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According to the second law of thermodynamics, a physical system
will tend to increase its entropy over time. In this paper, I investigate
a universal Turing machine (UTM) running multiple programs in
parallel according to a scheduler. I found that if, over the course of the
computation, the scheduler adjusts the work done on programs so as
to maximize the entropy in the calculation of the halting probability
Ω, the system will follow the laws of physics. Specifically, I show
that the computation will obey algorithmic information theory (AIT)
analogues to general relativity, entropic dark energy, the Schrödinger
equation, a maximum computation speed analogous to the speed
of light, the Lorentz’s transformation, light cone, the Dirac equation
for relativistic quantum mechanics, spins, polarization, etc. As the
universe follows the second law of thermodynamics, these results
would seem to suggest an affinity between an "entropic UTM" and the
laws of physics.
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1 Universal Turing Machine

A universal Turing machine (UTM) is a Turing machine (TM) that has
the property that can correctly simulate every TM for every program
x. Said differently, for any UTM this must hold;

∀x∀TM[UTM(〈TM〉.〈x〉) = 〈TM(x)〉] (1.1)

The bracket notation 〈TM〉, 〈x〉 and 〈TM(x)〉 simply indicates
that the input is encoded in the language of the UTM and the period
symbol "." indicates the concatenation. As each TM outputs a list of
symbols, the equal sign means that for any program x the output of
the UTM must equal the encoded output of the TM.

We introduce a prefix-free encoding to avoid the possibility of the
UTM confusing two programs. For example, such confusion can oc-
cur with the program 110 and program 1101. If the UTM were to halt
immediately after reading the first zero, we could not trace which
of these two programs was its actual input. A popular and simple
prefix-free encoding is the unitary encoding. It is the following set of
programs,

Unitary Encoding := {0, 10, 110, 1110, . . . } (1.2)

By limiting ourselves to a maximum of a single zero per encoded
program at the very end, we guarantee that no program is the prefix
of another.

Gregory Chaitin proved that any prefix-free UTM can be associ-
ated with an halting probability Ω.

Definition 1.3. Ω is the halting probability of a prefix free UTM1. Ω is a 1 Gregory J. Chaitin. An algebraic
equation for the halting probability.
https://www.cs.auckland.ac.nz/

~chaitin/berlin.pdf, 1988; Gregory J.
Chaitin. How real are real numbers?
http://www.worldscientific.com/doi/

abs/10.1142/S0218127406015726

and https://www.cs.auckland.

ac.nz/~chaitin/olympia.pdf,
2006; Gregory Chaitin. Mathe-
matics, complexity and philosophy.
https://www.academia.edu/31320410/

Mathematics_Complexity_and_

Philosophy_full_bilingual_text_,
2010; and Ming Li and Paul Vitányi. An
introduction to kolmogorov complexity
and its applications. Springer, 1997

normal, non-computable, algorithmically random and transcendental real
number.

For unitary encoded programs, Ω is obtained via the following
sum,

Ω =
∞

∑
x=1

2−E(x)−x (1.4)

where x is a program and where E(x) is the halting-event function
and is defined as:

E(x) =

0 x halts

∞ otherwise
(1.5)

https://www.cs.auckland.ac.nz/~chaitin/berlin.pdf
https://www.cs.auckland.ac.nz/~chaitin/berlin.pdf
http://www.worldscientific.com/doi/abs/10.1142/S0218127406015726
http://www.worldscientific.com/doi/abs/10.1142/S0218127406015726
https://www.cs.auckland.ac.nz/~chaitin/olympia.pdf
https://www.cs.auckland.ac.nz/~chaitin/olympia.pdf
https://www.academia.edu/31320410/Mathematics_Complexity_and_Philosophy_full_bilingual_text_
https://www.academia.edu/31320410/Mathematics_Complexity_and_Philosophy_full_bilingual_text_
https://www.academia.edu/31320410/Mathematics_Complexity_and_Philosophy_full_bilingual_text_
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Note that as E(x) is the bearer of non-halting information, it is
connected to the halting problem of computer science. As a result, it
is a non-computable function.

Expanding the sum into binary and using example values for
E(x), we get

Ω =
∞

∑
x=1

2−E(x)2−x (1.6)

= 2−∞2−1 + 2−02−2 + 2−02−3 + 2−02−4 + 2−∞2−5 + ... (1.7)

= 0b + 0.01b + 0.001b + 0.0001b + 0b + ... (1.8)

= 0.01110...b (1.9)

We obtain a number Ω where its bits are in a one-to-one corre-
spondence with the unitary encoded programs running of the UTM.
If the xth program halts, then the xth bit of Ω is 1, otherwise it is 0.
The reason why E(x) uses 0 and ∞ as its two states is to remove the
terms associated with non-halting programs from the sum by making
them vanish to 0.

Knowing the bits of Ω is enough to determine if any program of
the UTM will halt or not. As knowing Ω would solve the halting
problem and that such is unsolvable in the general case, Ω is neces-
sarily non-computable.

1.1 Entropic UTM

The entropy is defined as

Gibb’s entropy S = −kb ∑ pi ln pi (1.10)

Shannon’s entropy S = −∑ pi log2 pi (1.11)

What is the entropy of Ω? We consider the case of an unspecified
UTM. In this case, Ω can be represented as a concatenation of bits
such that;

Ω = 0.ω1ω2ω3ω4 . . . (1.12)

where every ωi is either 0 or 1, but as the UTM is unspecified its
actual value is unknown to us. There are infinitely many such bits
and as such, we can define a non-divergent entropy for at most N ∈
N bits of Ω. Furthermore, as Ω is a normal random real number, pi

is 1/2 for each ωi. Therefore, the entropy for N bits of Ω is;

S = kbN ln 2 (1.13)



on an entropic universal turing machine isomorphic to physics 5

This result applies to any UTM. As a set, it applies each element of
Λ ;

Λ := {U|isUTM(U)} (1.14)

where isUTM(U) is a function returning true if U is a UTM and
false otherwise. Of course isUTM is a non-computable function as it
is not possible to prove that an arbitrary TM is a UTM. Nonetheless,
defining Λ will prove to be useful in future sections.

1.2 Why work with the set Λ of all UTM?

We note four reasons;

1. By requiring that the results of this paper apply to all elements of
Λ, we will be able to connect the laws of physics to any UTM - so
long as its programs are scheduled so as to maximize the entropy
in the calculation of Ω. This makes the results more general.

2. If we were to consider a specific UTM for us to study, the chances
that it would actually be the one describing the universe are next
to NIL.

3. We consider the experience of an observer inside the universe but
lacking complete knowledge of its laws or initial conditions. As
a result, the observer cannot replicate on paper the UTM running
the universe. Therefore, from the entropic UTM perspective, his
understanding of the universe is limited to that which applies to
all possible UTM.

4. In the section on quantum measurement (section 7.1), we will
see how this formulation will allow us to derive a definition and
mechanism for the collapse. Indeed, we will see that each mea-
surement of the bits of Ω will eliminate from Λ the UTMs that are
incompatible with the value of the measurement. It will be argued
that this is isomorphic to the quantum measurement and collapse.

2 Statistical physics

We note the similarities between 1.4 and the Gibb’s ensemble of ther-
modynamics. In fact, these similarities have been noted by other
authors before 2. Simple replacements (changing the name of the 2 K. Tadaki. A statistical mechan-

ical interpretation of algorith-
mic information theory. https:

//arxiv.org/pdf/0801.4194.pdf, 2008;
John C. Baez and Mike Stay. Algorith-
mic thermodynamics. arXiv:1010.2067

[math-ph], 2010; and Ming Li and
Paul Vitányi. An introduction to
kolmogorov complexity and its applica-
tions. Springer, 1997

variables) are enough to switch back and forth between the two rep-
resentations. The Gibb’s ensemble compares to the hating probability
as;

https://arxiv.org/pdf/0801.4194.pdf
https://arxiv.org/pdf/0801.4194.pdf
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Gibb’s ensemble Halting probability

Z = ∑
x

e−β(E+pV+Fx) Ω =
∞

∑
x=1

2−E(x)−x (2.1)

Let us do a quick recall of statistical physics, then we will give a
thermodynamic interpretation of the halting probability.

2.1 Recall of statistical physics

In statistical physics, we are interested in the distribution that maxi-
mizes entropy

S = −kb ∑
x∈X

p(x) ln p(x) (2.2)

subject to the fixed macroscopic observables. The solution is the
Gibbs ensemble. As an example we take Table 1 as the observables.

