Quantum Phase Transitions

A team of researchers from several institutions in Germany and Austria has developed a means for directly observing dynamical quantum phase transitions in an interacting many-body system. [14]

In an article published today (Thursday, Aug. 24) in the American Physical Society journal Physical Review Letters, researchers reported observing unexpected instantaneous phase shifts during atomic scattering. [13]

Quantum physics teaches us that unobserved particles may propagate through space like waves. [12]

Researchers at the universities of Vienna and Tel Aviv have addressed this question for the first time explicitly using the wave interference of large molecules behind various combinations of single, double, and triple slits. [11]

Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10]

The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories.

The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.

The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.

The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Contents

Preface .. 3

Researchers observe dynamical quantum phase transitions in an interacting many-body system 4

Researchers see unexplained phase shifts during atomic scattering .. 4

Physicists measure molecular electronic properties of vitamins ... 5
 Quantum interference and metrology with molecules ... 5
 Quantum ruler for biomolecules ... 6
 Comparison with molecular simulations ... 6

Massive particles test standard quantum theory .. 6
 Multi-slit matter wave diffraction ... 7
 Nanofabrication enabling technology .. 7

Physicists find quantum coherence and quantum entanglement are two sides of the same coin 7
 Close relatives with the same roots ... 8
 Converting one to the other ... 8
 Future quantum connections ... 9

Quantum entanglement .. 9

Quantum Biology ... 10

Quantum Consciousness .. 10

Quantum Cognition ... 10
 Human Perception ... 10
 Human memory .. 11
 Knowledge representation ... 11

Quantum Information .. 11

Quantum Teleportation ... 12

Quantum Computing ... 12

The Bridge ... 13
 Accelerating charges ... 13
 Relativistic effect ... 13

Heisenberg Uncertainty Relation ... 13

Wave – Particle Duality .. 14

Atomic model .. 14

The Relativistic Bridge ... 14
Preface

Physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena. In a new proposed experiment in this area, two toaster-sized “nanosatellites” carrying entangled condensates orbit around the Earth, until one of them moves to a different orbit with different gravitational field strength. As a result of the change in gravity, the entanglement between the condensates is predicted to degrade by up to 20%. Experimentally testing the proposal may be possible in the near future. [5]

Quantum entanglement is a physical phenomenon that occurs when pairs or groups of particles are generated or interact in ways such that the quantum state of each particle cannot be described independently – instead, a quantum state may be given for the system as a whole. [4]

I think that we have a simple bridge between the classical and quantum mechanics by understanding the Heisenberg Uncertainty Relations. It makes clear that the particles are not point like but have a
dx and dp uncertainty.

Researchers observe dynamical quantum phase transitions in an interacting many-body system

A team of researchers from several institutions in Germany and Austria has developed a means for directly observing dynamical quantum phase transitions in an interacting many-body system. In their paper published in the journal Physical Review Letters, the team describes creating a unique ultracold environment that allowed for viewing the quantum phase transition.

Phase transitions are common in the observable world—water turning to ice, for example. Most of these types of transitions occur as a result of changes in temperature. But physicists know that there can be other types of transitions that occur due to changes in energy, which have famously been described by the Heisenberg uncertainty principle. To carry out experiments designed to test such transitions, researchers typically have to subject them to near absolute zero conditions to prevent thermal fluctuations from causing interference. In such experiments, time becomes the main transition factor, rather than temperature.

Back in 2013, a team of theoretical physicists noted that there appeared to be similarities between the evolution operator and the partition function. The role that time played in the evolution of a thermally isolated quantum system, they showed, was equal to the inverse temperature in a system that was at thermal equilibrium. Their calculations showed that a quantum system should be able to go through changes of state that were similar in nature to phase transitions. In this new effort, the researchers have proved this theory to be true by creating a modified transverse-field Ising model and manipulating the spin of ions held in an ultracold environment.

More specifically, the team trapped strings of 10 calcium-40 ions using a magnetic field in a freezer where temperatures were reduced to near absolute zero. At the outset, the spins were all set to point in the same direction. The team then randomly changed the spin states of each, taking the system out of equilibrium, and observed what happened—theory had predicted the system would evolve back over time to a point where all the spins were once again aligned; the team reports that the spin points occurred at the times that had been predicted, proving the theory to be correct.

It is believed that confirmation of the theory will lead to a better understanding of quantum matter behavior and phase transitions in particular. [14]

Researchers see unexplained phase shifts during atomic scattering

In an article published today (Thursday, Aug. 24) in the American Physical Society journal Physical Review Letters, researchers reported observing unexpected instantaneous phase shifts during atomic scattering.

By firing a proton beam at atoms, investigators can observe the dynamics resulting from the interactions between the various particles in the system. In the journal article, the researchers describe how when a hydrogen molecule and a proton collided, they observed unexpected features
related to the wave nature of the particles. The work builds on the ongoing exploration into the "few-body problem" in physics, which emerges with three or more interacting particles.

"When we studied two-center interference patterns occurring in the reaction probabilities for proton-hydrogen collisions, we identified that there were unexpected shifts in the interference fluctuations," says Dr. Michael Schulz, Curators' Distinguished Professor of physics at Missouri University of Science and Technology and one of the principle investigators in the journal article. "That means that, apart from the electronic symmetry in the hydrogen molecule which can explain such a phase shift in other systems, there appear to be other causes that can lead to a phase shift in the interference term."

