General Solutions and Exact Solutions of the Problems of Definite Solutions of Mathematical Physics Equations

Hong Lai Zhu *

School of Physics and Electronic Information, Huaibei Normal University, Anhui 235000, China

Abstract
In this paper, using proposed three new transformation methods we have solved general solutions and exact solutions of the problems of definite solutions of the Laplace equation, Poisson equation, Schrödinger Equation, the homogeneous and non-homogeneous wave equations, Helmholtz equation and heat equation. In the process of solving, we find that in the more universal case, general solutions of partial differential equations have various forms such as basic general solution, series general solution, transformational general solution, generalized series general solution and so on.

keywords: transformation methods, general solution; exact solutions; problems of definite solutions; mathematical physics equations.

Introduction .. 2
1. New principles and methods I 2
1.1. An axiom and a conjecture 2
1.2. Laws of arbitrary functions 3
1.3. Z₁ Transformation ... 4
2. Solutions of Mathematical Physics Equations I 8
2.1. Laplace equation .. 15
2.2. Poisson equation ... 17
2.3. 2D wave equation ... 19
2.4. Acoustic wave equation 21
3. New principles and methods II 25
4. Solutions of Mathematical Physics Equations II 26
4.1. Helmholtz equation ... 26
4.2. Heat equation and diffusion equation 33
4.3. Schrödinger Equation 39
5. Conclusions .. 44
Appendix A .. 45
Appendix B .. 45
Appendix C .. 47
Appendix D .. 49
References .. 50

*E-mail address: honglaizhu@gmail.com
Introduction

Since the theory of partial differential equations (PDEs) has been established nearly 300 years, there is no universal and effective method for solving PDEs, and the existing methods have many limitations. Three new transformation methods proposed in this paper cannot solve all the PDEs, but the types of equations that can be solved effectively are extremely rich. As typical cases, we have solved general solutions and exact solutions of the problems of definite solutions of various important mathematical physics equations in this paper.

1. New principles and methods I

1.1. An axiom and a conjecture

It is well known that using algebraic methods to solve some algebraic equations may get extraneous root, that is, the correct algebraic operation might not get the correct result; so any conclusion from correct logic is not always the correct conclusion, conclusive verification is an indispensable link to ensure correct results, so we first put forward a verification axiom:

Validation Axioms. Any conclusion by the correct logic, which has not been conclusively corroborated, is not always the correct conclusion.

We will follow the validation axiom to verify any result obtained in this paper to ensure that they are correct.

Here we analyze one of the simplest PDEs

\[u_x = 0. \] \hfill (1)

The general solution of this equation seems to be easy to write, that is

\[u = f(y), \] \hfill (2)

where \(f \) is an arbitrary first differentiable functions, according to the general solution, it is easy to obtain its infinite particular solutions, such as \(u = y^2, u = y^3 + \sin y \) and so on.

General solution (2) is clearly correct, but it is complete? When we propose Eq. (1), we actually ignore a condition that cannot be ignored: Eq. (1) is formed in which space? If in \(\mathbb{R}^2 \), (2) is clearly complete; if in \(\mathbb{R}^3 \) whose independent variables are \(x, y, z \), clearly the general solution is

\[u = f(y, z), \] \hfill (3)

So Eq. (2) is not the complete general solution in \(\mathbb{R}^3 \), if in \(\mathbb{R}^4 \) whose independent variables are \(x, y, z, t \), the general solution of Eq. (1) is:

\[u = f(y, z, t), \] \hfill (4)

This can be analogized to arbitrary \(\mathbb{R}^n \) space, \((n \geq 2)\). That is, in different dimensionality space the general solutions of Eq. (1) are different.

It is necessary to further clarify that some particular solutions of PDEs are independent with space dimensionality, and some particular solutions are related to it. As for Eq. (1), the special
solution $u = y^2, u = y^3 + siny$ are correct in any \mathbb{R}^n space, $(n \geq 2)$, and $u = y^2 + z, u = y^3 + sinz$ are correct in $\mathbb{R}^n, (n \geq 3)$, and they are wrong in \mathbb{R}^2.