Observable Conjugate variable

Energy E Temperature β = 1/(kbT)
Volume V Pressure γ = p/(kbT)

Number of particles N Chemical potential δ = −µ/(kbT)

Table 1: Typical observables of statisti-
cal mechanics.

then the partition function becomes

Z = ∑
x∈X

e−βE(x)−γV(x)−δN(x) (2.3)

The probability of occupation of a micro-state is

p(x) =
1
Z

e−βE(x)−γV(x)−δN(x) (2.4)

the average values and their variance for the observables are

E = ∑
x∈X

p(x)E(x) E =
−∂ ln Z

∂β
(∆E)2 =

∂2 ln Z
∂β2 (2.5)

V = ∑
x∈X

p(x)V(x) V =
−∂ ln Z

∂γ
(∆V)2 =

∂2 ln Z
∂γ2 (2.6)

N = ∑
x∈X

p(x)N(x) N =
−∂ ln Z

∂δ
(∆N)2 =

∂2 ln Z
∂δ2 (2.7)

The laws of thermodynamics can be recovered from the partition
function by taking the derivatives
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∂S
∂E

∣∣∣∣
V,N

=
1
T

∂S
∂V

∣∣∣∣
E,N

=
p
T

∂S
∂N

∣∣∣∣
E,V

= − µ

T
(2.8)

and summarizing them as

dE = TdS− pdV + µdN (2.9)

which is known as the state equation of the thermodynamic sys-
tem.

2.2 Algorithmic thermodynamics and related work

In their paper 3, John C. Baez and Mike Stay suggest an interpreta- 3 John C. Baez and Mike Stay. Algorith-
mic thermodynamics. arXiv:1010.2067

[math-ph], 2010

tion of algorithmic information theory based on thermodynamics,
where the characteristics of programs are considered to be observ-
ables. Starting from Gregory Chaitin’s Ω number, the halting proba-
bility

Ω = ∑
p halts

2−|p| (2.10)

is extended with algorithmic observables to obtain

Ω′ = ∑
x∈X

e−βE(x)−γV(x)−δN(x) (2.11)

Noting the similarity between equation 2.3 and 2.11, they suggest
an interpretation where E is the expected value of the logarithm of
the program’s runtime, V is the expected value of the length of the
program and N is the expected value of the program’s output. Fur-
thermore, they interpret the conjugate variables as (quoted verbatim
from their paper);

1. T = 1/β is the algorithmic temperature (analogous to temperature).
Roughly speaking, this counts how many times you must double
the runtime in order to double the number of programs in the
ensemble while holding their mean length and output fixed.

2. p = γ/β is the algorithmic pressure (analogous to pressure). This
measures the tradeoff between runtime and length. Roughly
speaking, it counts how much you need to decrease the mean
length to increase the mean log runtime by a specified amount,
while holding the number of programs in the ensemble and their
mean output fixed.

3. µ = −δ/β is the algorithmic potential (analogous to chemical poten-
tial). Roughly speaking, this counts how much the mean log run-
time increases when you increase the mean output while holding
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the number of programs in the ensemble and their mean length
fixed.

From equation 2.11, they derive analogues of Maxwell’s relations
and they consider thermodynamic cycles such as the Carnot cycle
or Stoddard cycle. For this they introduce the concepts of algorithmic
heat and algorithmic work.

The authors then claim that the choice of correspondence between
thermodynamic observables and algorithmic observables is some-
what arbitrary and reference other authors 4 who have used com- 4 Ming Li and Paul Vitányi. An in-

troduction to kolmogorov complex-
ity and its applications. Springer,
1997; and K. Tadaki. A statistical
mechanical interpretation of algo-
rithmic information theory. https:

//arxiv.org/pdf/0801.4194.pdf, 2008

pletely different correspondences.

2.3 A physical interpretation of the halting probability

Our preferred choice of correspondence will be one that recovers
the conventional language of physics. We will map the program-
observables to physical-observables as follows.

• The program-runtime is the number of Iterations a UTM needs to
perform until a program halts. It is therefore natural to associate
it with the physical Time in seconds. Indeed, a program requiring
more iterations to halt will also require more time to terminate.
If a system performs iterations at a faster or slower rate, the con-
jugate variable to time, the Power in Watts, can be adjusted to
account for this variation.

• Its inverse, the algorithmic-frequency, is associated with the re-
verse of the second, s−1, and its conjugate variable is the Action in
Joules-seconds.

• The program-size is expressed in number of bits. Writing the bits
one after the other on any medium (paper, disk drive, etc.) will
require a certain physical size for each bit. As the line is the lowest
dimensional geometry to spread bits, the program-size is natu-
rally associated with the physical length as its simplest case. Fur-
thermore, if an encoding medium would allow greater or lesser
"packing-tightness" of the bits, it can be modelled with its con-
jugate variable the Force in Newtons pushing the bits together or
pulling them apart. If one wishes instead to investigate geome-
tries of higher dimensions, one can use different units. For the 3D
case, the program-size can be mapped to a Volume in m3 and its
conjugate variable will be the Pressure in N/m2. For the 2D case, it
can be mapped to an Area in m2 and its conjugate variable will be
the Surface tension in N/m. In the section on the spin, we will see
that problems occurs in dimensions higher than 3. As a result the
volume case will be our upper bound.

https://arxiv.org/pdf/0801.4194.pdf
https://arxiv.org/pdf/0801.4194.pdf
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• Only the halting event remains. As it is the only quantity with no
units, it is natural to map it to the Energy in Joules. Indeed, in the
Gibb’s ensemble, the energy is the only observable not multiplied
by a conjugate variable. Adding extra units to the halting event
only to have them cancelled out by a conjugate variable would be
futile.

Summarizing the points above, we obtain Table 2 as our mapping
of choice between algorithmic thermodynamics and physical thermody-
namics.

Observable Variable Units Conjugate Variable Units

Halting event E J Temperature T K
Program-size (length) x m Force F N
Program-size (area) A m2 Stiffness γ N/m
Program-size (volume) V m3 Pressure p N/m2

Program-frequency τ 1/s Action S J × s
Program-runtime t s Power P W

Table 2: The preferred correspondence
between algorithmic thermodynamics and
statistical physics.We combine these observables to construct a thermodynamic

equation for the halting probability (equation 1.4),

ΩZ = ∑
x

e−(ln 2)β(E+Fx+Pt+γA+pV+... ) (2.12)

and its state equation is

dE = TdS− Pdt− Fdx− γdA− pdV − . . . (2.13)

where the triple dots represent other possible observables. We
interpret the program x as a micro-state of the set of all prefix-free
programs that are run on the UTM. It is easy to see that the function
for ΩZ is the partition function of the Gibbs ensemble of thermody-
namics.

Both the running frequency and the runtime are associated with
time and are the converse of each other. As a result we only need
to select one of them as our conjugate-observable pair whenever we
want to take into account the effects of time. In this work, we will
select Sτ over Pt (and vice-versa) whenever it leads to conceptually
simpler results.

3 A maximally entropic calculation of Ω

As Ω is formulated as a Gibb’s ensemble, it is necessarily maximally
entropic. Indeed, for an unspecified UTM, each bit ωi of the nor-
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mal number Ω is equally likely to be a 1 as it is to be a 0. However,
during the calculation itself and at intermediary steps this will not
necessarily be the case. To understand why, we must first understand
how progress towards the calculation of Ω can be made.

Attempting to run programs on a UTM for the purposes of cal-
culating Ω will have two difficulties. First, if we start one program
and wait for it to terminate before starting another one, the UTM
will hang at the first non-halting program. Second, if we start each
program in parallel, since there are infinitely many such programs,
the UTM will never return to work on the first one. The solution is to
dovetail programs.

Definition 3.1 (Dovetailing). Dovetailing is a program execution strategy
for a Turing machine to guarantee that progress will be made on arbitrarily-
many programs even in the presence of non-halting programs.

Definition 3.2 (Standard dovetailing). Consider the case of standard
dovetailing. First, we start the shortest program and perform one iteration.
Then, we start the second program and perform one iteration on the first and
second program. Then, we start the third program and perform one itera-
tion on the first, second and third program. And so on. Using dovetailing,
progress will eventually be made on every program and no program will
cause the TM to hang.

The problem with standard dovetailing is that there is no guaran-
tee that the system is maximally entropic during the calculation. To
understand why, consider that the entropy of the bits of Ω computed
via dovetailing. The bits are indeed compressible to a short algorithm
- the dovetailing algorithm itself! This algorithm includes both the
code to run the dovetailing and an encoding of the UTM. Its total size
(in bits) is the upper bound for the entropy of the calculated bits of
Ω.