Atomic particles can act as waves in certain situations, similar to the waves of an ocean. When waves overlap, interference effects can result and lead to large changes in the reaction probabilities. The unexpected phase shift observed in the interference structure means that there is still a lack of understanding of the collision dynamics at the atomic level, even for relatively simple systems containing only three or four particles.

"For a relatively simple system such as a proton colliding with an atom or a molecule, for which existing models were thought to provide an adequate description, we continue to uncover very surprising discrepancies between theory and experiment," says Schulz, who is also the director of Missouri S&T's Laboratory for Atomic, Molecular and Optical Research.

This is the first time that fully differential cross sections for capture have been measured when accompanied by vibrational fragmentation of the hydrogen molecule, Schulz says. These cross sections have revealed that phase shifts in atomic scattering amplitudes are not as well understood as once thought.

"Further research is definitely needed, so that we can continue to investigate the few-body dynamics in atomic collision systems," says Schulz. [13]

Physicists measure molecular electronic properties of vitamins
Quantum physics teaches us that unobserved particles may propagate through space like waves. This is philosophically intriguing and of technological relevance: a research team at the University of Vienna has demonstrated that combining experimental quantum interferometry with quantum chemistry allows deriving information about optical and electronic properties of biomolecules, here exemplified with a set of vitamins. These results have been published in the journal Angewandte Chemie International Edition.

Quantum interference and metrology with molecules
Even though vitamins play a central role in biology, their gas phase physical properties are still less well studied. The potential of quantum-based methods in biomolecular studies, has now been explored at the University of Vienna. For that purpose, Lukas Mairhofer, Sandra Eibenberger and colleagues in the research group around Markus Arndt at the University of Vienna, prepared molecular beams of (pro) vitamins A, E und K1, that is β-Carotin, a-Tocopherol und Phylloquinon. These molecules fly then in high vacuum through an arrangement of three nanogratings. The first grating forces every molecule through one of about a thousand slits, each of them only 110
nanometers wide. According to Heisenberg's uncertainty principle, this constriction of the molecular position entails an indeterminacy of the molecular direction of flight – the molecule is spatially "delocalized." This prepares the motional state of every single molecule such that it becomes impossible, even in principle, to follow the molecule's path through the experiment.

The second grating is realized with a green high-power laser beam that is retro-reflected at a mirror inside the vacuum. A standing light wave is formed, i.e. a periodic array of regions of high and low light intensity. When they arrive at this second grating every molecule is already delocalized such that their wave functions covers several bright and dark regions – even though these are more than hundred times further separated than the size of each molecule. Within the bright and dark zones, the molecules are more or less accelerated. This modulates the extended quantum wave front. Since the molecules do not follow a well-defined path but rather a superposition of possible paths through the machine, an interference pattern emerges: this is a periodic distribution of probabilities to find a molecule at a given location. This pattern is then compared with the third grating, which is a copy of the first silicon nitride grating.

Quantum ruler for biomolecules

The ultra-fine structured interference pattern is used as a quantum ruler to read out nanometric deflections of the molecular beam, which are hard to measure by established methods. The modulation and position of the interference pattern then allows extracting information about the interaction of the biomolecules with external fields. This includes the interaction with the diffracting laser beam as well as with a controlled electric field that shifts the molecular density pattern. The researchers use this to determine electronic and optical properties of biologically relevant molecules, here the (pro)vitamins A, E und K1. Pro-vitamin A, for example, plays an important role in photosynthesis. Lukas Mairhofer, the lead author of this study, is happy: "We have a universal tool for improved measurements of biomolecular properties."

Comparison with molecular simulations

The experimental results were compared with simulations. For that purpose, classical molecular dynamics simulations describe the time evolution of the molecular structure and are combined with density functional theory to assess the electronic properties. This results in a good agreement between experiment and theory. The combination of molecule interferometry and quantum chemistry serves as an example for the successful collaboration at the interface between quantum optics and physical chemistry. [12]

Massive particles test standard quantum theory

In quantum mechanics particles can behave as waves and take many paths through an experiment. It requires only combinations of pairs of paths, rather than three or more, to determine the probability for a particle to arrive somewhere. Researchers at the universities of Vienna and Tel Aviv have addressed this question for the first time explicitly using the wave interference of large molecules behind various combinations of single, double, and triple slits.

Quantum mechanics describes how matter behaves on the smallest mass and length scales. However, the absence of quantum phenomena in our daily lives has triggered a search for minimal modifications of quantum mechanics, which might only be noticeable for massive particles. One
candidate is to search for so-called higher-order interference. In standard quantum mechanics, the interference pattern resulting from an arbitrary number of non-interacting open paths can always be described by all combinations of pairs of paths. Any remaining pattern would be due to higher-order interference and be a possible indicator for new physics.

While this rule has been tested before with light and microwave radiation, researchers at the Universities of Vienna and Tel Aviv have now run for the first time a dedicated experiment with massive molecules. "The idea has been known for more than twenty years. But only now do we have the technological means to bring all the components together and build an experiment capable of testing it with massive molecules," says Christian Brand, one of the authors of the study.