In order to strengthen this understanding, let us analyze another typical case

$$u_{xy} = 0. \tag{5}$$

In \mathbb{R}^2, its general solution is

$$u = f_1(x) + f_2(y). \tag{6}$$

In \mathbb{R}^3 whose independent variables are x, y, z, the general solution of Eq. (5) is

$$u = f_1(x, z) + f_2(y, z). \tag{7}$$

In \mathbb{R}^4 whose independent variables are x, y, z, t, the general solution of Eq. (5) is

$$u = f_1(x, z, t) + f_2(y, z, t). \tag{8}$$

where f_1 and f_2 are arbitrary second differentiable functions.

Based on the above two simple and profound cases, we propose a new guess:

Guess 1: If a PDE has a general solution in $\mathbb{R}^n, (n \geq 2)$, then the general solution is related to n.

General solutions of common PDEs are obviously not easy to be solved in different dimension spaces. In this paper, the new methods will solve this problem effectively.

1.2. Laws of arbitrary functions

General solutions of PDEs contain arbitrary functions, we will use the principle of function correlation to get the laws of arbitrary functions. Here we need to explain that: the essence of any function $f(x_1, \ldots x_n)$ interrelated with any constant c is

$$f(x_1, \ldots x_n) \cdot 0 + c = c, \tag{9}$$

is not the solution of $f(x_1, \ldots x_n) = c$, because if so, then any two functions are related, but this is wrong.

Now we propose the concept of **Equivalent Function**.

Definition 1. In the domain $D, (D \subset \mathbb{R}^n)$, if $u_1, u_2, \ldots u_m$ are independent of each other, $v_1, v_2, \ldots v_m$ are also independent of each other, and u_i is related to $v_1, v_2, \ldots v_m$, or v_i is related to $u_1, u_2, \ldots u_m, (i = 1, 2, \ldots m \leq n)$, we call $f(u_1, u_2, \ldots u_m)$ and $g(v_1, v_2, \ldots v_m)$ equivalent, or they are equivalent functions, write as

$$f(u_1, u_2, \ldots u_m) \leftrightarrow g(v_1, v_2, \ldots v_m), \tag{10}$$

where f and g are arbitrary functions with m independent variables.

The interpretation of definition 1 as follows:
Assuming u_i is related to $v_1, v_2, \ldots v_m$, namely $u_i = h_i(v_1, v_2, \ldots v_m)$, then

$$f(u_1, u_2, \ldots u_m) = f(h_1(v_1, v_2, \ldots v_m), h_2(v_1, v_2, \ldots v_m), \ldots h_m(v_1, v_2, \ldots v_m))$$

$$= g(v_1, v_2, \ldots v_m).$$
So \(f(u_1, u_2, \ldots, u_m) \) is equivalent to \(g(v_1, v_2, \ldots, v_m) \). If \(v_i \) is related to \(u_1, u_2, \ldots, u_m \), the proof is similar. □

According to Definition 1, we can get Theorem 1.

Theorem 1. In the domain \(D \), \(D \subset \mathbb{R}^n \), if \(x_1, x_2, \ldots, x_n \) are independent of each other, and \(y_1, y_2, \ldots, y_n \) are also independent of each other, then

\[
\frac{\partial}{\partial x_1}u, \ldots, \frac{\partial}{\partial x_n}u = 0 \]

where \(f \) and \(g \) are arbitrary functions with \(n \) independent variables.

