJKL
(
πM

KL
)
eM = εIJKLπ

MKLeM = εIJKLπNε
NMKLeM = −2 (πIeJ − πJeI)

We write

ΣIJ ∧ ΣK1K2 → εIJK1K2Σ01 ∧ Σ23

So we have

εIJKL
(
πK1

K
M

) (
πK2

ML
)

ΣIJ ∧ ΣK1K2 = εIJKL
(
πK1

K
M

) (
πK2

ML
)
εIJK1K2Σ01 ∧ Σ23

= 2
(
πL

K
M

) (
πK

ML
)

Σ01 ∧ Σ23 = 2 (πLKM)
(
πKML

)
Σ01 ∧ Σ23

= 2 (πKML)
(
πKML

)
Σ01 ∧ Σ23 = 2πIεIKMLπJε

JKMLΣ01 ∧ Σ23

= −12π2Σ01 ∧ Σ23

The Action becomes

S(e, π,Σ) = c

∫ [
−2 (πIeJ − πJeI) ∧ dΣIJ − 12πIπ

IΣ01 ∧ Σ23
]

Because the area field ΣIJ is anti-symmetry, we write

S(e, π,Σ) = c

∫ [
−4πIeJ ∧ dΣIJ − 12πIπ

IΣ01 ∧ Σ23
]

Using ε0123 = −1 we can rewrite it like

S(e, π,Σ) = c

∫ [
−4πIeJ ∧ dΣIJ + 12πIπ

IεIJKLΣIJ ∧ ΣKL/4!
]

Or

S(e, π,Σ) = c

∫ [
−4πIeJ ∧ dΣIJ +

1

2
π2εIJKLΣIJ ∧ ΣKL

]
25



The path integral over momentum πI vanishes unless (the equation of motion)

δ

δπI

∫ [
−4πIeJ ∧ dΣIJ +

1

2
π2εIJKLΣIJ ∧ ΣKL

]
= 0

But it is not easy to separate Σ from e. It is like the gravity field, it is separable
only in weak gravity(background spacetime). Therefore we solve it in background
spacetime.∫ (

−4πIeJ ∧ dΣIJ +
1

2
π2εIJKLΣIJ ∧ ΣKL

)

→
∫ (
−4πIeµJ∂νΣ

IJ
ρσε

µνρσ +
1

2
π2εIJKLΣIJ

µνΣ
KL
ρσ ε

µνρσ

)
d4x

The background spacetime is

eIµ(x)→ δIµ + hIµ(x) , e→ 1 + δe

The area field becomes

ΣIJ
µν =

1

2

(
eIµe

J
ν − eIνeJµ

)
→ 1

2

(
δIµδ

J
ν − δIνδJµ

)
+

1

2

(
hIµδ

J
ν − hIνδJµ

)
+

1

2

(
δIµh

J
ν − δIνhJµ

)
inserting it in the action:

S (e,Σ) = c

∫ (
−4πIeµJ∂νΣ

IJ
ρσε

µνρσ +
1

2
π2εIJKLΣIJ

µνΣ
KL
ρσ ε

µνρσ

)
d4x

it becomes

S (e,Σ)→ S (h, δΣ) = c

∫ (
−4πI∂νΣ

IJ
ρσεJ

νρσ +
1

2
π2 (−24) + . . .

)
d4x

Therefore the condition( equation of motion):

δ

δπI

∫ [
−4πIeJ ∧ dΣIJ +

1

2
π2εIJKLΣIJ ∧ ΣKL

]
= 0

approximates to

δ

δπI

∫ (
−4πI∂νΣ

I
Jρσε

Jνρσ +
1

2
π2 (−24)

)
d4x = 0
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Its solution is

πI = −1

6
∂νΣ

I
Jρσε

Jνρσ = −1

6
∂νΣIJρσεJνρσ

By that, the action in background spacetime is approximated to

S(Σ)→ c

∫ [
2

3
∂ν1ΣIJ1ρ1σ1εJ1ν1ρ1σ1∂νΣIJρσε

Jνρσ + ...

]
d4x

define inner product ΣIJ1ρ1σ1ΣIJρσ = Σ2δJ1J δ
ρ1
ρ δ

σ1
σ , we get

S(Σ)→ c

∫ (
−4∂µΣνρ

IJ∂
µΣIJ

νρ + ...
)
d4x with ∂µΣµρ

IJ = 0

This is the action of the area field in weak gravity field (background spacetime). It
is like the electromagnetic field.