To produce a maximally entropic calculation of the bits of Ω, we
must make adjustments to standard dovetailing. How can we do
that? Recall that the halting probability is a Gibb’s ensemble which
maximizes the entropy of the system subject to its program observ-
ables.

To adjust dovetailing so as to maximize the entropy throughout
the calculation, it suffices to create a dovetailing algorithm as a Gibb’s
ensemble. Specifically, we must add program-observables to the
halting probability so as to 1) produce a dovetailing-type algorithm
and 2) eventually obtain Ω when t→ ∞.

To do so and as a result of the similarities between the halting
probability and the Gibb’s ensemble, we import the notions of ther-
modynamics into AIT to augment Ω with additional program ob-
servables, analogous to thermodynamic observables.
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First, we augment the rightmost term of the exponential, x, with a
conjugate variable. Lets call it F. Second we multiply the terms of the
exponential by β. As E(x) is either 0 or ∞, it absorbs β. With these
additions, we obtain a Tadaki D-random number 5. Here, we take the 5 K. Tadaki. A generalization of chaitin’s

halting probability omega and halting
self-similar sets. http://arxiv.org/

abs/nlin/0212001, 2002; and K. Tadaki.
A statistical mechanical interpretation
of algorithmic information theory.
https://arxiv.org/pdf/0801.4194.

pdf, 2008

liberty to use the symbol F to define Tadaki’s number as we will later
connect this variable to the force in the physical interpretation.

ΩF =
∞

∑
x=1

2−β[E(x)−Fx] (3.3)

Tadaki has shown that Gregory Chaitin’s constant can be extended
to include a compression term F ∈ R on 2−x, which becomes 2−Fx

such that the Takadi constant ΩF remains non-computable F-random.
Furthermore, he goes to show that ΩF’s first n bits contain |n − F|
halting bits. For example, take the case where F = 2, then expanding
the sum into binary we get

ΩF =
∞

∑
x=1

2−Fx (3.4)

= 2−2×1 + 2−2×2 + 2−2×3 + 2−2×4 + 2−2×5 + ... (3.5)

= 2−2 + 2−4 + 2−6 + 2−8 + 2−10... (3.6)

= 0.01 + 0.0001 + 0.000001 + 0.000000001 + ... (3.7)

= 0.0101010101... (3.8)

The compression factor F "decompresses" the information by in-
serting some 0 in between the bits. It does not erase data. For the full
proof, refer to Takadi’s paper.

Third, we augment Takadi’s number with the conjugate-observable
pair of program-action to algorithmic-frequency, Sτ. We obtain a
partition function of algorithmic information theory (AIT).

ΩZ =
∞

∑
x=1

2−β[E(x)−Sτ−Fx] (3.9)

This partition function relates halting-event to program-size and to
program-frequency. The program-observables are conjugated to the
program-action S and the compressibility F, respectively. It has the
following state equation,

dE = TdS− Sdτ − Fdx (3.10)

Let us now prove the two requirements for this algorithm; 1) It is a
dovetailing algorithm and 2) it recovers Ω when t→ ∞.

http://arxiv.org/abs/nlin/0212001
http://arxiv.org/abs/nlin/0212001
https://arxiv.org/pdf/0801.4194.pdf
https://arxiv.org/pdf/0801.4194.pdf
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Theorem 3.11. At the limit of t→ ∞, we recover ΩF

Proof. A program x can have any value of S within [0, ∞]. If the
program halts immediately, S = 0. If it never halts, S = ∞. If it
halts after a certain time, S ∈ N. A program that never halts will not
contribute to the halting partition. This will be the case if S = ∞. As
a result we obtain,

lim
τ→0+

τSx = lim
t→∞

Sx

t
=

0 x halts

∞ otherwise
(3.12)

As this is the definition of E(x) (see 1.5), we obtain

lim
t→∞

Sx

t
= E(x) (3.13)

Lemma 3.14. E(x) + E(x) = E(x)

Proof. E(x) is either 0 or ∞. Since 0 + 0 = 0 and ∞ + ∞ = ∞, the
lemma holds.

Therefore,

lim
t→∞

ΩZ = lim
t→∞

(
∞

∑
x=1

e−(ln 2)β[E(x)+Sτ+Fx]

)
(3.15)

=
∞

∑
x=1

e−(ln 2)β[E(x)+E(x)+Fx] (3.16)

=
∞

∑
x=1

e−(ln 2)β[E(x)+Fx] (3.17)

= ΩF (3.18)

The question then is, can we recover Ω knowing ΩF. The answer is
of course yes as we just need to remove the zero-valued bits inserted
in between the bits of Ω.

Theorem 3.19. To show that equation 3.9 dovetails programs, it suffices to
show the following. For 0 < t < ∞, the partition function Z is

ΩZ(t) = Ω− 2−k(t)

where 2−k(t) is an error rate that is monotonically decreasing to 0 as
t → ∞. As a result of increasing time, the calculation of ΩZ produces an
ever more precise estimation of Ω. The bits of Ω are found from left to right.

Proof. 6. 6 Here, we have reproduced the defi-
nition of k(t) and the proof provided
by John C. Baez and Mike Stay in their
paper on algorithmic thermodynamics.

Definition 3.20. For any k ≥ 0 and time t ≥ 0, let k(t) be the location of
the first zero bit after position k in the estimation of Ω.
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John C. Baez and Mike Stay argue as follows:
The term 2−Sτ exponentially suppresses long program runtimes.

Then because −Sx
t is a monotonically decreasing function of the

running frequency and decreases faster than k(t), there will be a time
step where the total contribution of all the programs that have not
halted yet is less than 2−k(t).

For example, say

Ω = 0.0111100 . . . (3.21)

To keep it simple we consider, in isolation, a single program and
assume that all other programs have long halted (at t → 0+). Let us
take the values x = 5 and Sx = 50 for this program. We obtain,

Zx(t) = 2−x2−
Sx
t (3.22)

Z5(t) = 2−52−
50
t (3.23)

= 0.00001× 2−
50
t (3.24)

The halting probability Ω is,

Ω = 0.0111000 · · ·+ Z5(t) (3.25)

Let us look at what happens as we vary t.

1. If t → 0+, then Z5(0+) = 0. Z differs from Ω by the maximum
uncertainty of 2−5. Therefore Ω − Z5(0+) is accurate only in its
first 5 bits.

2. As t→ ∞, then Z5(∞) = 0.00001.

3. Between 0 and ∞, Z5(t) varies from 2−5 at t = 0 to 0 at t → ∞.
Since −(S5/t) is monotonically decreasing, the uncertainty 2−k(t)

must decrease monotonically to 0 as t increases.

4. At distances further than 2−k(t), the partition function contains
bits of programs that have yet to halt. So, in a sort, a reversal of
time occurs where halting information is available before the time
t is long enough for the program to have halted.

Remark 3.26. In this construction, S is the bearer of non-halting in-
formation and is non-computable. As a result, the entropy of the dovetail
algorithm is bound by the entropy of S which is equal to Ω. The dovetailing
algorithm is able to grow an entropy equal to that of Ω.
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Part I

The laws of physics
We can refer to the Gibb’s ensemble of the halting probability either
as its physical interpretation or as its AIT interpretation. The two
interpretations are equivalent and differ only in the nomenclature.
In what follows, we will use the physical interpretation during the
mathematical derivation of the laws of physics and will briefly dis-
cuss the AIT interpretation when appropriate. We compare the two
interpretations in Table 3.

Variable AIT interpretation Physical interpretation

E Halting event Energy
x Program-size Length
A Program-size Area
V Program-size Volume
F Compressibility Force
γ Compressibility Stiffness
p Compressibility Pressure
t Runtime Time
P Compute-power Power
τ Program-frequency Frequency
S Program-action Action
T Randomness Temperature

Table 3: The AIT-interpretation compared
to the physical-interpretation.

4 Entropic spacetime

We will derive a maximum speed, light-cone and the Lorentz’s trans-
formation from the physical interpretation, then we will discuss its
AIT interpretation.

4.1 Speed of light

We now investigate the halting partition with the Power to time pair
(P× t). To obtain it, we replace τ by t−1.

Theorem 4.1. An object travelling at more than c, will violate the second
law of thermodynamics.
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Proof.

dE = TdS− Sdτ − Fdx− γdA− pdV (State equation)

0 = TdS− Sdτ − Fdx (Posing dE, dA and dV to 0)

TdS = Fdx + Sdτ (Addition by Fdx + Sdτ)

TdS = Fdx− S t−2dt (dτ = −t−2dt)

TdS = Fdx− Pdt (Posing P = S t−2)

T
F

dS
dt

=
dx
dt
− P

F
(4.2)

Note that the units for each term are meters per second. The equa-
tion therefore relates a speed to a change of entropy.