Multi-slit matter wave diffraction

In their experiments at the University of Vienna, researchers of the Quantum Nanophysics Group headed by Markus Arndt prepared complex organic molecules as matter waves. This was achieved by evaporating them from a micron-sized spot in high vacuum and letting them evolve freely for some time. After a while, each molecule delocalized, spreading across many places at once. This means that when each molecule encounters a mask containing multiple slits, it can traverse many of the slits in parallel. By carefully comparing the position of molecules arriving at the detector behind a combination of single-, double- and triple slits they were able to place bounds on any multipath contribution.

Nanofabrication enabling technology

A crucial component of the experiment is the mask - an ultra-thin membrane into which arrays of single-, double- and triple-slits were fabricated. It was designed and fabricated by Yigal Lilach and Ori Cheshnovsky at Tel Aviv University. They had to engineer a diffraction mask, where the maximum deviation in the slit dimensions was not much larger than the size of the molecules it was diffracting. The mask was integrated in the Vienna laboratory and the researchers studied a broad range of molecular velocities in the same experimental run. For all of them, the scientists found the interference pattern to follow the expectations of standard quantum mechanics with an upper bound in the deviation of less than one particle in a hundred. "This is the first time an explicit test of this kind has been conducted with massive particles", says Joseph Cotter, the first author of this publication. "Previous tests have pushed the frontiers with single photons and microwaves. In our experiment, we put bounds on higher-order interference of massive objects."

The study is published in Science Advances. [11]

Physicists find quantum coherence and quantum entanglement are two sides of the same coin

Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-
researched concept of coherence, offering the possibility of advancing a wide range of quantum
technologies.

Close relatives with the same roots
Although physicists have known that coherence and entanglement are close relatives, the exact
relationship between the two resources has not been clear.

It's well-known that quantum coherence and quantum entanglement are both rooted in the
superposition principle—the phenomenon in which a single quantum state simultaneously consists
of multiple states—but in different ways. Quantum coherence deals with the idea that all objects
have wave-like properties. If an object’s wave-like nature is split in two, then the two waves may
cohensively interfere with each other in such a way as to form a single state that is a superposition of
the two states. This concept of superposition is famously represented by Schrödinger's cat, which is
both dead and alive at the same time when in its coherent state inside a closed box. Coherence also
lies at the heart of quantum computing, in which a qubit is in a superposition of the "0" and "1"
states, resulting in a speed-up over various classical algorithms. When such a state experiences
decoherence, however, all of its quantumness is typically lost and the advantage vanishes.

The second phenomenon, quantum entanglement, also involves superposition. But in this case, the
states in a superposition are the shared states of two entangled particles rather than those of the
two split waves of a single particle. The intrigue of entanglement lies in the fact that the two
entangled particles are so intimately correlated that a measurement on one particle instantly affects
the other particle, even when separated by a large distance. Like coherence, quantum entanglement
also plays an essential role in quantum technologies, such as quantum teleportation, quantum
cryptography, and super dense coding.

Converting one to the other
In a paper to be published in Physical Review Letters, physicists led by Gerardo Adesso, Associate
Professor at the University of Nottingham in the UK, with coauthors from Spain and India, have
provided a simple yet powerful answer to the question of how these two resources are related: the
scientists show that coherence and entanglement are quantitatively, or operationally, equivalent,
based on their behavior arising from their respective resource theories.

The physicists arrived at this result by showing that, in general, any nonzero amount of coherence in
a system can be converted into an equal amount of entanglement between that system and another
initially incoherent one. This discovery of the conversion between coherence and entanglement has
several important implications. For one, it means that quantum coherence can be measured through
entanglement. Consequently, all of the comprehensive knowledge that researchers have obtained
about entanglement can now be directly applied to coherence, which in general is not nearly as well-
researched (outside of the area of quantum optics). For example, the new knowledge has already
allowed the physicists to settle an important open question concerning the geometric measure of
coherence: since the geometric measure of entanglement is a "full convex monotone," the same can
be said of the associated coherence measure. As the scientists explained, this is possible because the
new results allowed them to define and quantify one resource in terms of the other.
"The significance of our work lies in the fact that we prove the close relation between entanglement and coherence not only qualitatively, but on a quantitative level," coauthor Alex Streitsoy, of ICFO-The Institute of Photonic Sciences in Barcelona, told Phys.org. "More precisely, we show that any quantifier of entanglement gives rise to a quantifier of coherence. This concept allowed us to prove that the geometric measure of coherence is a valid coherence quantifier, thus answering a question left open in several previous works."

While the results show that coherence and entanglement are operationally equivalent, the physicists explain that this doesn’t mean that they are the exact same thing, as they are still conceptually different ideas.

"Despite having the same roots of origin, namely quantum superposition, coherence and entanglement are conceptually different," said coauthors Uttam Singh, Himadri Dhar, and Manabendra Bera at the Harish-Chandra Research Institute in Allahabad, India. "For example, coherence can be present in single quantum systems, where entanglement is not well-defined. Also, coherence is defined with respect to a given basis, while entanglement is invariant under local basis changes. In all, we believe coherence and entanglement are operationally equivalent but conceptually different."