L0(Σ)→ −4c (∂µΣνρ
IJ)
(
∂µΣIJ

νρ

)
with ∂µΣµρ

IJ = 0

We rewrite it like

L0(Σ)d4x = −4c (∂µΣνρ
IJ)
(
∂µΣIJ

νρ

)
ed4x+ ...

As we did in deriving the gravity Lagrange we had to replace; c→ −c. This constant
is determined in gravity potential c � 0. Therefore

L0(Σ)d4x→ 4c (∂µΣνρ
IJ)
(
∂µΣIJ

νρ

)
ed4x+ ... (3.1)

To get rid of opposite sign, comparing with free electromagnetic Lagrange in back-
ground spacetime e → 1 + δe, we can replace ∂µ → i∂µ it is equivalent to replace
kµ → ikµ in the free solutions: eikx → e−kx or ekx in the background spacetime. By
that the area field becomes classical field, we can consider it as background field.

By using the selfdual projection (2.1) and (2.2):

e = −εIJKLeIµeJν eKρ eLσεµνρσ/4!→ −2i

4!

(
P i
)
IJ

(Pi)KL ΣIJ
µνΣ

KL
ρσ ε

µνρσ

the Lagrange (3.1) becomes

L0(Σ)ed4x = −8ci
(
∂µΣνρ

IJ∂
µΣIJ

νρ

) (
Σi
µνΣiρσε

µνρσ/4!
)
d4x+ ...
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To discover the area field behavior, we test one wave cos (kµx
µ). We have

L0(Σ)ed4x→ −8ci
(
kµkµΣνρ

IJΣIJ
νρ

) (
Σi
µνΣiρσε

µνρσ/4!
)
d4x

The action of that is

eiLed
4x → exp 8c

(
kµk

µΣνρ
IJΣIJ

νρ

) (
Σi
µνΣiρσε

µνρσ/4!
)
d4x

Then

eiδS → exp 8c
(
−k2

0 + ~k2
) (

Σνρ
IJΣIJ

νρ

) (
Σi
µνΣiρσε

µνρσ/4!
)
d4x (3.2)

It is opposite to the gravity field (2.3). In the time-like −k2
0 +~k2 ≺ 0 the area field is

annihilated ΣJK
νρ → eIµ. And in the space-like −k2

0 + ~k2 � 0 the area field is created
eIµ → ΣJK

νρ this is the duality eIµ ↔ ΣJK
νρ . It preserves the reality. It is like duality of

the left and right spinor field under Lorentz transformation and party.

The opposite behavior is with the anti-selfdual representation, the hermitian of the
selfdual

2i
(
P i
)IJ

(Pi)
KL − 2i

(
p̄i
)IJ (

P̄i
)KL → εIJKL

which is projection from I 6= J and K 6= L in the left to I 6= J 6= K 6= L in the
right.
The first term is for the selfdual, while the second is for the anti-selfdual. The tensor
product of them satisfies the reality:

ei∆L(selfdual)d4xei∆L(anti−selfdual)d4x = real

Instead of that we can satisfy the reality by gravity-area duality:

ei∆L(e)d4xei∆L(Σ)d4x = real : invariant for selfdual

For one wave, it becomes

e
2

48c
1
2(k20−~k2)(eνI eIν)(ΣiµνΣiρσε

µνρσ/4!)e8c′(−k20+~k2)(ΣνρIJΣIJνρ)(ΣiµνΣiρσε
µνρσ/4!)

We wrote c′ to distinguish it from c. For

2

48c

1

2

(
eνIe

I
ν

)
= 8c′

(
Σνρ
IJΣIJ

νρ

)
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The product equals one, this satisfies the reality. By that we can determine c′ like
to choose (48c)−1 = 16c′. With(

eνIe
I
ν

)
=

1

2

(
Σνρ
IJΣIJ

νρ

)
=

1

2

(
Σνρ
i Σi

νρ + Σ̄νρ
i Σ̄i

νρ

)
the hermitian conjugate Σ̄νρ

i Σ̄i
νρ is represented in anti-selfdual: Σ̄i = P̄ i

IJΣIJ .