Let us look at three cases:

1. If dx
dt −

P
F < 0, then dS

dt < 0. The entropy decreases with time.

2. If dx
dt −

P
F > 0, then dS

dt > 0. The entropy increases with time.

3. If dx
dt −

P
F = 0, then dS

dt = 0. The entropy remains constant.

To understand why this implies a speed barrier at P/F, we must
ask how can a UTM decrease the entropy of Ω. To do so it must erase
the value of a bit of Ω, which violates the conservation of informa-
tion. Hence any system which conserves information will have a
characteristic power and a characteristic force which limits the speed
of the system.

Taking P to be the characteristic Planck power, and F to be the
characteristic Planck force of the universe, we do in fact recover the
speed of light.

P
(

1
F

)
=

c5

G

(
G
c4

)
= c (4.3)

4.2 Light-cone

We look at the thermodynamic cycle of the system transiting through
time and space starting at A0 to At to Axt and back to A0 as illus-
trated on Figure 1. During the transitions and to keep the energy
constant, tradeoffs must be made between time, distance and entropy.
This cycle is reminiscent of other thermodynamic cycles such as those
involving pressure and volume, etc. The cycle presented here is remi-
niscent of relativistic light cones.

We work in the quasi static approximation

∆E = T∆S− F∆x + P∆t (4.4)
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and we pose that ∆E = 0 throughout the cycle

T∆S = F∆x− P∆t (4.5)

At

A0

Axt

Ax

x'=
-P

F

x

t

Figure 1: A thermodynamic cycle
through space, time and entropy as
observables.

At to Axt: As we translate At closer in space to Axt while keeping
the time fixed, the entropy must increase to compensate. This situa-
tion occurs when ∆x > 0 and when ∆t = 0.

(T∆S = F∆x− P∆t|∆t=0 (4.6)

=⇒ ∆S =
F
T

∆x (4.7)

From the equation above, we note that ∆S is positive when ∆x > 0.
For a UTM calculating Ω, its entropy will be higher the less programs
have halted. Hence a position far away from A0 will appear quite
young having benefited from very few iterations of the scheduler.

A0 to At: As we translate A0 backward in time to At while keeping
the distance fixed, the entropy must increase to compensate. This
situation occurs when ∆t < 0 and when ∆x = 0.

(T∆S = F∆x− P∆t|∆x=0 (4.8)

=⇒ ∆S = −P
T

∆t (4.9)

From the equation above, we note that ∆S is negative when ∆t <

0. To travel backward in time, the system must erase halting bits from
its pool of information so as to increase its entropy. As this would
violate the conservation of information, an irreversible arrow of time
is guaranteed. We will discuss this point in more detail in the section
on entropic time (section 7).

Axt to A0: As we translate Axt forward in time and backward in
space to A0 keeping the entropic constant (∆S = 0), we have move-
ment at the speed c.

(T∆S = F∆x− P∆t|∆S=0 (4.10)

=⇒ ∆x
∆t

=
P
F
= c (4.11)

From the equation above, an object travelling at speed c is neither
encouraged nor discouraged by entropic considerations. Hence it
experiences no change in its perception of time.
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From the results of this section, we conclude that the halting en-
tropy guarantees that positions further away will appear quite young
and that travelling backward in time is impossible unless halting
information is erased.

4.3 Lorentz’s transformation

To recover the Lorentz’s factor γ, it suffices to take the triangle pro-
duced by A0 to Axt to At to A0. The longest segment is posed to be
of length ct, then the other two are posed to be ct′ and vt. Using the
Pythagorean rule,

(
Axt At

)2
+
(

At A0
)2

=
(

A0 Axt
)2 (4.12)

(ct′)2 + (vt)2 = (ct)2 (4.13)

Then solving for t/t′, we recover the Lorentz’s factor γ

c2t′2 + v2t2 = c2t2 (4.14)

t′2 +
v2

c2 t2 = t2 (4.15)

t′2 = t2 − v2

c2 t2 (4.16)

t′ =

√
t2 − v2

c2 t2 (4.17)

t′ = t

√
1− v2

c2 (4.18)

t′

t
=

√
1− v2

c2 (4.19)

t
t′

=
1√

1− v2

c2

= γ (4.20)

From the AIT perspective, special relativity can be interpreted
as follows. Shorter programs have benefited from longer execution
time such that their lead running time is related to longer program-
size via P/F. This dynamic on an entropic UTM is governed as per
special relativity. Programs exceeding an execution speed of P/F
would lower the entropy.

5 Entropic space

In this section we investigate the following three reductions of the
state equation, each respectively corresponding to a 1,2 or 3 dimen-
sional encoding of program sizes.
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dE = dt = dA = dV = 0 =⇒ TdS = Fdx (Length)

dE = dt = dx = dV = 0 =⇒ TdS = γdA (Area)

dE = dt = dx = dA = 0 =⇒ TdS = pdV (Volume)

Remark 5.1. As described in section 6.3, three dimensions appear to be
an upper bound for physical encoding of program-sizes. As a result we will
limit ourselves to three dimensions.

We suggest an interpretation such that linear entropy is dominant
at short distances until it is overtaken by area entropy which is itself
eventually overtaken by volumetric entropy. We will show that linear
entropy produces the law of inertia, area entropy produces gen-
eral relativity and volumetric entropy suggests dark energy. These
correspond to the three characteristic scales of the universe, where
Newton’s law dominates at local scales, general relativity dominate at
galactic scales and dark energy dominate at cosmological scales.

To recover the laws, we will need to identify a constant temper-
ature applicable to each relation. In the case of dx, the constant
temperature will be the Unruh temperature as experienced by an
accelerating body. In the case of dA, the constant temperature will be
the radially symmetric red shift temperature. In the case of dV and
the dark energy we will cite a suggestion from the literature.

For each of the three relations, we consider that the entropy of the
system is related to the halting bits of the UTM. Hence, the entropy is
proportional to the number of bits and the following holds

TdS = kbTdN (5.2)

From the AIT interpretation, each relation corresponds to a dif-
ferent dimension according to which the scheduler can assign an
execution priority.

5.1 Exfoliation of spacetime

As we have noticed in the section on the speed of light, as time pro-
gresses more program halts and the halting entropy of the UTM is
decreased. Such a decrease in entropy over time would imply a viola-
tion of the second law of thermodynamics unless an entropy sink was
available to compensate. We suggest that the other thermodynamic
observables such as dx, dA and dV act as such a sink. We will call the
compensatory increase in entropy of the non-halting information of
the system; the exfoliation of spacetime.
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5.2 Law of inertia

To recover the law of inertia, we consider the linear case where Fdx =

TdS such that the entropy S is proportional to the distance x. Such a
correspondance was previously investigated by Erik Verlinde7. In his 7 Erik Verlinde. On the origin of

gravity and the laws of newton.
arXiv:1001.0785v1 [hep-th], 2010

paper he argued that the temperature of the position-encoding bits
should be the Unruh temperature, the temperature experienced by an
accelerating object.

T =
ha
kbc

(Unruh temperature) (5.3)

Theorem 5.4. The force is related to the acceleration via the mass, such that

F = ma

Proof.

dE = TdS− Pdt− Fdx− γdA− pdV (State equation)

0 = TdS− Fdx (Posing dE, dt, dA, dV to 0)

Fdx = TdS (Addition by Fdx)

F = T
dS
dx

(Division by dx)

F = kbT
dN
dx

(Binary entropy)

To link this equation to an acceleration, we consider the case where
the bits are at a uniform Unruh temperature.

F = kb

(
ha
kbc

)
dN
dx

(Unruh temperature)

F =
h
c

dN
dx

a (Clean up)

What is the term multiplying the acceleration? By unit inspection, it
must have the units of the mass. Let us indeed pose it to be equal to
m so as to recover F = ma then solve for dN/dx, we obtain

m =
h
c

dN
dx

(5.5)

=⇒ dx
dN

=
h

mc
= λ (5.6)

, the Compton wavelength! Since every massive object has a
Compton wavelength, the law of inertia can be recovered in all cases.
The AIT interpretation is now clear. The UTM uses an algorithm that
multiples a length scale λ to a program length in order to encode lin-
ear spacial positions... and the Compton wavelength is the physical
equivalent of this scale!
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5.3 General Relativity

To recover general relativity, we will proceed in a manner similar to
the previous case, except that we will use the area to entropy relation
of γdA = TdS as a starting point. This situation describes a scenario
where bits of programs are spread over a surface, e.g. a disk drive or
a holographic screen, etc.