Future quantum connections
The operational equivalence of coherence and entanglement will likely have a far-reaching impact on areas ranging from quantum information theory to more nascent fields such as quantum biology and nanoscale thermodynamics. In the future, the physicists plan to investigate whether coherence and entanglement might also be interconverted into a third resource—that of quantum discord, which, like entanglement, is another type of quantum correlation between two systems.

"Our future plans are diverse," Adesso said. "On the theoretical side, we are working to construct a unified framework to interpret, classify and quantify all different forms of quantum resources, including and beyond entanglement and coherence, and highlight the interlinks among them from an operational perspective. This will allow us to navigate the hierarchy of quantunness indicators in composite systems with a common pilot, and to appreciate which particular ingredients are needed in various informational tasks.

"On the practical side, we are investigating experimentally friendly schemes to detect, quantify, and preserve coherence, entanglement and other quantum correlations in noisy environments. More fundamentally, we hope these results will inspire us to devise scalable and efficient methods to convert between different quantum resources for technological applications, and bring us closer to understanding where the boundaries of the quantum world ultimately lie in realistic scenarios." [10]

Quantum entanglement
Measurements of physical properties such as position, momentum, spin, polarization, etc. performed on entangled particles are found to be appropriately correlated. For example, if a pair of particles is generated in such a way that their total spin is known to be zero, and one particle is found to have clockwise spin on a certain axis, then the spin of the other particle, measured on the same axis, will be found to be counterclockwise. Because of the nature of quantum measurement, however, this behavior gives rise to effects that can appear paradoxical: any measurement of a
property of a particle can be seen as acting on that particle (e.g. by collapsing a number of superimposed states); and in the case of entangled particles, such action must be on the entangled system as a whole. It thus appears that one particle of an entangled pair "knows" what measurement has been performed on the other, and with what outcome, even though there is no known means for such information to be communicated between the particles, which at the time of measurement may be separated by arbitrarily large distances. [4]

Quantum Biology
The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems.

Quantum Consciousness
Extensive scientific investigation has found that a form of quantum coherence operates within living biological systems through what is known as biological excitations and biophoton emission. What this means is that metabolic energy is stored as a form of electromechanical and electromagnetic excitations. These coherent excitations are considered responsible for generating and maintaining long-range order via the transformation of energy and very weak electromagnetic signals. After nearly twenty years of experimental research, Fritz-Albert Popp put forward the hypothesis that biophotons are emitted from a coherent electrodynamics field within the living system.

What this means is that each living cell is giving off, or resonating, a biophoton field of coherent energy. If each cell is emitting this field, then the whole living system is, in effect, a resonating field—a ubiquitous nonlocal field. And since biophotons are the entities through which the living system communicates, there is near-instantaneous intercommunication throughout. And this, claims Popp, is the basis for coherent biological organization — referred to as quantum coherence. This discovery led Popp to state that the capacity for evolution rests not on aggressive struggle and rivalry but on the capacity for communication and cooperation. In this sense the built-in capacity for species evolution is not based on the individual but rather living systems that are interlinked within a coherent whole: Living systems are thus neither the subjects alone, nor objects isolated, but both subjects and objects in a mutually communicating universe of meaning. . . . Just as the cells in an organism take on different tasks for the whole, different populations enfold information not only for themselves, but for all other organisms, expanding the consciousness of the whole, while at the same time becoming more and more aware of this collective consciousness.

Quantum Cognition

Human Perception
A bi-stable perceptual phenomenon is a fascinating topic in the area of perception. If a stimulus has an ambiguous interpretation, such as a Necker cube, the interpretation tends to oscillate across time. Quantum models have been developed to predict the time period between oscillations and how these periods change with frequency of measurement. Quantum theory has also been used for
modeling Gestalt perception, to account for interference effects obtained with measurements of ambiguous figures. [6]

Human memory
The hypothesis that there may be something quantum-like about the human mental function was put forward with “Spooky Activation at Distance” formula which attempted to model the effect that when a word’s associative network is activated during study in memory experiment, it behaves like a quantum-entangled system. Models of cognitive agents and memory based on quantum collectives have been proposed by Subhash Kak. But he also points to specific problems of limits on observation and control of these memories due to fundamental logical reasons. [6]

Knowledge representation
Concepts are basic cognitive phenomena, which provide the content for inference, explanation, and language understanding. Cognitive psychology has researched different approaches for understanding concepts including exemplars, prototypes, and neural networks, and different fundamental problems have been identified, such as the experimentally tested non classical behavior for the conjunction and disjunction of concepts, more specifically the Pet-Fish problem or guppy effect, and the overextension and under extension of typicality and membership weight for conjunction and disjunction. By and large, quantum cognition has drawn on quantum theory in three ways to model concepts.

Exploit the contextuality of quantum theory to account for the contextuality of concepts in cognition and language and the phenomenon of emergent properties when concepts combine.

Use quantum entanglement to model the semantics of concept combinations in a non-decompositional way, and to account for the emergent properties/associates/inferences in relation to concept combinations.

