
Decimal-by-decimal analysis of the gravitational constant
value as exemplified by torsion balance

Kiryan D.G., Kiryan G.V.

Institute of Problems of Mechanical Engineering of RAS

61 Bolshoy Prospect V.O., 199178, Saint Petersburg, Russia

e-mail: diki.ipme@gmail.com

Term “gravitational constant” was for the first time introduced more than
200 years ago, and since that time attempts have been made to refine its
value. As per the materials of Committee on Data for Science and Technology

(CODATA), all indirect measurements of the “gravitational constant” ob-
tained by various research groups exhibit in the SI system equality of two
first decimals and spread in subsequent decimals. We have analyzed this sit-
uation by using the torsion balance mathematical model. This paper shows
that this situation might be explained by solving the direct metrological prob-
lem, namely, calculation of the necessary measurement accuracies of each of
the torsion balance parameters from the preset accuracy of the “gravitational
constant” value. Decimal-by-decimal analysis of the torsion balance sensitiv-
ity, jointly with the CODATA data, has lead us to the assumption that all
the variety of the “gravitational constant” values was obtained at experimen-
tal setups without appropriately planning the final result accuracy.

1. Problem definition

In his work “Traitè de mècanique” (1809), Simèon Denis Poisson introduced
into the law of gravitational interaction between two material bodies factor G
named “gravitational constant”1. The law states that the force of gravita-
tional interaction between two homogeneous spheres (material points) is di-
rectly proportional to their gravitating2 masses and inversely proportional

1The history of the “gravitational constant” is presented in detail in the K. F. Tomilin’s
book “Fundamental physical constants in the historical and methodological aspects”
[1, pp. 106–126]

2The concept of the material body gravitating mass is considered in papers [2, 3].
Briefly speaking, the material body gravitating mass m̃ is a function of density of its
material environment. The gravitating mass functional expression looks as follows:

m̃ = m (1 − ρ0/ρ) , m > 0 ,

where ρ0 is the medium density, ρ is the averaged density of the material body, m is the
gravitating mass of the body at ρ0 = 0 (i.e., in the absence of the material medium).
Hereinafter term “gravitating” is omitted for brevity, however, it is necessary to keep in
mind that the medium factor always exists and needs proper attitude from researchers.
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to the squared distance between their centers of symmetry. Later a scale-
dimension factor was introduced into the law of gravitation, which was titled
“gravitational constant”.

Let us consider two homogeneous spheres m∗ and m in masses in the
Cartesian coordinate system Oxyz (Fig. 1). Positions of the spheres are

m

m∗

r∗ r

f

x

y

z

O

Figure 1: Gravitational force f acting upon a homogeneous sphere with mass m
from a homogeneous sphere with mass m∗.

defined by radius-vectors r∗ and r, respectively. In this case, the law of
gravitational interaction (i.e., the expression for gravitational force f acting
upon mass m from mass m∗) obtains the following form:

f = E(m∗, r∗− r) m , E(m∗, r∗− r) =

(
G

m∗

|r∗− r|2

)
r∗− r

|r∗− r|
. (1)

Here E is intensity of the gravitational field generated by mass m∗. Certainly,
mass m is also a source of the gravitational field and attracts mass m∗ with
exactly the same force as mass m∗ attracts mass m.

At present, international committee CODATA3 recommends the follow-
ing value of the “gravitational constant” [4]:

G = 6.67384(80)× 10−11 m3/(kg ·s2) . (2)

At the same time, the CODATA data [4] given in Tab. 1 demonstrate
that all the “gravitational constant” values coincide only in two first decimals.

3Committee on Data for Science and Technology & The CODATA Task Group on
Fundamental Constants. http://www.codata.org
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Table 1: Values of the “gravitational constant” obtained by different research
groups [4].