We must justify a temperature for the system such that the temper-
ature is the same for every bit. In the case of the surface of a sphere
(e.g. a holographic screen), the temperature will need to have a radial
symmetry. Erik Verlinde8 in the same paper argues that this tem- 8 Erik Verlinde. On the origin of

gravity and the laws of newton.
arXiv:1001.0785v1 [hep-th], 2010

perature should be the red shift temperature. Indeed, it is a good
candidate as the red shift temperature is the same in all directions for
a given distance. As per Erik Verlinde’s paper, the red shift tempera-
ture for this system is

T =
h̄

2πc
eφNb∇bφ (5.7)

Furthermore, we consider the case where the bits on the surface
of the sphere are maximally compressed such that each occupies the
Planck area.

Theorem 5.8 (General relativity). The state equation TdS = γdA implies
general relativity.
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Proof.

dE = TdS− Pdt− Fdx− γdA− pdV (State equation)

0 = TdS− γdA (Posing dE, dt, dx, dV to 0)

TdS = γdA (Addition by γdA)

kbTdN = γdA (Binary entropy)

TdN =
γ

kb
dA (Division by kb)∫

TdN =
{

A

γ

kb
dA (Integration)

1
2

∫
TdN =

1
2

{

A

γ

kb
dA (Division by 2)

E =
1
2

{

A

γ

kb
dA (Equipartition theorem)

M =
1

2c2

{

A

γ

kb
dA (Division by c2)

M =
1

2c2

{

A

T
1
L2 dA (Unit shift)

M =
1

2c2

{

A

(
h̄

2πc
eφNb∇bφ

)
1
L2 dA (Red shift temperature)

M =
1

2c2

{

A

(
h̄

2πc
eφNb∇bφ

)(
c3dA
Gh̄

)
(Planck area)

M =
1

4πG

{

A

(
eφNb∇bφ

)
dA (Clean up)

We obtain the generalization of Gauss’ law to general relativity,
which is enough to recover general relativity9. 9 Erik Verlinde. On the origin of

gravity and the laws of newton.
arXiv:1001.0785v1 [hep-th], 2010How do we interpret this result from the universal Turing machine

perspective? As programs halt, the corresponding bit of Ω flips from
0 to 1. As those flips are random, regions of higher or lower concen-
tration of flipping may emerge over time. As a result, a scheduler can
improve its entropy production by reducing the work done in regions
of high bit flipping and instead focus on regions of low bit flipping.
To do this, the scheduler will reduce the number of iterations made
available to programs in regions of high bit flipping, so as to slow the
halting progress in those regions.

This reduction of iterations slows the passage of time. And if
such is related to the bit entropy on the surface of a sphere, say a
holographic screen, the entropy is maximized when the scheduler
recovers the law of general relativity.
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5.4 Dark energy

In this section, we suggest that the third and final relation TdS = pdV
is related to dark energy.

dE = TdS− Pdt− Fdx− γdA− pdV (State equation)

0 = TdS− pdV (Posing dE, dt, dx, dA to 0)

TdS = pdV (5.9)

A derivation of dark energy is outside the scope of this paper.
Therefore we will refer to another paper10 by Erik Verlinde. In it, he 10 Erik Verlinde. Emergent gravity and

the dark universe. https://arxiv.org/
pdf/1611.02269.pdf, 2016

makes a compelling argument that a volumetric entropy can account
for the observed dark energy. He links a volumetric entropy over-
taking other forms of entropy over large distances to the theory of
elasticity, and recovers numerous experimental results.

6 Quantum mechanics

Thus far, we have investigated what occurs when the values of the
bits of Ω are unspecified. We have recovered relations between en-
tropy and the program observables such that they correspond to laws
of physics: law of inertia, special relativity, general relativity and
possibly dark energy. In this section, we return to our UTM roots
and consider the impact of non-computability on these relations. We
will see that it is the non-computability of Ω that is responsible for
quantum mechanical effects "within the UTM". With this, we will be
able to derive spins, photons, the Schrödinger equation and the Dirac
equation.

6.1 Spin

As we have proven the existence of a maximum speed in the universe
and further presented a thermodynamic cycle as a light-cone, it fol-
lows that the Lorentz group is a credible representation to continue
our investigation with. Let us investigate this connection in more
detail.

The Lorentz group is represented by the Lie Group O(1, 3). The
Lorentz group embeds multiple other representations as subgroups.
Some of them are:

1. The subgroup of transformations that preserves the direction of
time is called orthochronous and is represented by O+(1, 3)

2. The subgroup of transformations that preserves the orientation,
having a determinant of +1, is called proper and is represented by
SO(1, 3).

https://arxiv.org/pdf/1611.02269.pdf
https://arxiv.org/pdf/1611.02269.pdf
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3. The subgroup which includes transformations that are both
proper and orthochronous is denoted by SO+(1, 3).

4. The set of all rotations also forms a subset and is denoted by
SO(3).

We will now investigate how the halting partition behaves un-
der transformation of these subgroups. Let us inject the simplest of
the subgroups listed above, the rotations SO(3), and investigate the
results.

Theorem 6.1. Injecting the SO(3) rotation group into the partition func-
tion produces a quantum partition function where each halting bit is a spin.

Remark 6.2. We will represent the SO(3) group via a unit quaternion of
~r = u~i + v~j + w~k where |~r| = 1. Then we will inject it as a conjugate to the
halting event observable.

Remark 6.3. We recall the existence of an exponential map between a Lie
Group and its corresponding Lie Algebra such that,

SL(2, C) = exp(sl(2, C)) (6.4)

SO(3) = exp(so(3)) (6.5)

SU(2) = exp(su(2)) (6.6)

etc.

The existence of such a correspondence allows us to inject the Lie algebra
so(3) in an exponential function, such as the Gibb’s ensemble, and still
recover a workable Lie Group after the exponentiation is executed.

Proof.

Ωβ =
∞

∑
x

e−β(ln 2)E (Tadaki D-random number)

Z =
∞

∑
x

e−β(ln 2)(u~i+v~j+w~k)E (Remark 6.2)

= e−β(ln 2)SU(2)1ω1 + e−β(ln 2)SU(2)2ω2 + . . . (Remark 6.3)

The SU(2) matrices are defined as

SU(2) =

{[
α −β

β α

]
: α, β ∈ C, |α|2 + |β|2 = 1

}
(6.7)

We recall that the values ωi are not computable. Furthermore,
since they are multiplied by a 2 × 2 matrix, it is best to represent
them as 2× 1 matrix. This representation acknowledges that each bit
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can have two possible distinct values such that they are orthogonal
when injected with a rotational observable.

= e−β(ln 2)SU(2)1

[
1
0

]
+ e−β(ln 2)SU(2)2

[
1
0

]
+ . . . (6.8)

We recall the quantum mechanical definition of a partition func-
tion.

Z = tr
{

e−βĤ
}

(6.9)

The trace of the eigenvalues of the orthogonal states of the hamil-
tonian is equal to the partition injected with the unit quaternion
observable. We have therefore recovered a thermodynamic quantum
system comprised of a mixture of spins.

This is enough to recover the usual spin, but with significant
improvements. Let us compare the state pre-measurement to the
state post-measurement to notice the differences on ΩZ.

Pre-measurement, the value of ωi is unknown. Hence it takes the
form of a 2× 1 matrix. It is therefore possible to define a matrix of
the SU(2) group and to multiply it by ω. Macroscopically the SU(2)
matrix is perceived as a thermodynamic observable related to the
rotation of the system. This description corresponds to the usual
spin.

Post-measurement, ωi ceases to be a matrix and is instead fixed to
a specific bit. The SU(2) matrix can no longer be multiplied with ω,
now a simple scalar, and the macroscopic observable of rotation must
be eliminated from the description along with the SU(2) matrix. This
system is no longer a spin, but a classical bit.

This is where we notice the improvement over the usual descrip-
tion of the spin. Indeed, the conventional theory of spins is unable
to predict the value of the quantum measurement and only state
that it is random as per experimental evidence. Here however, the
value of a spin measurement is well defined and even determinis-
tic but nonetheless provably non-computable. It is the value of the
corresponding bit of the halting probability. Although its value is
deterministic and reproducible, it can be shown to be related to the
non-halting problem in such a way as to be non-computable and
algorithmically random to any observer.

6.2 Photons

Theorem 6.10. Injecting the SO(2) rotation group into the partition
function produces a quantum partition function where each halting bit is a
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photon.

Proof. It suffices to repeat the proof of theorem 6.1, but to use the
SO(2) rotation group instead of SO(3). We recover an U(1) matrix
multiplying the two-state bits. We obtain a mixture of photons.