Use quantum superposition to account for the emergence of a new concept when concepts are combined, and as a consequence put forward an explanatory model for the Pet-Fish problem situation, and the overextension and under extension of membership weights for the conjunction and disjunction of concepts. The large amount of data collected by Hampton on the combination of two concepts can be modeled in a specific quantum-theoretic framework in Fock space where the observed deviations from classical set (fuzzy set) theory, the above mentioned over- and under-extension of membership weights, are explained in terms of contextual interactions, superposition, interference, entanglement and emergence. And, more, a cognitive test on a specific concept combination has been performed which directly reveals, through the violation of Bell’s inequalities, quantum entanglement between the component concepts. [6]

Quantum Information

In quantum mechanics, quantum information is physical information that is held in the "state" of a quantum system. The most popular unit of quantum information is the qubit, a two-level quantum system. However, unlike classical digital states (which are discrete), a two-state quantum system can actually be in a superposition of the two states at any given time.

Quantum information differs from classical information in several respects, among which we note the following:
However, despite this, the amount of information that can be retrieved in a single qubit is equal to one bit. It is in the processing of information (quantum computation) that a difference occurs.

The ability to manipulate quantum information enables us to perform tasks that would be unachievable in a classical context, such as unconditionally secure transmission of information. Quantum information processing is the most general field that is concerned with quantum information. There are certain tasks which classical computers cannot perform "efficiently" (that is, in polynomial time) according to any known algorithm. However, a quantum computer can compute the answer to some of these problems in polynomial time; one well-known example of this is Shor's factoring algorithm. Other algorithms can speed up a task less dramatically - for example, Grover's search algorithm which gives a quadratic speed-up over the best possible classical algorithm.

Quantum information, and changes in quantum information, can be quantitatively measured by using an analogue of Shannon entropy. Given a statistical ensemble of quantum mechanical systems with the density matrix S, it is given by.

Many of the same entropy measures in classical information theory can also be generalized to the quantum case, such as the conditional quantum entropy. [7]

Quantum Teleportation

Quantum teleportation is a process by which quantum information (e.g. the exact state of an atom or photon) can be transmitted (exactly, in principle) from one location to another, with the help of classical communication and previously shared quantum entanglement between the sending and receiving location. Because it depends on classical communication, which can proceed no faster than the speed of light, it cannot be used for superluminal transport or communication of classical bits. It also cannot be used to make copies of a system, as this violates the no-cloning theorem. Although the name is inspired by the teleportation commonly used in fiction, current technology provides no possibility of anything resembling the fictional form of teleportation. While it is possible to teleport one or more qubits of information between two (entangled) atoms, this has not yet been achieved between molecules or anything larger. One may think of teleportation either as a kind of transportation, or as a kind of communication; it provides a way of transporting a qubit from one location to another, without having to move a physical particle along with it.

The seminal paper first expounding the idea was published by C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters in 1993. Since then, quantum teleportation has been realized in various physical systems. Presently, the record distance for quantum teleportation is 143 km (89 mi) with photons, and 21 m with material systems. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. [8]

Quantum Computing

A team of electrical engineers at UNSW Australia has observed the unique quantum behavior of a pair of spins in silicon and designed a new method to use them for "2-bit" quantum logic operations.

These milestones bring researchers a step closer to building a quantum computer, which promises dramatic data processing improvements.
Quantum bits, or qubits, are the building blocks of quantum computers. While many ways to create a qubits exist, the Australian team has focused on the use of single atoms of phosphorus, embedded inside a silicon chip similar to those used in normal computers.

The first author on the experimental work, PhD student Juan Pablo Dehollain, recalls the first time he realized what he was looking at.

"We clearly saw these two distinct quantum states, but they behaved very differently from what we were used to with a single atom. We had a real 'Eureka!' moment when we realized what was happening – we were seeing in real time the 'entangled' quantum states of a pair of atoms." [9]

The Bridge
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Quantum Theories. [1]

Accelerating charges
The moving charges are self maintain the electromagnetic field locally, causing their movement and this is the result of their acceleration under the force of this field. In the classical physics the charges will distributed along the electric current so that the electric potential lowering along the current, by linearly increasing the way they take every next time period because this accelerated motion. The same thing happens on the atomic scale giving a dp impulse difference and a dx way difference between the different part of the not point like particles.

Relativistic effect
Another bridge between the classical and quantum mechanics in the realm of relativity is that the charge distribution is lowering in the reference frame of the accelerating charges linearly: \(ds/dt = at \) (time coordinate), but in the reference frame of the current it is parabolic: \(s = a/2 \ t^2 \) (geometric coordinate).

Heisenberg Uncertainty Relation
In the atomic scale the Heisenberg uncertainty relation gives the same result, since the moving electron in the atom accelerating in the electric field of the proton, causing a charge distribution on delta x position difference and with a delta p momentum difference such a way that they product is about the half Planck reduced constant. For the proton this delta x much less in the nucleon, than in the orbit of the electron in the atom, the delta p is much higher because of the greater proton mass.

This means that the electron and proton are not point like particles, but has a real charge distribution.
Wave – Particle Duality
The accelerating electrons explains the wave – particle duality of the electrons and photons, since the elementary charges are distributed on delta x position with delta p impulse and creating a wave packet of the electron. The photon gives the electromagnetic particle of the mediating force of the electrons electromagnetic field with the same distribution of wavelengths.