General experience in purposeful and conscious instrumental observation
of planet orbits, galaxies dynamics [5], tides on land and sea, and the Earth’s
gravitational field strength allows us to state that gravitational interaction
between material bodies depends exclusively on their masses, geometry and
distance between them. In other words, the observed gravitational interaction

is defined only by the character of the physical-spatial distribution of the

material medium as a whole.
With the passage of time the method of refining the “gravitational con-

stant” became a separate challenge. The more than 200-year history of im-
proving the techniques an increasing the instrumental sensitivity has not re-
sulted in at least the naturally expected asymptotic refining of constant G.
In the SI system, only two first decimals of the G values obtained by each
research group are equal. As an example of a commonly accepted approach
to indirect measurement of the “gravitational constant”, paper “Measurement

of Newton’s Constant Using a Torsion Balance with Angular Acceleration

Feedback” [6] may be considered.
What is the practical meaning of the difference in the third and subse-

quent decimals? What is the reason for this almost two-century epic of the
fruitless search for the precise value of “gravitational constant” G by indi-
rect measurements? Let us consider the current situation from the point of
view of both our main goal (refining of the “gravitational constant”) and the
available capabilities. For this purpose, let us solve the direct metrological
problem.
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2. The torsion balance schematic model

As a basic model, we have taken the simplest torsion balance design that
allows the mass-to-mass gravitational interaction to be detected via the static
torsion angle of the quartz fiber. Transient oscillation processes are neglected.
We will not analyze other structural and methodological versions of indirect
“gravitational constant” measurements since, as shown further, they have the
same disadvantages as the classical measurement scheme based on measuring
the fiber torsion angle.

Fig. 2 presents the torsion balance schematic model in the Cartesian co-
ordinate system Oxyz. Axis Oz is perpendicular to the picture plane and
directed toward the reader. Weightless and rigid beam A1A2 with two equal
masses mA at the ends is suspended at point O by using a weightless and
tensionless quartz fiber L in length and d in diameter. The beam arms are
equal to each other: |OA1| = |OA2| = h. The plane of the beam A1A2 rota-
tion about point O is perpendicular to the vector of the Earth’s gravitational
field intensity E Terra.

The controllable gravitational action on the torsion balance masses is
realized through two motionless masses mB located at points B1 and B2 on
the circle of radius h. Orientation of the motionless masses mB is defined
by angle β between axis Ox and the line connecting points B1 and B2. As
the positive direction, the counterclockwise rotation is taken. In addition, let
us take into account the effect of gravitational anomaly mC located outside
the torsion balance at the distance hC from point O with azimuth ϕ that is
the angle between axis Ox and straight line OC. To prevent displacement
of the point where the quartz fiber is connected to the beam with respect to
motionless masses mB, let us forbid the point O motion within plane Oxy.
This will cause an appropriate response at point O, but it will not affect the
static equilibrium of the system.

Static equilibrium of beam A1A2 is characterized by angle α, therefore,
positions of moving masses mA at points A1 and A2 may be defined by the
following radius-vectors:

rA1
= h



cos(π + α)
sin(π + α)

0


 , rA2

= h



cos(α)
sin(α)

0


 . (3)

Positions of the motionless masses at points B1 and B2 are defined in the
similar way:

rB1
= h



cos(π + β)
sin(π + β)

0


 , rB2

= h



cos(β)
sin(β)

0


 , (4)
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Figure 2: The torsion balance schematic model.

as well as the radius-vector of gravitational anomaly mC :

r = hC



cos(ϕ)
sin(ϕ)

0


 . (5)

When the system is in equilibrium, this means that the sum of all the
torsional moments acting on the quartz suspension fiber is equal to zero.

5

Kiryan D.G., Kiryan G.V. ( gconst7, v7 beta 5d.en ) – November 20, 2017



The beam suspension fiber response to torsion manifests itself through
the elastic force moment Mα and may be expressed as follows:

Mα =

(
0 0 −α

YτJp

L

)T

, where Jp =
πd4

32
. (6)

Here α is the suspension fiber torsion angle, Yτ is the shear modulus of the
fiber material [7], Jp is the polar moment of inertia of the round fiber cross-
section, and L, d are the suspension fiber length and diameter, respectively.

