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The time shown by a moving clock depends on its history. The Lorentz transform does not distinguish between
the history of an accelerated clock and a constant velocity clock. The history of the clock can be assimilated
by integrating the first derivative of the Thomas precession from the time t = 0. A definite integral is required
because the unknown trajectory of the clock in the distant past affects its displayed time. The coordinates
are spinning in the second frame of reference during the integration, but in the definite integral from time
t = 0 to time t the spin accumulates to a specific angle. The integral is equivalent to a Lorentz transform
followed by a space rotation. A space rotation does not affect the invariant quantity r2 − c2t2. The history
of a jerked clock is different than that of an accelerated clock. The solution in that order is equivalent to
a Lorentz transform followed by two consecutive space rotations in different directions. Similarly, there are
three rotations in the ä solution.

I. THE TAYLOR THEOREM

The following calculations are in the frame of reference
of an idealized distant observer. The equations in the
frame of reference of an accelerated observer are of a
different form5.
The trajectory of a particle can be expanded as a Tay-

lor series
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Eq. 1 does not represent an equation of motion. A
clock moves along a marked course, and the time in the
equation is the time shown by the nearest at-rest clock.
The moving clock is synchronized to the time shown by
the nearest stationary clock at the time t = 0. Thereafter
it runs slower than the stationary clock, but the time in
the first frame of reference remains the time shown by
the nearest clock in a field of clocks. The acceleration
terms in Eq. 1 are not real in a physical sense.
In the multivariate Taylor theorem2 the sum of the

exponents in each term is the same. Terms not in ac-
cord with the theorem occur routinely in series calcula-
tions. The terms are usually harmless, but they should
be dropped in the interest of computational efficiency. It
is all right to carry selected variables to a lower power
than is allowed by the Taylor theorem. dt is only used
for computing the derivatives, so it does not count as one
of the multivariate variables.

II. THE ACCELERATED CLOCK

The Lorentz transform in vector form is

r′ = γ(r − vt)− (γ − 1)(r − vv·r/v2)
t′ = γ(t− v·r/c2),
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with γ = (1 − v2/c2)−
1
2 . The infinitesimal transform is

obtained by setting γ to 1

r′ = r − vt (2)

t′ = t− v·r/c2.

To order v3, the full transform in series form is

r′ = r − vt(1 +
v2

2c2
) +

1

2c2
vv·r (3)
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2c2
)− 1

c2
v·r − v2

2c4
v·r

The calculations in this section are of too low an order
to be of much interest, but they illustrate the behavior of
the equations, and more complete calculations are shown
in the supplemental online material (SOM) at www.s-
4.com/xfm. A more recent version of this paper may
also be available there.

The ȧ and ä terms in Eq. 1 can be set to zero for
observations of short duration

ri = r0 + v0(t+ dt) + a0(t+ dt)2/2

= r0 + v0(t+ dt) + a0t
2/2 + a0t dt

ti = t+ dt.

The remaining terms can be represented as three
straight-line segments in a coarse approximation of the
trajectory. The four points on the trajectory needed to
define three segments are obtained by substituting t = 0,
t = t/3, t = 2/3 t, and t = t into these equations

r0 = r0 + v0 dt

t0 = dt

r1 = r0 + v0t/3 + v0 dt+ a0t dt/3 + a0t
2/18

t1 = t/3 + dt

r2 = r0 + 2/3 v0t+ v0 dt+ 2/3 a0t dt+ 2/9 a0t
2

t2 = +2/3 t+ dt

r3 = r0 + v0t+ v0 dt+ a0t dt+ a0t
2/2

t3 = t+ dt.