Proof. According to the principle of function correlation, in \(\mathbb{R}^n \), if \(x_1, x_2, \ldots, x_n \) are independent of each other, \(y_i \) must be related to \(x_1, x_2, \ldots, x_n \), that is \(y_i = y_i(x_1, x_2, \ldots, x_n) \); \(y_1, y_2, \ldots, y_n \) are also independent of each other, so \(x_i \) must be related to \(y_1, y_2, \ldots, y_n \) too, \(i = 1, 2, \ldots, n \), according to Definition 1

\[
f(x_1, x_2, \ldots, x_n) \leftrightarrow g(y_1, y_2, \ldots, y_n)
\]

where \(f \) and \(g \) are arbitrary functions with \(n \) independent variables. □

1.3. **Z1 Transformation**

In order to obtain general solutions or exact solutions of some PDEs, we propose Z1 Transformation:

Z1 Transformation. In the domain \(D \), \(D \subset \mathbb{R}^n \), any established \(m \)th-order PDE with \(n \) space variables \(F(x_1, \ldots, x_n, u, u_{x_1}, \ldots, u_{x_n}, u_{x_1x_2}, \ldots) = 0 \), set \(y_i = y_i(x_1, \ldots, x_n) \) and \(u = f(y_1, \ldots, y_l) \) are both undetermined \(m \)th-differentiable functions \((u, y_i) \in C_m(D), 1 \leq l \leq n \), \(y_1, y_2, \ldots, y_l \) are independent of each other; then substitute \(u = f(y_1, \ldots, y_l) \) and its partial derivatives into \(F = 0 \),

1. In case of working out \(y_i = y_i(x_1, \ldots, x_n) \) and \(f(y_1, \ldots, y_l) \), then \(u = f(y_1, \ldots, y_l) \) is the solution of \(F = 0 \),

2. In case of dividing out \(u = f(y_1, \ldots, y_l) \) and its partial derivative, also working out \(y_i = y_i(x_1, \ldots, x_n) \), then \(u = f(y_1, \ldots, y_l) \) is the solution of \(F = 0 \), and \(f \) is an arbitrary \(m \)th-differentiable function,

3. In case of dividing out \(u = f(y_1, \ldots, y_l) \) and its partial derivative, also getting \(k = 0 \), but in fact \(k \neq 0 \), then \(u = f(y_1, \ldots, y_l) \) is not the solution of \(F = 0 \), and \(f \) is an arbitrary \(m \)th-differentiable function.

In Z1 Transformation, \(y_i = y_i(x_1, \ldots, x_n) \) and \(u = f(y_1, \ldots, y_l) \) are both undetermined, \(y_i(x_1, \ldots, x_n) \) may be an unknown function completely or has a determinate form with unknown constants, the solution of \(f(y_1, \ldots, y_l) \) may be an arbitrary or a certain \(m \)th-differentiable function, the solution of \(y_i(x_1, \ldots, x_n) \) and \(f(y_1, \ldots, y_l) \) may not be single, etc., which are determined by the PDE and the specific solution process.

In Z1 Transformation, if \(l = n \), the transformation belongs to the independent variable transformation, then we can set \(u(x_1, \ldots, x_n) = u(y_1, \ldots, y_n) \).

Using Z1 Transformation, we can get general solutions or exact solutions of many PDEs, such as:

Example 1.1. In \(\mathbb{R}^n \), using Z1 Transformation to get the general solution of

\[
a_1u_{x_1} + a_2u_{x_2} + a_3u_{x_3} = A(x_1, x_2, \ldots, x_n),
\]

(12)
where \(a_1, a_2 \) and \(a_3 \) are arbitrary known constants and \(A(x_1, x_2, \cdots, x_n) \) is any known function.

Distinctly Eq. (12) cannot be solved by the characteristic equation method. According to \(Z_1 \) Transformation, set \(u(x_1, x_2, \cdots, x_n) = u(y_1, y_2, y_3, x_4, x_5, \cdots, x_n) \), \(A(x_1, x_2, \cdots, x_n) = A(y_1, y_2, y_3, x_4, x_5, \cdots, x_n) \), and

\[
y_1 = c_1 x_1 + c_2 x_2 + c_3 x_3, \quad y_2 = c_4 x_1 + c_5 x_2 + c_6 x_3, \quad y_3 = c_7 x_1 + c_8 x_2 + c_9 x_3,
\]

where \(c_1 - c_9 \) are undetermined constants, and set

\[
\frac{\partial (y_1, y_2, y_3, x_4, x_5, \cdots, x_n)}{\partial (x_1, x_2, x_3, x_4, x_5, \cdots, x_n)} \neq 0,
\]

namely

\[
-c_3 c_5 c_7 + c_2 c_6 c_7 + c_3 c_4 c_8 - c_1 c_6 c_8 - c_2 c_4 c_9 + c_1 c_5 c_9 \neq 0,
\]