6.3 Other dimensions

Remark 6.11. Injecting SO(1) produces a multiplication by 1 and has no
impact on the partition function.

Remark 6.12. If we were to inject a rotation for a dimension higher than
SO(3), the size of the matrix would be too high to allow its multiplication
with a two-bit system. This could suggest that rotations in dimensions
higher than three cannot be defined as a macroscopic thermodynamic vari-
able.

Remark 6.13. A derivation of the SU(3) representation group from the
UTM description has not been investigated by the author and could be an
interesting area of future research.

6.4 Schrödinger equation

In a previous section, we have used the program-size to entropy
relation TdS = Fdx to recover F = ma. In this section we use the
same relation but we extend it with the non-computable features of
the UTM. Doing so will allow us to recover the Schrödinger equation.

We recall that a UTM encodes position via a scale λ multiplied
by a program-size. As a result, the UTM can only express a position
if the program with the corresponding size is part of its partition
function (e.i. it halts). In this section, we will argue that the missing
non-halting programs are responsible for a universal Brownian mo-
tion in space applicable to the dx variable. This will be enough to
recover the Schrödinger’s equation.

Theorem 6.14. A position described with missing program-sizes will evolve
in time according to Schrödinger’s equation.

ih̄
∂

∂t
ψ(x, t) =

[
−h̄2

2m
∇2 + V(x, t)

]
ψ(x, t)

The proof is slightly more involved than the preceding theorems.
First, here is a sketch of the proof.

1. We will show that non-halting programs leave holes in space such
that a position cannot be expressed.

2. We will show that these holes are causing a Brownian motion of
the encoded position.
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3. We will derive its diffusion coefficient to be h̄/(2m).

4. We will consider that the presence of any external field is experi-
enced as acceleration via F = ma.

5. Using the well known Brownian motion equations of Langevin,
we show that the above reproduces Schrödinger’s equation exactly.

Lemma 6.15. A spacial encoding based on programs multiplied by λ leave
holes in space corresponding to non-halting programs.

Proof. We recall the general halting partition

Z = ∑
x

e−(ln 2)β(E+Fx) (6.16)

We have also seen that the observable x denotes program lengths.
However, not all programs halt hence some lengths are missing from
the sum. These missing programs are holes in space the position of
which cannot be expressed by the UTM’s positional algorithm. Since
Ω is a normal number, we can expect the position of these holes to be
algorithmically random.

Lemma 6.17. A particle in space will experience Brownian motion due to
the holes.

Proof. We will calculate the average displacement ∆x of a particle
subjected to entropic positioning and space holes. Since Z is a normal
number, we conclude that half of the program’s lengths are available
to describe position and half are not. Therefore, to describe a par-
ticle at position x, there is a 50% chance there is a halting program
available to express it. And in the case where there is no program at
exactly x, then there is a 50% chance that there will be one at position
x + 1, and so on. In other words, a particle at x has 50% chance of be-
ing at x, 25% chance of being at x + 1, 12.5% chance of being at x + 2,
etc. Expressed as a sum, we obtain

∆x =
1
2

0 +
1
4

1 +
1
8

2 +
1
16

3 + ... (6.18)

=
∞

∑
i=0

i
2i+1 (6.19)

= 1 (6.20)

On average, as it moves through space, a position will shift by
∆x = 1 at each iteration of the Brownian motion.
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Lemma 6.21. The diffusion coefficient of the described Brownian motion is

D =
h̄

2m

Proof. It is well known that in general the diffusion coefficient of
Brownian motion is given by

D =
l2

2τ
(6.22)

where l is the length of the random step and τ is the frequency
of the occurrence of the steps. Entropic position uses the scale fac-
tor λ for each unit of length. As we are now dealing with wave, we
will use the reduced Compton wavelength. When λ is the reduced
Compton wavelength, we get a scaling factor of

λ =
h̄

mc
(6.23)

Since entropic positioning can only express position as multiples
of λ, we take it as the Brownian step of length l. The diffusion coeffi-
cient becomes

D =

(
h̄

mc

)2 1
2τ

(6.24)

This leaves of us with the need to define τ. For τ, we take the
characteristic frequency of the wave E = h̄ω. Solving for τ = 1/ω, we
obtain

ω =
E
h̄

(6.25)

ω−1 =
h̄
E
= τ (6.26)

Replacing τ in the equation for D, we obtain

D =
h̄2

m2c2

(
E
2h̄

)
(6.27)

Using E = mc2, and reducing the constants, we obtain our final
expression of D,

D =
h̄2

m2c2
(mc2)

2h̄
(6.28)

=
h̄

2m
(6.29)
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Lemma 6.30. The Langevin equations for Brownian motion with a diffusion
coefficient of h̄/(2m) and an external inertial field F = ma reproduces
Schrödinger’s equation.

Proof. We recall the well known Langevin equation,

d [x(t)] = v(t)dt (6.31)

d [v(t)] = − γ

m
v(t)dt +

1
m

W(t)dt (6.32)

where W(t) is a random force and a stochastic variable giving the
effect of a background noise to the motion of the particle.

From F = ma and replacing the acceleration d[v(t)]/dt with F/m,
Edward Nelson 11 is able to show that the Langevin equation be- 11 Edward Nelson. Derivation of

schrödinger’s equation from newtonian
mechanics. http://dieumsnh.qfb.

umich.mx/archivoshistoricosMQ/

ModernaHist/Nelson%20a.pdf, 1966.
Physical Review, Volume 150, Number
4

comes,

1
2
∇u2 + D∇2u =

1
m
∇V (6.33)

where D is the diffusion coefficient of h̄/(2m) obtained in lemma
6.21, where F = −∇V, where u = v∇ ln ρ and ρ is the probability
density of x(t). For brevity, the proof of 6.33 is omitted here but can
be reviewed in Nelson’s paper. Eliminating the gradients on each
side and simplifying the constants, we obtain

m
2

u2 +
h̄
2
∇u = V − E (6.34)

where E is the arbitrary integration constant. This equation in non-
linear because of the term u2 but it can be made linear by a change of
dependant variable. To make it linear, let us pose

u =
h̄
m

1
ψ
∇ψ (6.35)

and replace it into equation 6.34 , we obtain

m
2

(
h̄
m

1
ψ
∇ψ

)2
+

h̄
2
∇
(

h̄
m

1
ψ
∇ψ

)
= V − E (6.36)

taking the gradients and the exponents, we obtain

h̄2

2m
1

ψ2∇
2ψ +

h̄2

2m

[
− 1

ψ2∇
2ψ +

1
ψ
∇2ψ

]
= V − E (6.37)

The first two terms cancel each other.

h̄2

2m
1
ψ
∇2ψ = V − E (6.38)

http://dieumsnh.qfb.umich.mx/archivoshistoricosMQ/ModernaHist/Nelson%20a.pdf
http://dieumsnh.qfb.umich.mx/archivoshistoricosMQ/ModernaHist/Nelson%20a.pdf
http://dieumsnh.qfb.umich.mx/archivoshistoricosMQ/ModernaHist/Nelson%20a.pdf
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Finally, it simplifies to[
− h̄2

2m
∇2 + V − E

]
ψ = 0 (6.39)

which is the time independent Schrödinger’s equation.

We are now ready to derive the time dependent Schrödinger equa-
tion and prove theorem 6.14.

Proof. We use the same proof used by Edward Nelson in the same
paper. Starting from the time dependent Schrödinger equation, we
show that a replacement of ψ = eR+iS leads to the Langevin equation
of Brownian motion.

∂ψ

∂t
= i

h̄
2m
∇2ψ− i

1
h̄

Vψ (6.40)

Replacing ψ with eR+iS, we obtain

∂
(
eR+iS)
∂t

= i
h̄

2m
∇2
(

eR+iS
)
− i

1
h̄

V
(

eR+iS
)

(6.41)

Taking the derivatives and the gradients, we obtain[
∂R
∂t

+ i
∂S
∂t

] (
eR+iS

)
=

ih̄
2m

[
∇2R + i∇2S + (∇(R + iS))2

] (
eR+iS

)
− i

1
h̄

V
(

eR+iS
)

(6.42)

Eliminating eR+iS from each side and simplifying, we obtain

∂R
∂t

+ i
∂S
∂t

=
ih̄
2m

[
∇2R + i∇2S + (∇(R + iS))2

]
− i

1
h̄

V (eliminating eR+iS)

∂R
∂t

+ i
∂S
∂t

=
ih̄
2m

[
∇2R + i∇2S + (∇R)2 + 2i∇R∇S− (∇S)2

]
− i

1
h̄

V (taking the product)

∂R
∂t

+ i
∂S
∂t

=
h̄

2m

[
i∇2R−∇2S + i(∇R)2 − 2∇R∇S− i(∇S)2

]
− i

1
h̄

V (distributing the i)

We obtain two equations by separating the real and the imaginary
parts

∂R
∂t

=
h̄

2m

[
−∇2S− 2∇R∇S

]
(6.43)

∂S
∂t

=
h̄

2m

[
∇2R + (∇R)2 − (∇S)2

]
− 1

h̄
V (6.44)

This is equivalent to the Langevin equations with some replace-
ments

∂u
∂t

= − h̄
2m
∇2v−∇(v · u) (6.45)

∂v
∂t

=
h̄

2m
∇2u +

1
2
∇(u2)− 1

2
∇(v2)− 1

m
∇V (6.46)
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Lemma 6.47. Equation 6.43 with the replacements ∇R = (m/h̄)u and
∇S = (m/h̄)v produces 6.45

Proof.