All of the points are now transformed to the second
frame of reference with the velocity v12 = v0 and Eq. 3.
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These calculations are to order v2a1. The v2a terms are
in the same order as the v3 terms, so they are dropped.
(The v3 terms are shown in Eq. 3, but they are not used
here).

r′0 = r0 + v0v0·r0/(2c2)
t′0 = −v0·r0/c2 + dt− v20 dt/(2c2)

r′1 = r0 + v0v0·r0/(2c2) + a0t dt/3 + a0t
2/18

t′1 = t/3 + dt− v0·r0/c2 − v20 dt/(2c2)− tv20/(6c
2)

−ta0·v0 dt/(3c2)− t2a0·v0/(18c
2)

r′2 = r0 + v0v0·r0/(2c2) + 2/3 a0t dt+ 2/9 a0t
2

t′2 = 2/3 t+ dt− v20 dt/(2c2)− tv20/(3c
2)− v0·r0/c2

−2/3 a0·v0t dt/c
2 − 2/9 a0·v0t

2/c2

r′3 = r0 + v0v0·r0/(2c2) + a0t dt+ a0t
2/2

t′3 = t+ dt− v20 dt/(2c2)− v20t/(2c
2)− v0·r0/c2

−a0·v0t dt/c
2 − a0·v0t

2/(2c2)

dt has dropped out of the location of the clock at time
t0, showing that it has been halted in the second frame
of reference. The clock is accelerated, so it acquires a
velocity at time t1 = t/3. The clock must now be halted
in the third frame of reference.

The velocity for the second transform is dr′/dt′ =
[r′1(dt)−r′1(0)]/[t

′
1(dt)−t′1(0)] =

1
3a0t/[1−a0·v0t/(3c

2)−
v20/(2c

2)]. There is an a20 term in the series expansion of
this solution, but it cannot be consistently carried with-
out also carrying the ȧ terms, so it has to be dropped.
(The a2 terms are small when the motion is gentle.) The
v2a terms are also not being carried in the calculations of
this order, so the velocity for the transform to the third
frame of reference simplifies to a0t/3. The infinitesimal
transform in Eq. 2 is now used to transform r′1, t

′
1, and

all following points to the third frame of reference.

r′1 = r0 + v0v0·r0/(2c2) + a0v0·r0t/(3c2)− a0t
2/18

t′1 = t/3 + dt− v20 dt/(2c2)− v20t/(6c
2)− v0·r0/c2

−a0·r0t/(3c2)− a0·v0t dt/(3c
2)

−a0·v0t
2/(18c2)

r′2 = r0 + v0v0·r0/(2c2) + a0v0·r0t/(3c2)
+a0t dt/3

t′2 = 2/3 t+ dt− v20 dt/(2c2)− v20t/(3c
2)− v0·r0/c2

−a0·r0t/(3c2)− 2/3 a0·v0t dt/c
2

−2/9 a0·v0t
2/c2

r′3 = r0 + v0v0·r0/(2c2) + a0v0·r0t/(3c2)
+2/3 a0t dt+ a0t

2/6

t′3 = t+ dt− v20 dt/(2c2)− v20t/(2c
2)− v0·r0/c2

−a0·r0t/(3c2)− a0·v0t dt/c
2 − a0·v0t

2/(2c2)

dt has dropped out of the location of the clock at time
t1, showing that, to first order, it is at rest in the third
frame of reference.

The coordinates are now reparameterized by the coor-

dinates first-known at time t1 by the equations

r0 = r1 − v1t/n (4)

v0 = v1 − a1t/n

a0 = a1 − ȧ1t/n.

n is 3 in this example, but it would have to be much
larger for the equations to be accurate. The equations
become exact as n goes to ∞, except that the ä terms
have been set aside for now. ȧ is also assumed to be small
enough that it can be neglected, so a0 = a1. Then

r′2 = r1 − v1t/3 + v1v1·r1/(2c2)− v1a1·r1t/(6c2)
+a1v1·r1t/(6c2) + a1t dt/3

t′2 = 2/3 t+ dt− v21 dt/(2c2)− v1·r1/c2

−a1·v1t dt/(3c
2)

r′3 = r1 − v1t/3 + v1v1·r1/(2c2)− v1a1·r1t/(6c2)
+a1v1·r1t/(6c2) + 2/3 a1t dt+ a1t

2/6

t′3 = t+ dt− v21 dt/(2c2)− v21t/(6c
2)− v1·r1/c2

−2/3 a1·v1t dt/c
2 − a1·v1t

2/(6c2).