Atomic model
The constantly accelerating electron in the Hydrogen atom is moving on the equipotential line of the proton and it's kinetic and potential energy will be constant. Its energy will change only when it is changing its way to another equipotential line with another value of potential energy or getting free with enough kinetic energy. This means that the Rutherford-Bohr atomic model is right and only that changing acceleration of the electric charge causes radiation, not the steady acceleration. The steady acceleration of the charges only creates a centric parabolic steady electric field around the charge, the magnetic field. This gives the magnetic moment of the atoms, summing up the proton and electron magnetic moments caused by their circular motions and spins.

The Relativistic Bridge
Commonly accepted idea that the relativistic effect on the particle physics it is the fermions' spin - another unresolved problem in the classical concepts. If the electric charges can move only with accelerated motions in the self maintaining electromagnetic field, once upon a time they would reach the velocity of the electromagnetic field. The resolution of this problem is the spinning particle, constantly accelerating and not reaching the velocity of light because the acceleration is radial. One origin of the Quantum Physics is the Planck Distribution Law of the electromagnetic oscillators, giving equal intensity for 2 different wavelengths on any temperature. Any of these two wavelengths will give equal intensity diffraction patterns, building different asymmetric constructions, for example proton - electron structures (atoms), molecules, etc. Since the particles are centers of diffraction patterns they also have particle – wave duality as the electromagnetic waves have. [2]

The weak interaction
The weak interaction transforms an electric charge in the diffraction pattern from one side to the other side, causing an electric dipole momentum change, which violates the CP and time reversal symmetry. The Electroweak Interaction shows that the Weak Interaction is basically electromagnetic in nature. The arrow of time shows the entropy grows by changing the temperature dependent diffraction patterns of the electromagnetic oscillators.

Another important issue of the quark model is when one quark changes its flavor such that a linear oscillation transforms into plane oscillation or vice versa, changing the charge value with 1 or -1. This
kind of change in the oscillation mode requires not only parity change, but also charge and time changes (CPT symmetry) resulting a right handed anti-neutrino or a left handed neutrino.

The right handed anti-neutrino and the left handed neutrino exist only because changing back the quark flavor could happen only in reverse, because they are different geometrical constructions, the u is 2 dimensional and positively charged and the d is 1 dimensional and negatively charged. It needs also a time reversal, because anti particle (anti neutrino) is involved.

The neutrino is a 1/2 spin creator particle to make equal the spins of the weak interaction, for example neutron decay to 2 fermions, every particle is fermions with ½ spin. The weak interaction changes the entropy since more or less particles will give more or less freedom of movement. The entropy change is a result of temperature change and breaks the equality of oscillator diffraction intensity of the Maxwell–Boltzmann statistics. This way it changes the time coordinate measure and makes possible a different time dilation as of the special relativity.

The limit of the velocity of particles as the speed of light appropriate only for electrical charged particles, since the accelerated charges are self maintaining locally the accelerating electric force. The neutrinos are CP symmetry breaking particles compensated by time in the CPT symmetry, that is the time coordinate not works as in the electromagnetic interactions, consequently the speed of neutrinos is not limited by the speed of light.

The weak interaction T-asymmetry is in conjunction with the T-asymmetry of the second law of thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes the weak interaction, for example the Hydrogen fusion.

Probably because it is a spin creating movement changing linear oscillation to 2 dimensional oscillation by changing d to u quark and creating anti neutrino going back in time relative to the proton and electron created from the neutron, it seems that the anti neutrino fastest then the velocity of the photons created also in this weak interaction?

A quark flavor changing shows that it is a reflection changes movement and the CP- and T- symmetry breaking!!! This flavor changing oscillation could prove that it could be also on higher level such as atoms, molecules, probably big biological significant molecules and responsible on the aging of the life.

Important to mention that the weak interaction is always contains particles and antiparticles, where the neutrinos (antineutrinos) present the opposite side. It means by Feynman’s interpretation that these particles present the backward time and probably because this they seem to move faster than the speed of light in the reference frame of the other side.

Finally since the weak interaction is an electric dipole change with ½ spin creating; it is limited by the velocity of the electromagnetic wave, so the neutrino’s velocity cannot exceed the velocity of light.

The General Weak Interaction

The Weak Interactions T-asymmetry is in conjunction with the T-asymmetry of the Second Law of Thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes for example the Hydrogen fusion. The arrow of time by the Second Law of Thermodynamics shows the increasing entropy and decreasing information by the Weak Interaction, changing the temperature
dependent diffraction patterns. A good example of this is the neutron decay, creating more particles with less known information about them. The neutrino oscillation of the Weak Interaction shows that it is a general electric dipole change and it is possible to any other temperature dependent entropy and information changing diffraction pattern of atoms, molecules and even complicated biological living structures. We can generalize the weak interaction on all of the decaying matter constructions, even on the biological too. This gives the limited lifetime for the biological constructions also by the arrow of time. There should be a new research space of the Quantum Information Science the 'general neutrino oscillation' for the greater then subatomic matter structures as an electric dipole change. There is also connection between statistical physics and evolutionary biology, since the arrow of time is working in the biological evolution also. The Fluctuation Theorem says that there is a probability that entropy will flow in a direction opposite to that dictated by the Second Law of Thermodynamics. In this case the Information is growing that is the matter formulas are emerging from the chaos. So the Weak Interaction has two directions, samples for one direction is the Neutron decay, and Hydrogen fusion is the opposite direction.