As done for left and right spinor fields; in left spinor field representation the right
spinor field is zero. And in in right spinor field representation the left spinor field is
zero[3]. Therefore in selfdual representation, we assume that the anti-selfdual is zero.
Like that in anti-selfdual representation. By that we have in selfdual representation:

Σ̄i =
1

2
εijkΣjk − iΣ0i = 0→ 1

2
εijkΣjk = iΣ0i

therefore the area field in selfdual representation becomes

Σi =
1

2
εijkΣjk + iΣ0i = εijkΣjk

which is real as required for satisfying the reality. It is equivalent to replace x0 →
−ix0. Same result we get in anti-selfdual representation Σi = 0→ Σ̄i = εijkΣjk. It is
equivalent to replace x0 → ix0. That lets to the splitting SO(3, 1)→ SU(2)⊗SU(2).

In the two representations, the condition
(
eνIe

I
ν

)
= 1

2

(
Σνρ
IJΣIJ

νρ

)
= 1

2

(
Σνρ
i Σi

νρ + Σ̄νρ
i Σ̄i

νρ

)
becomes

(
eνIe

I
ν

)
= 1

2
εij′k′Σ

j′k′
νρ ε

ijkΣνρ
jk = Σνρ

jkΣjk
νρ.

The difference between the selfdual and anti-selfdual appeared in the opposite sign
in the Lagrange:

L→ 8c′
(
−k2

0 + ~k2
) (

Σνρ
i Σi

νρ

) (
Σi
µνΣiρσε

µνρσ/4!
)
for selfdual Σ̄i = 0

and

L→ −8c′
(
−k2

0 + ~k2
) (

Σ̄νρ
i Σ̄i

νρ

) (
Σ̄i
µνΣ̄iρσε

µνρσ/4!
)
for anti-selfdual Σi = 0

The opposite sign comes from the projection (2.2):

e→ −2i

4!
Σi
µνΣiρσε

µνρσ/4! +
2i

4!
Σ̄i
µνΣ̄iρσε

µνρσ/4!

We chose the selfdual because the tensor product with the gravity field satisfies the
reality. It is like the duality of the left and right spinor fields under Lorentz trans-
formation and party: ψL ↔ ψR.
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4 The static potential of weak gravity

We derive the static potential of the interactions of scalar and spinor fields with
weak gravity field in static limit. We see it is the same in the both, the Newtonian
gravitational potential. We see that potential relates to energy-energy interaction.
By that we determine the constant c � 0.

The action of the scalar field in curved spacetime is[1]

S(e, φ) =

∫
d4xe

(
ηIJeµI e

ν
JDµφ

+Dνφ− V (φ)
)

In weak gravity, the background spacetime:

eµI (x)→ δµI + hµI (x) , e→ 1 + δe

the action is approximated to

S(e, φ) =

∫
d4x

(
∂µφ

+∂µφ+ hµν(x)∂µφ
+∂νφ+ hνµ(x)∂µφ

+∂νφ− V (φ) + ...
)

The gravity field is symmetry, so

S(e, φ) =

∫
d4x

(
∂µφ

+∂µφ+ 2hµν(x)∂µφ
+∂νφ− V (φ) + ...

)
The energy-momentum tensor of the scalar field is[3]

Tµν = ∂µφ
+∂νφ+ gµνL

Therefore

∂µφ
+∂νφ = Tµν − gµνL

Using it in the Lagrange, it becomes

L = ∂µφ
+∂µφ+ 2hµν(x) (Tµν − gµνL)− V (φ) + ...

By that we have

L = ∂µφ
+∂µφ+ 2hµνTµν − V (φ)− 2hµνgµνL+ ...

Therefore, in the interaction term, we have the replacement

∂µφ
+∂νφ→ Tµν and L→ L− 2hµνgµνL
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Because the gravity field is weak (background spacetime), so 2hµνgµνL is neglected
comparing with L .

We find the potential V (r) of exchanged virtual gravitons by two particles k1 and k2

using M (k1 + k2 → k′1 + k′2) matrix element (like Born approximation to the scat-
tering amplitude in non-relativistic quantum mechanics [7]).