Because the ȧ terms are being neglected, the velocity
for the third transform simplifies to the same form it had
for the second transform, a1t/3. Transforming all of the
remaining points to the fourth frame of reference with
the infinitesimal transform,

r′2 = r1 − v1t/3 + v1v1·r1/(2c2) + a1v1·r1t/(2c2)
−v1a1·r1t/(6c2)− 2/9 a1t

2

t′2 = 2/3 t+ dt− v21 dt/(2c2)− v1·r1/c2

−a1·r1t/(3c2)− a1·v1t dt/(3c
2)

+a1·v1t
2/(9c2)

r′3 = r1 − v1t/3 + v1v1·r1/(2c2) + a1t dt/3

+a1v1·r1t/(2c2)− v1a1·r1t/(6c2)− a1t
2/6

t′3 = t+ dt− v21 dt/(2c2)− v21t/(6c
2)− v1·r1/c2

−a1·r1t/(3c2)− 2/3 a1·v1t dt/c
2

−a1·v1t
2/(18c2).

Eqs. 4 are now used to reparametrize the solution by
coordinates first-known at time t2

r′3 = r2 − 2/3 v2t+ v2v2·r2/(2c2)− v2a2·r2t/(3c2)
+a2t dt/3 + a2v2·r2t/(3c2)− a2t

2/18

t′3 = t+ dt− v22 dt/(2c2) + v22t/(6c
2)− v2·r2/c2

−a2·v2t dt/(3c
2) + a2·v2t

2/(18c2).

The velocity for the transform to the fifth and last
frame of reference is a2t/3

r′3 = r2 − 2/3 v2t+ v2v2·r2/(2c2)
+2/3 a2v2·r2t/c2 − v2a2·r2t/(3c2)− 7/18 a2t

2

t′3 = t+ dt− v22 dt/(2c2) + v22t/(6c
2)− v2·r2/c2

−a2·r2t/(3c2)− a2·v2t dt/(3c
2)

+5/18 a2·v2t
2/c2.
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The solution is reparameterized for the last time as in
Eqs. 4. t and t3 are the same, so the subscripts can be
dropped. dt will no longer be needed, so it can be set to
zero. Then

r′ = r − vt− va·rt/(2c2) + av·rt/(2c2)
+vv·r/(2c2)− at2/6

t′ = t+ v2t/(2c2)− v·r/c2 + a·vt2/(6c2).

This algorithm requires approximately 1
2n

2 transforms.
The −va·rt and +av·rt terms represent the cumulative
effect of the Thomas precession from the time t = 0 to
the time t. These two terms cancel each other when a
and v are parallel. The coordinates are spinning, but the
spin is not visible in the first frame of reference until the
solution is differentiated with respect to t.
Repeating the calculation with more steps and more

powers of velocity shows that some coefficients do not
depend on the value of n, while the residuals of others
vary precisely as 1/n. Some coefficients go to zero as n
goes to ∞, while others approach a specific value. The
asymptotic solution is obtainable by extrapolating each
coefficient with the equation

C(∞) = C(n+ 1) + n[C(n+ 1)− C(n)]. (5)

Within the limitations of a calculation in series form,
the extrapolation is exact for any power of velocity and
any n ≥ 1. The acceleration solution is highly degen-
erate. It is obtainable with an infinity of infinitesimal
Lorentz transforms, but the method is an overkill. The
simplicity of the relationships implies that a closed form
solution exists. It would probably be obtainable with the
method of undetermined coefficients.
From the SOM, the solution to order v4a1 is

r′ = r − vt+
3v2

8c4
vv·r − v2

2c2
vt+

1

2c2
vv·r

+
5v2

8c4
av·rt+ 1

2c2
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2c2
at2

− 1

4c4
va·vv·rt− 3v2

8c4
va·rt− 1

2c2
va·rt

+
1

2c2
va·vt2

t′ = t− 1

c2
v·r +

v2

2c2
t− v2

2c4
v·r +

3v4

8c4
t.