Fermions and Bosons
The fermions are the diffraction patterns of the bosons such a way that they are both sides of the same thing.

Van Der Waals force
Named after the Dutch scientist Johannes Diderik van der Waals – who first proposed it in 1873 to explain the behaviour of gases – it is a very weak force that only becomes relevant when atoms and molecules are very close together. Fluctuations in the electronic cloud of an atom mean that it will have an instantaneous dipole moment. This can induce a dipole moment in a nearby atom, the result being an attractive dipole–dipole interaction.

Electromagnetic inertia and mass

Electromagnetic Induction
Since the magnetic induction creates a negative electric field as a result of the changing acceleration, it works as an electromagnetic inertia, causing an electromagnetic mass. [1]

Relativistic change of mass
The increasing mass of the electric charges the result of the increasing inductive electric force acting against the accelerating force. The decreasing mass of the decreasing acceleration is the result of the inductive electric force acting against the decreasing force. This is the relativistic mass change explanation, especially importantly explaining the mass reduction in case of velocity decrease.

The frequency dependence of mass
Since $E = hv$ and $E = mc^2$, $m = hv / c^2$ that is the m depends only on the v frequency. It means that the mass of the proton and electron are electromagnetic and the result of the electromagnetic induction, caused by the changing acceleration of the spinning and moving charge! It could be that the m_{n}, inertial mass is the result of the spin, since this is the only accelerating motion of the electric
Electron – Proton mass rate
The Planck distribution law explains the different frequencies of the proton and electron, giving equal intensity to different lambda wavelengths! Also since the particles are diffraction patterns they have some closeness to each other – can be seen as a gravitational force. [2]

There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

Gravity from the point of view of quantum physics

The Gravitational force
The gravitational attractive force is basically a magnetic force.

The same electric charges can attract one another by the magnetic force if they are moving parallel in the same direction. Since the electrically neutral matter is composed of negative and positive charges they need 2 photons to mediate this attractive force, one per charges. The Bing Bang caused parallel moving of the matter gives this magnetic force, experienced as gravitational force.

Since graviton is a tensor field, it has spin = 2, could be 2 photons with spin = 1 together.

You can think about photons as virtual electron – positron pairs, obtaining the necessary virtual mass for gravity.

The mass as seen before a result of the diffraction, for example the proton – electron mass rate $M_p=1840$ Me. In order to move one of these diffraction maximum (electron or proton) we need to intervene into the diffraction pattern with a force appropriate to the intensity of this diffraction maximum, means its intensity or mass.

The Big Bang caused acceleration created radial currents of the matter, and since the matter is composed of negative and positive charges, these currents are creating magnetic field and attracting forces between the parallel moving electric currents. This is the gravitational force experienced by the matter, and also the mass is result of the electromagnetic forces between the charged particles. The positive and negative charged currents attracts each other or by the magnetic forces or by the much stronger electrostatic forces?

The gravitational force attracting the matter, causing concentration of the matter in a small space and leaving much space with low matter concentration: dark matter and energy.
There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy
distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

The Higgs boson

By March 2013, the particle had been proven to behave, interact and decay in many of the expected ways predicted by the Standard Model, and was also tentatively confirmed to have + parity and zero spin, two fundamental criteria of a Higgs boson, making it also the first known scalar particle to be discovered in nature, although a number of other properties were not fully proven and some partial results do not yet precisely match those expected; in some cases data is also still awaited or being analyzed.

Since the Higgs boson is necessary to the W and Z bosons, the dipole change of the Weak interaction and the change in the magnetic effect caused gravitation must be conducted. The Wien law is also important to explain the Weak interaction, since it describes the T_{max} change and the diffraction patterns change. [2]

Higgs mechanism and Quantum Gravity

The magnetic induction creates a negative electric field, causing an electromagnetic inertia. Probably it is the mysterious Higgs field giving mass to the charged particles? We can think about the photon as an electron-positron pair, they have mass. The neutral particles are built from negative and positive charges, for example the neutron, decaying to proton and electron. The wave – particle duality makes sure that the particles are oscillating and creating magnetic induction as an inertial mass, explaining also the relativistic mass change. Higher frequency creates stronger magnetic induction, smaller frequency results lesser magnetic induction. It seems to me that the magnetic induction is the secret of the Higgs field.

In particle physics, the Higgs mechanism is a kind of mass generation mechanism, a process that gives mass to elementary particles. According to this theory, particles gain mass by interacting with the Higgs field that permeates all space. More precisely, the Higgs mechanism endows gauge bosons in a gauge theory with mass through absorption of Nambu–Goldstone bosons arising in spontaneous symmetry breaking.

The simplest implementation of the mechanism adds an extra Higgs field to the gauge theory. The spontaneous symmetry breaking of the underlying local symmetry triggers conversion of components of this Higgs field to Goldstone bosons which interact with (at least some of) the other fields in the theory, so as to produce mass terms for (at least some of) the gauge bosons. This mechanism may also leave behind elementary scalar (spin-0) particles, known as Higgs bosons.