The moments of gravitational forces twisting the suspension fiber may be
subdivided into two components: the moment of gravitational action from
motionless masse Mβ and moment from gravitational anomaly Mϕ.

Taking into account axial symmetry of the masses (Fig. 2), let us consider
gravitational interaction between mass mA with radius-vector rA1

and two
motionless masses mB with radius-vectors rB1

and rB2
, and then double the

moment:
Mβ(α) = 2 · rA1

×
(
fA1B1

+ fA1B2

)
, (7)

where
fA1B1

= E(mB, rB1
− rA1

)mA ,
fA1B2

= E(mB, rB2
− rA1

)mA .
(8)

Now let us introduce the effect of gravitational anomaly mC on the masses
located at the ends of the A1A2 beam:

fA1
= E(mC , r − rA1

)mA ,
fA2

= E(mC , r − rA2
)mA .

(9)

Due to geometrical asymmetry, forces fA1
and fA2

cause additional rotation
of the beam and its displacement in the Oxy plane. Within our task, only
the additional contribution of gravitational anomaly mC to the suspension
fiber torsion angle is of interest. Therefore, displacement of point O, i.e., of
the point where the beam is suspended, is forbidden (|rO| = 0).

Thus the torsional moment induced by gravitational anomaly mC with
radius-vector rC takes the following form:

Mϕ(α) = rA1
× fA1C + rA2

× fA2C . (10)

The torsion balance is in the static equilibrium, which means that the
sum of gravitational moments Mβ eq. (7), Mϕ eq. (10) and elastic force
moment Mα eq. (6) is zero:

Mα(α) +Mβ(α) +Mϕ(α) = 0 . (11)
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This transcendental equation gives us the static torsion angle α and thus
establishes the interrelation between the beam rotation angle α and torsion
balance parameters. Angle α is bounded from above, the limiting value
being dependent on the schematic model geometry (Fig. 2). The maximum
permissible angle of the beam A1A2 rotation may be defined as

αmax = β − arccos

(
1−

1

2

(
RA +RB

h

)2
)

, (12)

where αmax is the maximum permissible rotation angle of the beam, RA, RB

are the radii of the moving and motionless spheres, respectively.
To continue analyzing the accuracy of the preset torsion balance param-

eters, let us deduce “gravitational constant” G from (11):

G = α
Yτ

L

πd4

32

2h

mAmB

(
cos ξ

sin2 ξ
−

sin ξ

cos2 ξ

)
−1

, ξ =
β − α

2
. (13)

This relation enables determination of the necessary accuracy of each of the
torsion balance key parameters which ensures the required accuracy of the
“gravitational constant” value. Since we are interested in the accuracy char-
acteristics of just the torsion balance with calibrated masses mA and mB, we
have neglected the anomaly mC gravitational effect on masses mA in deduc-
ing relation (13). The effect of gravitational anomaly on the suspension fiber
torsion angle will be considered later, after solving the main problem.

3. Calculation of the necessary accuracy of the

system parameters

Let us set the required calculation accuracy of the “gravitational constant”
value and calculate the necessary measurement error in the beam rotation an-
gle and also in key design and physical/mechanical parameters of the torsion
balance.

As the required calculation accuracy of the “gravitational constant” in
the SI system, we regard the number of significant decimals. Thus we assign
increment ∆G to each decimal in the “gravitational constant” value:

∆G = [ 0.1; 0.01; 0.001; 0.0001; . . . ]× 10−11 m3/(kg ·s2) . (14)

Being under the action of the gravitational forces induced by masses mB,
the initially weightless beam with masses mA at the ends is in static equilib-
rium at the angle α to the Ox axis. Angle α can be found from equation (13)
by using the unperturbed “gravitational constant”.
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After setting the “gravitational constant” increment ∆G by selecting it
from sequence (14), we can find a corresponding correction to the chosen
torsion balance parameter which will completely compensate the effect of
the preset G perturbation, namely, preserve the initial static equilibrium
characterized by angle α. This compensative correction will be just the
maximum permissible absolute error in the chosen parameter of the system.