The invariant quantity, r·r−c2t2, is r·r−c2t2. The ac-
celeration terms have no effect on it. The Lorentz trans-
form contains a hidden degree of freedom. Solutions that
are superficially unique are actually a family of solutions.
The member of the family that is selected by the equa-
tions is not necessarily the right one for a global solution.
The solution for a smaller family of particles can be ob-
tained by carrying more terms in the equations. Even the
Newton equations are not free of this ambiguity. The so-
lution at time dt1+dt2 is actually for a family of particles,
but that does not matter for the Newton equations. It
does matter in a four dimensional space.

Since the time part is the same as the Lorentz trans-
form and the magnitude of the vector is also the same
as the Lorentz transform, the transform is equivalent to
a Lorentz transform followed by a space rotation. The
transform reduces to the Lorentz transform when the a
and v vectors are parallel or anti-parallel, which is the
signature of the Thomas precession1,4. The solution to
order v25a1 is shown in the SOM.

III. THE JERKED CLOCK

The ȧ terms integrate to acceleration terms, resulting
in a second rotation later in the trajectory. In general, a
and ȧ are in independent directions.

In the second frame of reference the a2 terms are in the
same order as the ȧ terms, so they have to be carried,
but the a3 and ȧ2 terms drop out unless the ä terms are
also carried.

If a curve is approximated as a series of n straight line
segments, the residual in each segment varies as 1/n2.
When integrating numerically in n steps, the sum of the
errors varies approximately as 1/n. The Eq. 5 extrapola-
tion will take out the 1/n terms, but there are also 1/n2

and other terms in most equations.
Since the software execution time varies approximately

as 1
2n

2 for large n, it much more efficient to perform
two calculations for n and n + 1 steps, then extrapolate
the solutions, than to perform one calculation with the
same accuracy and a larger n. It is still more efficient to
extrapolate the solutions for n, n + 1, and n + 2 steps,
and a third order extrapolation is even better.

The extrapolation formulas accomplish more than sim-
ply performing the integration with more line segments,
because the residuals generally approach 1/n as n be-
comes large, then the last extrapolation will sometimes
take out the final 1/n terms altogether.

The second order extrapolation equation is

C12 = C(n+ 1) + n[C(n+ 1)− C(n)]

C23 = C(n+ 2) + (n+ 1)[C(n+ 2)− C(n+ 1)]

C(∞) = C23 +
n

2
[C23 − C12]

This extrapolation is only exact if there are no 1/n3 terms
in the equation, and most equations do have 1/n3 terms.
The extrapolation is a good approximation when it is not
exact, and it becomes better when n is large, because the
1/n3 terms are then less important.

The extrapolation formulas are elementary, and they
are derived in the SOM. They are probably not of con-
tinuing interest for this problem, but they provide an
expedient way of obtaining solutions. They represent a
general purpose algorithm and they do not reveal much
about the geometry of the problem.

To order v4, the fifth order extrapolation equation
yields an exact result for a jerked clock, for any n ≥ 1.
Since the solution does not depend on the value of n, the
calculations exist in the first order of the infinitesimal.
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Infinitesimal quantities can be subdivided, but it does
not accomplish anything. The relationships are linearly
dependent and the final solution remains the same.
To order v4a2ȧ1 the solution is