In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W^\pm and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron
Collider at CERN announced results consistent with the Higgs particle on July 4, 2012 but stressed that further testing is needed to confirm the Standard Model.

What is the Spin?

So we know already that the new particle has spin zero or spin two and we could tell which one if we could detect the polarizations of the photons produced. Unfortunately this is difficult and neither ATLAS nor CMS are able to measure polarizations. The only direct and sure way to confirm that the particle is indeed a scalar is to plot the angular distribution of the photons in the rest frame of the centre of mass. A spin zero particles like the Higgs carries no directional information away from the original collision so the distribution will be even in all directions. This test will be possible when a much larger number of events have been observed. In the mean time we can settle for less certain indirect indicators.

The Graviton

In physics, the graviton is a hypothetical elementary particle that mediates the force of gravitation in the framework of quantum field theory. If it exists, the graviton is expected to be massless (because the gravitational force appears to have unlimited range) and must be a spin-2 boson. The spin follows from the fact that the source of gravitation is the stress-energy tensor, a second-rank tensor (compared to electromagnetism’s spin-1 photon, the source of which is the four-current, a first-rank tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force indistinguishable from gravitation, because a massless spin-2 field must couple to (interact with) the stress-energy tensor in the same way that the gravitational field does. This result suggests that, if a massless spin-2 particle is discovered, it must be the graviton, so that the only experimental verification needed for the graviton may simply be the discovery of a massless spin-2 particle. [3]

Dark Matter and Energy

Dark matter is a type of matter hypothesized in astronomy and cosmology to account for a large part of the mass that appears to be missing from the universe. Dark matter cannot be seen directly with telescopes; evidently it neither emits nor absorbs light or other electromagnetic radiation at any significant level. It is otherwise hypothesized to simply be matter that is not reactant to light. Instead, the existence and properties of dark matter are inferred from its gravitational effects on visible matter, radiation, and the large-scale structure of the universe. According to the Planck mission team, and based on the standard model of cosmology, the total mass−energy of the known universe contains 4.9% ordinary matter, 26.8% dark matter and 68.3% dark energy. Thus, dark matter is estimated to constitute 84.5% of the total matter in the universe, while dark energy plus dark matter constitute 95.1% of the total content of the universe. [6]

Cosmic microwave background

The cosmic microwave background (CMB) is the thermal radiation assumed to be left over from the "Big Bang" of cosmology. When the universe cooled enough, protons and electrons combined to form neutral atoms. These atoms could no longer absorb the thermal radiation, and so the universe became transparent instead of being an opaque fog. [7]

Thermal radiation

Thermal radiation is electromagnetic radiation generated by the thermal motion of charged particles in matter. All matter with a temperature greater than absolute zero emits thermal
radiation. When the temperature of the body is greater than absolute zero, interatomic collisions cause the kinetic energy of the atoms or molecules to change. This results in charge-acceleration and/or dipole oscillation which produces electromagnetic radiation, and the wide spectrum of radiation reflects the wide spectrum of energies and accelerations that occur even at a single temperature. [8]

Conclusions
The operational equivalence of coherence and entanglement will likely have a far-reaching impact on areas ranging from quantum information theory to more nascent fields such as quantum biology and nanoscale thermodynamics. In the future, the physicists plan to investigate whether coherence and entanglement might also be interconverted into a third resource— that of quantum discord, which, like entanglement, is another type of quantum correlation between two systems. [10]
The accelerated charges self-maintaining potential shows the locality of the relativity, working on the quantum level also. [1]
The Secret of Quantum Entanglement that the particles are diffraction patterns of the electromagnetic waves and this way their quantum states every time is the result of the quantum state of the intermediate electromagnetic waves. [2]
One of the most important conclusions is that the electric charges are moving in an accelerated way and even if their velocity is constant, they have an intrinsic acceleration anyway, the so called spin, since they need at least an intrinsic acceleration to make possible they movement.
The bridge between the classical and quantum theory is based on this intrinsic acceleration of the spin, explaining also the Heisenberg Uncertainty Principle. The particle – wave duality of the electric charges and the photon makes certain that they are both sides of the same thing. Basing the gravitational force on the accelerating Universe caused magnetic force and the Planck Distribution Law of the electromagnetic waves caused diffraction gives us the basis to build a Unified Theory of the physical interactions. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter. Since the dark matter not participating in the diffraction patterns, also cannot be part of quantum entanglement, because of this we haven’t information about it, we conclude its existence from its gravitational effect only.
References

http://academia.edu/3833335/The_Magnetic_field_of_the_Electric_current

[2] 3 Dimensional String Theory
http://academia.edu/3834454/3_Dimensional_String_Theory

http://en.wikipedia.org/wiki/Quantum_entanglement

[5] Space-based experiment could test gravity's effects on quantum entanglement

http://en.wikipedia.org/wiki/Quantum_cognition

[8] Quantum Teleportation
http://en.wikipedia.org/wiki/Quantum_teleportation

[9] Pairing up single atoms in silicon for quantum computing

[10] Physicists find quantum coherence and quantum entanglement are two sides of the same coin

[12] Physicists measure molecular electronic properties of vitamins

[13] Researchers see unexplained phase shifts during atomic scattering
[14] Researchers observe dynamical quantum phase transitions in an interacting many-body system