First let us estimate the necessary measurement accuracy of torsion an-
gle α. Let us vary “gravitational constant” G in (6) by ∆G and find a new
torsion angle different from the initial one. Designate this difference as ∆α.
This means that to calculate the “gravitational constant” with the preset ac-
curacy ∆G it is necessary to have instruments able to measure the suspension
fiber torsion angle4 with absolute accuracy ∆α.

After that, maintaining the static equilibrium characterized by invari-
able torsion angle α eq. (13), let us find the interrelation between the preset
“gravitational constant” increment ∆G and corresponding compensative cor-
rections to the basic torsion balance parameters, namely, mB, L, d and Yτ .
Tab. 2 shows the torsion balance parameters used in the schematic model
(Fig. 2). Calculations of the necessary measurement accuracy of the torsion

Table 2: Basic parameters of the torsion balance.

L = 0.7m — length of the beam suspension fiber;

d = 50µm — suspension fiber diameter;

h = 100mm — beam arm length;

Yτ = 31.1966GPa — shear modulus of the suspension fiber (material: SiO2);

RA = 10mm — radius of the spheres (moving masses) at the beam ends;

mA = 0.0821 kg — moving sphere mass (material: W);

RB = 70mm — radius of the spheres (motionless masses);

mB = 28.1604 kg — motionless sphere mass (material: W);

β = 57◦ — angle determining location of motionless masses mB;

4In case the interacting material bodies mA and mB are homogeneous spheres, the beam
suspension torsion angle is essentially a strict angular equivalent of the distance between
geometric centers of the spheres and hence it is quite reasonable to use relation (1) to
calculate the “gravitational constant”.

When the pair of masses consists of bodies with the shape different from spherical (e.g.,
cylinders), there arises a problem with applying the law of universal gravitation (1) since in
this case the gravitational interaction force does not correlate with the distance between the
cylinder’s centers of mass. In this case correction factors should be used which arise from
an approximate solution of the problem of gravitational interaction between cylindrical
material bodies, which, in its turn, contributes additional uncertainty in the “gravitational
constant” calculations.
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balance parameters are listed in Tab. 3. The results obtained are shown in

Table 3: Maximum permissible absolute measurement errors of the torsion balance
parameters for various values of the “gravitational constant” absolute accuracy.

∆G×10−11 ∆α, arcsec ∆mB , g ∆L,mm ∆d,µm ∆Yτ ,GPa

0.1 662.654 415.696 10.333 0.18624 0.46741

0.01 65.541 42.129 1.047 0.01872 0.04674

0.001 6.547 4.219 0.105 0.00187 0.00467

0.0001 0.655 0.422 0.010 0.00019 0.00047

0.00001 0.065 0.042 0.001 0.00002 0.00005

Figs. 3,4 that clearly demonstrate a significant increase in the required mea-
surement accuracy of the torsion balance basic parameters with increasing
number of decimals in the “gravitational constant” value. The maximal
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1. α — torsion angle of the suspension thread

2. mB — motionless mass

3. L— suspension thread length

4. d — suspension thread diameter

5. Yτ — shear modulus of the suspension thread

6. G— "gravitational constant"

Figure 3: Relative accuracy of the schematic model parameters versus the number
of decimals in the “gravitational constant” value.

error of the “gravitational constant” indirect measurement is graphically rep-
resented in Figs. 3,4. The error was calculated via the following formula:

δG =
1

G

5∑

i=1

∣∣∣∣
∂G

∂qi

∣∣∣∣∆qi , where qi = { α, mB, L, d, Yτ } . (15)

Based on the data of Tab. 3, Figs. 3,4 and also on the fact that errors are
accumulative as relation (15) shows, it is possible to define an empiric rule
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Figure 4: A Figure 3 fragment presented in a larger scale.

stating that when the “gravitational constant” is found with the accuracy
of, e.g., ∆G = 0.001× 10−11 m3/(kg ·s2), the maximum permissible absolute
measurement error of each torsion balance parameter should be calculated
based on the ∆G value lower by an order of magnitude.