∂R
∂t

=
h̄

2m

[
−∇2S− 2∇R∇S

]
(equation 6.43)

∇∂R
∂t

= ∇ h̄
2m

[
−∇2S− 2∇R∇S

]
(multiplying by ∇)

∂∇R
∂t

= ∇ h̄
2m

[−∇∇S− 2∇R∇S] (6.48)

m
h̄

∂u
∂t

= ∇ h̄
2m

[
−∇

(m
h̄

v
)
− 2

(m
h̄

u
) (m

h̄
v
)]

(replacing ∇R and ∇S)

∂u
∂t

= ∇ h̄
2m

[
−∇v− 2

m
h̄

u · v
]

(eliminating m/h̄)

∂u
∂t

= − h̄
2m
∇2v−∇(u · v) (equation 6.45)

Lemma 6.49. Equation 6.44 with the replacements ∇R = (m/h̄)u and
∇S = (m/h̄)v produces 6.46

Proof.

∂S
∂t

=
h̄

2m

[
∇2R + (∇R)2 − (∇S)2

]
− 1

h̄
V (equation 6.44)

∇∂S
∂t

= ∇ h̄
2m

[
∇∇R + (∇R)2 − (∇S)2

]
− 1

h̄
∇V (multiplying by ∇)

m
h̄

∂v
∂t

= ∇ h̄
2m

[
∇
(m

h̄
u
)
+
(m

h̄
u
)2
−
(m

h̄
v
)2
]
− 1

h̄
∇V (replacing ∇R and ∇S)

∂v
∂t

= ∇ h̄
2m

[
∇u +

m
h̄

u2 − m
h̄

v2
]
− 1

m
∇V (eliminating m/h̄)

∂v
∂t

=
h̄

2m
∇2u +

1
2
∇(u2)− 1

2
∇(v2)− 1

m
∇V (equation 6.46)

This completes the proof of theorem 6.14.

6.5 Dirac equation

In a previous section, we have used TdS = Fdx to recover F = ma.
In another section, we have used TdS = Pdt + Fdx to recover special
relativity. We have then used a random walk on dx to recover the
Schrödinger equation which is the quantum analogue to F = ma. Of
course, the natural question to ask is, will using TdS = Pdt + Fdx
and applying a random walk to both dt and dx be enough to recover
the Dirac equation, the quantum analogue to special relativity? The
answer is yes!
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In this section, we will see that applying a random walk to both
the dt and the dx variables is enough to recover the Dirac equation
for relativistic quantum mechanics. Let us begin by answering why
would there be a random walk on dt.

First we consider that, as is the case with program length, program
runtime varies from one UTM to the next. Programs that are difficult
to solve on one UTM are likely to be difficult to solve on other UTMs.
For example the travelling salesman problem is hard to solve on ev-
ery UTM. If we take a specific problem, then each UTM of Λ will
have a corresponding program to encode it (by virtue of being uni-
versal). The runtime of these programs will be randomly distributed
and centred around a mean runtime.

Second, we consider an analogous argument to the one used to
justify a random walk on dx, but applied to dt. On some UTM a pro-
gram of size x might have halted and on others it might not have.
Therefore a particle can be defined to be at a time t only if a program
halting at time t is in the partition function. If there is no such avail-
able halting program at time t, then the particle will be a time t± ∆t,
the runtime of the next available halting program. Since the halting
problem is algorithmically random and non-computable, we consider
this behaviour as a random walk in time.

A connection between a random walk in time and space and the
telegraphic equation has been linked to the Dirac equation before.12 12 G. N. Ord D. G. C. McKeon.

Time reversal in stochastic pro-
cesses and the dirac equation.
https://journals.aps.org/prl/

pdf/10.1103/PhysRevLett.69.3, 1992;
and G. N. Ord D. G. C. McKeon. On
how the (1 + 1)-dimensional dirac
equation arises in classical physics.
https://link.springer.com/article/

10.1007/BF02190048, 1995

. D. G. C. McKeon and G. N. Ord proposes a random walk model in
space and in time. Starting from the equation for a random walk in
space, we have

P±(x, t + ∆t) = (1− a∆t)P±(x∓ ∆x, t) + a∆tP∓(x± ∆x, t) (6.50)

then, D. G. C. McKeon and G. N. Ord extend this equation with a
random walk in time. They obtain

F±(x, t) = (1− aL∆t− aR∆t)F±(x∓ ∆x, t− ∆t) + aL,R∆tB±(x∓ ∆x, t + ∆t) + aR,L∆tF∓(x± ∆x, t− ∆t)
(6.51)

where F±(x, t) is the probability distribution to go forward in time
and B±(x, t), backward in time. They then introduce a causality con-
dition such that F±(x, t) and B±(x, t) only depends on probabilities
from the past.

F±(x, t) = B∓(x± ∆x, t + ∆t) (6.52)

From equation 6.5 and 6.52, they get

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.69.3
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.69.3
https://link.springer.com/article/10.1007/BF02190048
https://link.springer.com/article/10.1007/BF02190048
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B±(x, t) = (1− aL∆t− aR∆t)B±(x∓ ∆x, t + ∆t) + aL,R∆tB∓(x± ∆x, t + ∆t) + aR,L∆tF±(x∓ ∆x, t− ∆t)
(6.53)

In the limit ∆x, ∆t→ 0 and with ∆x = v∆t, they get,

±v
∂F±
∂x

+
∂F±
∂t

= aL,R(−F± + B±) + aR,L(−F± + F∓) (6.54)

±v
∂B∓
∂x

+
∂B∓
∂t

= aL,R(−B∓ + F∓) + aR,L(−B∓ + B±) (6.55)

Posing these changes of variables,

A± = (F± − B∓) exp[(aL + aR)t] (6.56)

λ := −aL + aR (6.57)

then 6.55 becomes

v
∂A±
∂x
± ∂A±

∂t
= λA∓ (6.58)

Finally, they pose v = c, λ = mc2/h̄ and ψ = F(A+, A−), they get

ih̄
∂ψ

∂t
= mc2σyψ− ich̄σz

∂ψ

∂x
(6.59)

which is the Dirac equation in 1+1 spacetime.

7 Entropic time

So far, we have connected an entropic UTM to physics such that:

• Classical physics is obtained by first relating entropy to various
program-observables, then solving them with the use of a justified
constant temperature.

• Quantum physics is also recoverable provided that we introduce
the concept of an observer with limited knowledge of Ω. If we
further suppose that his knowledge of Ω is strictly acquired by
measurements over some bits of Ω, then we obtain a definition of
the quantum measurement and subsequent collapse. Specifically, a
measurement happens when the information accessible to the ob-
server is such that a bit becomes computable and a collapse occurs
when the UTMs incompatible with the value of the measurement
are removed from Λ.
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We are now ready to define a directional time. To simplify, we
suppose a case where an observer immediately measures all the bits
of Ω has soon as their corresponding program halts.

Definition 7.1 (Directional Time). As t varies, more programs halt.
Hence the value of ΩZ changes as bits flip from 0 to 1. Each value of ΩZ

corresponds to a time slice which is distinct from the others. The halting
information of ΩZ is valid up to the error rate of 2−k(t) which monotonically
decreases with time. Future time slices contain the halting information of all
past slices, but the reverse is not true.

For example, consider the following time slices, each correspond-
ing to a different value of ΩZ. As we move down along the different
ΩZ

i , more and more bits are flipped from 0 to 1. Each ΩZ
i corre-

sponds to the state of the universe at a different time of its history.
13 13 Note that this example contains a

slight simplification. In the calculation
of ΩZ , halting bits are shifted leftwards
along ΩZ as time increases hence
there is a possibility of shifting bits left
to right. However, this detail can be
ignored for this example.