For one diagram of Feynman diagrams, we have

iM (k1 + k2 → k′1 + k′2) = i (−ik′2)µ (ik2)ν
∆̄µνρσ (q)

i
i (−ik′1)ρ (ik1)σ

with

q = k′1 − k1 = k2 − k′2

The propagator ∆µνρσ (x2 − x1) is the gravitons propagator (1.8), we find it in the
Lagrange of the free gravity field (background spacetime) we had before

L0 =
1

48c

1

2
ηIJe

I
µ

(
gµν∂2 − ∂µ∂ν

)
eJν →

1

48c

1

2
ηIJh

I
µ

(
gµν∂2 − ∂µ∂ν

)
hJν

with the gauge ∂µeIµ = 0, we have

∆IJ
µν (y − x) =

∫
d4q

(2π)4 ∆̄IJ
µν

(
q2
)
eiq(y−x) : ∆̄IJ

µν

(
q2
)

= 48c
gµνη

IJ

q2 − iε

The M matrix element becomes

iM (k1 + k2 → k′1 + k′2) = i48c (−ik′2)µ (ik2)ρ
gµνgρσ

q2
(−ik′1)σ (ik1)ν

where g = η and q = k′1 − k1 = k2 − k′2
Comparing with[7]

iM (k1 + k2 → k′1 + k′2) = −iV̄ (q) δ4 (kout − kin)

We have

V̄
(
q2
)

= −48c (−ik′2)µ (ik2)ρ
gµνgρσ

q2
(−ik′1)σ (ik1)ν
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Comparing this relation with the replacement:

∂µφ
+∂νφ→ Tµν and L→ L− 2hµνgµνL

and making the Fourier transformation, we get

V (y − x) = −48cTµρ (y) gµνgρσTνσ (x)
1

4π |y − x|
= −48c

Tµν (y)T µν (x)

4π |y − x|

With the transferred energy-momentum T , in the static limit, for one particle
T 00 → m the mass of the interacted particles.

Therefore we get the Newtonian gravitational potential

V (y − x) = −48c
m2

4π |y − x|
= −G m2

|y − x|
→ 48c = 4πG

The weak gravity Lagrange becomes

L0 =
1

4πG

1

2
ηIJe

I
µ

(
gµν∂2 − ∂µ∂ν

)
eJν

We do the same thing for the gravity interaction with spinor fields. The action is[1]

S(e, ψ) =

∫
d4xe

(
ieµI ψ̄γ

IDµψ −mψ̄ψ
)

The covariant derivative Dµ is

Dµ = ∂µ+ (ωµ)IJ L
J
I +AaµTa

In the background spacetime, we have

S(e, ψ) =

∫
d4x

(
iψ̄γµDµψ + ihµI ψ̄γ

IDµψ −mψ̄ψ + ...
)

We consider only the terms∫
d4x

(
iψ̄γµ∂µψ + ihµν ψ̄γ

ν∂µψ −mψ̄ψ
)

: g = η

The energy-momentum tensor is[3]

T µν = −iψ̄γµ∂νψ + gµνL
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Therefore, as for the scalar field, in the interaction term, we have the replacement

iψ̄γµ∂νψ → −Tµν and L→ L+ hµνgµνL

The term hµνgµνL is ignored comparing with the Lagrange L. We find the M element
of exchanged virtual gravitons p1 + p2 → p′1 + p′2, for one diagram of Feynman
diagrams[7]

iM (p1 + p2 → p′1 + p′2) = i48cū (p′1) γµ (−ip1)ν u (p1)
gµσg

νρ

q2
ū (p′2) γσ (−ip2)ρ u (p2)

with

q = p′1 − p1 = p2 − p′2 and g = η

We have

V̄
(
q2
)

= −48cū (p′1) γµ (−ip1)ν u (p1)
gµσg

νρ

q2
ū (p′2) γσ (−ip2)ρ u (p2)

Comparing this relation with the replacement

iψ̄γµ∂νψ → −Tµν and L→ L+ hµνgµνL

And make the Fourier transformation, we get

V (y − x) = −48c (−Tµρ (y)) gµνgρσ (−Tνσ (x))
1

4π |y − x|
= −48c

Tµν (y)T µν (x)

4π |y − x|

With the transferred energy-momentum T , in the static limit, for one particle
T 00 → m is mass of the interacted particles(spinor).

Therefore we get the Newtonian gravitational potential.

V (y − x) = −48c
m2

4π |y − x|
= −G m2

|y − x|
→ 48c = 4πG

It is the same potential as for the scalar particles.
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