It is possible to reject direct measurement of parameters L, d, Yτ and
replace them with only one parameter, i.e., torsional stiffness factor. For
this purpose it is necessary to conduct an additional experiment in which
masses mB are removed in-situ without violating the experimental setup in-
tegrity. In the course of this experiment the actual suspension fiber torsional
stiffness was determined via the fixed period of the beam torsion motion.
However, in this case the measurement accuracy of such parameters as mass,
torsion angle, linear dimensions and time (the torsion oscillation period) still
remains problematic.

The effect of gravitational anomaly mC on the torsion angle α.

Now let us estimate the effect of gravitational anomaly mC on the experi-
mentally measured torsion angle of the beam A1A2 suspension fiber (Fig. 2).
Assume that when anomaly mC was absent, the torsion balance beam was
turned by angle α. Using the torsional moment balance equation (11), calcu-
late the new static torsion angle αC allowing for the presence of gravitational
anomaly mC at point C defined by radius-vector rC . The asymmetric loca-
tion of mass mC gives rise to an additional torsional moment and response at
point O. Here we consider only the torsional moment since within our task
beam A1A2 can rotate only in plane Oxy about point O. Tab. 4 lists the

10

Kiryan D.G., Kiryan G.V. ( gconst7, v7 beta 5d.en ) – November 20, 2017



Table 4: The effect of gravitational anomaly (mC = 100 kg , azimuth ϕ = 90◦) on
the suspension fiber torsion angle.

|rC |,m (αC − α), arcsec δα,%

2 6.4526091 0.0236213

3 1.9179015 0.0070209

5 0.4149482 0.0015190

10 0.0519051 0.0001900

30 0.0019228 0.0000070

Moon 0.0008894 0.0000033

50 0.0004153 0.0000015

calculations reflecting the effect of the gravitational anomaly on the torsion
angle of the beam suspension fiber. Analysis of the Tab. 4 data unam-
biguously shows that it is necessary to ensure local axial symmetry of the
gravitational field within a radius of minimum 5 meters from the suspension
fiber of the torsion balance beam. As for celestial bodies, in the frame-
work of our schematic model such gravitational anomalies as e.g. Moon (in
perigee) produce extremely minor (instrumentally non-measureable) effect
on the suspension fiber torsion angle. Thus celestial bodies may be excluded
from consideration.

4. Conclusions

Solving of the direct metrological problem by using the torsion balance math-
ematical model indeed gives an answer on the question why there has been no
progress in refining the “gravitational constant” value during so many years
and why it can hardly be expected in the foreseeable future. The decimal-
by-decimal analysis has shown that the current problems with the accuracy
of determining the “gravitational constant” are caused by a quite real and
ordinary fact, i.e., by limited metrological capacity of experimental setups in
combination with methodological stereotypes.

To reach the preset accuracy of the “gravitational constant”, the exper-
imentalist should artificially increase it by an order of magnitude and then
find the maximum permissible measurement errors of the system key pa-
rameters corresponding to this increased accuracy. Just these measurement
errors will enable calculation of the “gravitational constant” with that preset
accuracy provided the laboratory metrological capability is sufficiently high.

In addition, note that the gravitational effect of celestial bodies may be
ignored due its insignificance but only under the condition of the gravita-
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tional field axial symmetry with respect to the suspension fiber of the torsion
balance beam.

To summarize the above, we can state that at present the “gravitational
constant” has been calculated accurately to the second decimal, and the
spread in subsequent decimals (see Tab. 1) is caused by specific features of
particular experimental setups and metrological capabilities of laboratories,
experimental techniques, external factors, etc. Thus the process of refin-
ing the “gravitational constant” has turned into senseless waste of time and
resources though the search for еxperimentum crucis5 for indirect measure-
ment of the “gravitational constant” seems to be important and useful from
the metrological and engineering point of view.
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