Z0 = 00000000000000000000000 . . . (7.2)

Z1 = 00000000000010000000000 . . . (7.3)

Z2 = 00000010000010000100000 . . . (7.4)

Z3 = 00000110000010000100000 . . . (7.5)

Z4 = 00010110010010000100000 . . . (7.6)

Z5 = 00010110010010001100100 . . . (7.7)

Z6 = 01110110010010001100110 . . . (7.8)

Z7 = 11110110010010001100110 . . . (7.9)

...

In the case of an observer lacking complete knowledge of ΩZ, he
will also see time slices provided that at least some measurements are
made.

How reasonable is the assumption that an observer sees non-
computable bits? We will now define rigorously what we mean by an
observer.

Definition 7.10 (Observer). An observer is defined as a series of measurement-
sets. The sets represent the partial knowledge of Ω known to the observer.
The elements of the set can change with time. An observer that exists over
a period of time must define a measurement set for each time slice. As an
example, an observer could be defined as

O(t=1) = {ω1 = 0}

O(t=2) = {ω1 = 0, ω2 = 1}

O(t=3) = {ω1 = 1, ω3 = 1}
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A special case occurs when an observer knows all the bits of Ω for
all time slices. We recover the UTM corresponding to the universe.
We will call this observer the universal observer. Unless otherwise
stated, when we use the word observer, we exclude the universal
observer.

Theorem 7.11. The Kolmogorov complexity of an observer at a given time
t is less than or equal to the number of elements in the set of its measure-
ments.

Kov(Ot) ≤ |Ot|

, where the double vertical bars indicate the size of the set.

Proof. The bits identified by Ot are produced by the partition func-
tion of the halting probability whose definition requires knowledge
of the halting probability of a UTM. Hence it is a non-computable
function. Therefore, in the worse case scenario, the bits identified by
Ot are non-computable.

Theorem 7.12. For all non-universal observers, the future is non-computable.

Proof. The partition function dovetails programs. As a result, it is
possible to imagine a simple algorithm -the dovetailing algorithm-
that, knowing the set of axioms k of the universe, is able to calculate
future time slices before they occur.

To calculate future time slices as an experiment, the observer must
encode k in a finite state machine and run the program until it calcu-
lates a time slice newer than his.

But in the case of a non-universal observer, this cannot be done.
Indeed, k represents the halting probability of the UTM, its Kol-
mogorov complexity will always be higher than the Kolmogorov
complexity of an observer, defined as a subset of k. Therefore, the
observer has insufficient bits to express k, required to compute the
future.

Theorem 7.13 (Arrow of time). For a non-universal observer that does
not erase bits, directional time is asymmetric.

∀t∀t′[(t < t′)→ Kov(Ot) ≤ Kov(Ot′)]

Proof. If no bits are erased, future Ot′ will contain all the bits of past
Ot and then some more. Hence an observer can compute Ot from
Ot′ .
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Remark 7.14. The physical observer can compute approximations of his fu-
ture. For example, it can determine that the probability of raining tomorrow
is 10%. This is not computing the future, it is computing a probability.

Theorem 7.15 (Fixed past). The entropy of measured bits, post-measurement,
is always 0. Hence, there is no possibility of changing the past.

Proof. The entropy is defined as

S = kb ∑
i

pi ln pi (7.16)

Post measurement, there is only one state defining the observer,
the set Ot. Hence pi = 1 and S = 0. The past time-slice experienced
by an observer (who is not erasing measurement bits) is always fixed
to a single possibility.

Theorem 7.17. The measurement of a bit of Ω by an observer must be
accompanied by an increase in entropy in the rest of the system.

Proof. Each measurement of a bit of Ω decreases the entropy of the
past of the observer by kbT ln 2. As a result, a quantum measurement
must produce the same amount of entropy in the system, such as in
the measuring apparatus.

7.1 Quantum measurement

We suggest an interpretation of the quantum measurement such that
it is connected to the non-computability of the bits of Ω. A mea-
surement occurs when a bit of Ω becomes computable (or known)
by the observer. When it happens, any UTM incompatible with the
measured value are removed from Λ - this is the collapse.

To investigate this further, let us look at what happens when a bit
of Ω becomes computable by the observer. As an example, let us take
the case where ω3 = 1.

First, Ω becomes Ω(ω3=1),

Ω(ω3=1) = 0.ω1ω21ω4 . . . (7.18)

Second, the entropy decreases from S = kbN ln 2 to

S = kb(N − 1) ln 2 (7.19)

Third, incompatible UTMs are removed from Λ and it becomes
Λ(ω3=1),

Λ(ω3=1) := {U|isUTM(U) ∧ (ω3 = 1)} (7.20)
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Pre-measurement, ω3 is non-computable for the observer. Hence
its post-measurement value will appear random as per the normality
of Ω. But, we have claimed that ω3 is measured by an observer once
and only if its value becomes computable. How do we reconcile? In-
formation sufficient as to deduce the value of ω3, post-facto, must be
made available to the system simultaneously as the measurement is
done. The transition from unmeasured to measured occurs when the
bit goes from non-computable to computable, for the observer. Phys-
ically, this information could correspond to a macroscopic measure-
ment system absorbing the entropy associated with the measurement.

Borrowing terms from physics, we could say that we are perform-
ing a measurement on ωi and, as a result of this measurement, Λ
collapses to Λ(ω3=1). We note a similarity with what is described here
and the quantum measurement.

Remark 7.21. If we had defined a specific UTM to study, this would not
have been possible. Rather than being simply an observer, we could have pre-
calculated the values of Ω by running the UTM independently. This would
have been enough to pre-calculate ωi and avoid performing a measurement.
In that case, the similarity with the quantum measurement we have just
investigated would not have been possible.

8 Conclusion

We note an affinity between an entropic UTM and the laws of physics.
Understanding physics from the perspective of the entropic UTM
holds several conceptual advantages. For one, the laws of physics are
unified in a single equation; the halting partition (equation 3.9). The
affinity occurs when we consider a UTM calculating its Ω number in
a manner so as to maximize the entropy throughout the calculation
(theorem 3.11 and 3.19).

From this halting partition, we recover special relativity (speed of
light: 4.2, light-cones 4.2 and the Lorentz’s factor 4.20). Going further,
we are hit by the first hesitation. Does the universe physically encode
program bits in one dimension, two dimensions or three dimensions?
It is not immediately clear which one the universe prefers, if any.
However, when we consider that all three possibility do occur, we re-
cover in one dimension the law of inertia, in two dimensions general
relativity and in three dimensions possibly dark energy. This corre-
sponds to three characteristic scales of the universe each dominated
by a specific entropy distribution. The local scale is dominated by
inertia (theorem 5.4), the galactic scale is dominated by gravity (the-
orem 5.8) and the cosmological scale is dominated by dark energy
(equation 5.9).
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As for quantum mechanics, it can be recovered simply by extend-
ing the non-computable effects of the UTM to the dx and dt variables.
Considering a random walk in dx yields the Schrödinger equation
(theorem 6.14 ) and extending this random walk to dt yields the Dirac
equation (equation 6.59). Furthermore, the spin (theorem 6.1) and
the polarization (theorem 6.10) can both be recovered as a thermody-
namic ensemble respectively by injecting the SO(3) rotation and the
SO(2) rotation as macroscopic observable acting on E. We note that
the operation is limited to a maximum of three dimensions so as to
permit the matrix multiplication with a two-state system.

For entropic time, we have shown that the entropic UTM perspec-
tive allows us to define time in terms of slices of progressively in-
creasing halting information (definition 7.1). This allows us to prove
that, unlike past time slices, future time slices are non-computable
(7.12). Furthermore, the entropy of past time slices is 0 which sug-
gests that the past cannot be changed, while the entropy of future
time slices is greater than 0. This would suggest an arrow of time
(7.13 and 7.15).

The quantum measurement is linked to an observer with a Kol-
mogorov complexity too small to run the calculation of Ω. His
knowledge of Ω is acquired by performing measurements over the
bits Ω. Each value acquired reduces the space of possible UTM com-
patible with this knowledge. This was connected to the quantum
mechanical collapse in section 7.1. As the bits of Ω are algorithmi-
cally random, the value of the collapse is non-computable.

As a reference, I have previously suggested in another paper14 14 Alexandre Harvey-Tremblay. An ax-
iomless derivation of the theory of ev-
erything. https://www.academia.edu/

33079029/An_axiomless_derivation_

of_the_Theory_of_Everything, 2017

that the halting probability augmented with thermodynamic-like
observables can recover most of the laws of physics.
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