r′ = r + 5/8atv2r·v/c4 − at2v2a·r/(8c4) −
at2a·vr·v/(4c4)−at3v2ȧ·r/(48c4)+at3ȧ·vr·v/(24c4)−
at4a·ȧr·v/(16c4) + at4a·rȧ·v/(24c4) +
at4a·vȧ·r/(12c4) + atr·v/(2c2) − at2v2/(2c2) −
at3ȧ·r/(12c2)+at4ȧ·v/(12c2)− tv−5/16 ȧt2v2r·v/c4+
7/48 ȧt3v2a·r/c4 + 5/24 ȧt3a·vr·v/c4 −
ȧt4a·ar·v/(32c4)− ȧt4a·ra·v/(8c4)− tva·vr·v/(4c4)−
3/8 tv2va·r/c4 − t2va·ar·v/(8c4) + t2va·ra·v/(2c4) +
t2vȧ·vr·v/(8c4)+3/16 t2v2vȧ·r/c4+ t3va·ȧr·v/(8c4)−
5/24 t3va·rȧ·v/c4 − 7/24 t3va·vȧ·r/c4 +
7/96 t4va·aȧ·r/c4+t4va·ȧa·r/(48c4)+3/8 v2vr·v/c4−
ȧt2r·v/(4c2) + ȧt3v2/(4c2) + ȧt3a·r/(12c2) −
ȧt4a·v/(12c2)− tva·r/(2c2)− tv2v/(2c2)+vr·v/(2c2)+
t2va·v/(2c2) + t2vȧ·r/(4c2)− t3vȧ·v/(4c2)

t′ = t+3/8 tv4/c4 − v2r·v/(2c4) + tv2/(2c2)− r·v/c2.

The solution is only to order v4, but not many powers
of velocity are meaningful in periodic solutions without
also carrying the ä terms. The invariant quantity for this
solution is r·r− c2t2. The a and ȧ terms drop out. The
solution is available in a form that can be imported into
other computer programs in the SOM.
The v5 solution contains terms that are not invariant,

and using more integration steps does not help. If the
trajectory is represented by a truncated Taylor series,
the particle velocity will eventually exceed c, which is
probably why there is no solution accurate to order v5

for a jerked clock.

IV. THE YANKED CLOCK

The solution to order v4a3ȧ2ä1 is shown in the SOM.
The solution is invariant. It is equivalent to a Lorentz
transform followed by three consecutive space rotations.
The solution was obtained with a ninth order extrap-

olation equation, with n = 1. Using a larger value for n
makes no difference at all in the final solution, showing
that the calculations are of first order.
Including the constant term, there are only five degrees

of freedom in the five vectors representing the trajectory
in our frame of reference. Our place in space and time has
no special significance for other observers. The equations
require additional degrees of freedom if they are to lead
to a global solution that is valid for distant observers
other than ourselves.
The extrapolation equation is similar to a Taylor series

in 1
n . Including the constant term, the 9th order formula

has 10 degrees of freedom. The solution has the form
of a polynomial in t. The largest power of t is 8, so it
has only 9 degrees of freedom. Despite its complexity,
the extrapolation equation has only one more degree of
freedom than the solution.

Due to excessive software execution time, it has not
been determined if an invariant solution accurate to order
v5 exists.

V. DISCUSSION

These calculations are equivalent to integrating from
standstill in the frame of reference of the clock (or par-
ticle). The calculations indicate that solutions based on
an infinity of infinitesimal Lorentz transforms are need-
lessly inefficient. A simpler equation with fewer degrees
of freedom would suffice.

It is likely that there is a connection to the equations
of the Lorentz group3,7. Those equations should provide
a better theoretical basis for the calculations, along with
the possibility of more compact solutions. The equations
behave like a four dimensional version of the Taylor the-
orem.

The large powers of t in the solutions are not very im-
portant. Dropping them would have the effect of hiding
the limitation to low velocities, which could simplify com-
parisons to analytical results. Analytical results do not
normally have an explicit velocity limitation of less than
c, but that does not necessarily mean that their range
of validity is unbounded. When working in series form,
there are some freedoms in choosing the powers that the
variables are to be carried to.

It should be possible obtain the equations for the re-
tarded potentials from these solutions by a method that
parallels the derivation of the Liénard–Wiechert6 equa-
tions.

The method of retardation is so different from the
methods of field equations that it is often difficult to
see why there should even be a connection, but there is.
Neither field equations nor retardation equations form a
complete representation. Field equations constrain the
fields without specifying the physical processes responsi-
ble for them. The physical processes are not necessarily
what they are thought to be. Retardation equations do
specify the physical processes, but they are inept in other
ways.
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