From (13), we get

\[
\begin{align*}
x_1 &= -\frac{c_6 c_8 y_1 + c_5 c_9 y_1 + c_3 c_8 y_2 - c_2 c_9 y_2 - c_1 c_5 y_1 + c_2 c_6 y_3}{c_1 c_7 c_5 - c_2 c_6 c_7 - c_3 c_4 c_8 - c_1 c_6 c_8 - c_2 c_4 c_9 - c_1 c_5 c_9}, \\
x_2 &= -\frac{c_6 c_8 y_1 - c_1 c_4 y_1 + c_3 c_8 y_2 + c_1 c_6 y_2 + c_2 c_4 y_3 + c_1 c_5 y_3}{c_1 c_7 c_5 - c_2 c_6 c_7 - c_3 c_4 c_8 + c_1 c_6 c_8 - c_2 c_4 c_9 - c_1 c_5 c_9}, \\
x_3 &= -\frac{c_6 c_8 y_1 + c_3 c_8 y_2 - c_1 c_4 y_2 + c_1 c_6 y_2 - c_2 c_4 y_3 + c_1 c_5 y_3}{c_1 c_7 c_5 - c_2 c_6 c_7 - c_3 c_4 c_8 + c_1 c_6 c_8 + c_2 c_4 c_9 - c_1 c_5 c_9},
\end{align*}
\]

So

\[
\begin{align*}
a_1 u_{x_1} + a_2 u_{x_2} + a_3 u_{x_3} \\
&= (a_1 c_1 + a_2 c_2 + a_3 c_3) u_{y_1} + (a_1 c_4 + a_2 c_5 + a_3 c_6) u_{y_2} + (a_1 c_7 + a_2 c_8 + a_3 c_9) u_{y_3},
\end{align*}
\]

Set

\[
\begin{align*}
a_1 c_1 + a_2 c_2 + a_3 c_3 &= a_1 c_4 + a_2 c_5 + a_3 c_6 = 0,
\end{align*}
\]

We obtain

\[
\begin{align*}
c_1 &= \frac{-a_2 c_2 - a_3 c_3}{a_1}, \quad c_4 = \frac{-a_2 c_5 - a_3 c_6}{a_1},
\end{align*}
\]

Then

\[
\begin{align*}
a_1 u_{x_1} + a_2 u_{x_2} + a_3 u_{x_3} &= (a_1 c_7 + a_2 c_8 + a_3 c_9) u_{y_3} = A (y_1, y_2, y_3, x_4, x_5, \cdots, x_n).
\end{align*}
\]

So the general solution of Eq. (12) is:

\[
u = f (y_1, y_2, x_4, x_5, \cdots, x_n) + \int A (y_1, y_2, y_3, x_4, x_5, \cdots, x_n) \, dy_3, \quad a_1 c_7 + a_2 c_8 + a_3 c_9,
\]

where \(f \) is an arbitrary first differentiable functions, and

\[
y_1 = \frac{-a_2 c_2 - a_3 c_3}{a_1} x_1 + c_2 x_2 + c_3 x_3,
\]

\[
y_2 = \frac{-a_2 c_5 - a_3 c_6}{a_1} x_1 + c_5 x_2 + c_6 x_3,
\]

\(c_2, c_3 \) and \(c_5 - c_9 \) are arbitrary constants that satisfy Eq. (14). In a certain number field, an arbitrary constant with some limit is called relatively arbitrary constant; an arbitrary constant without any limit is called absolutely arbitrary constant; such as the solution of an algebraic equation is

\[
x = \frac{1}{a - b}.
\]

If \(a, b \) may be arbitrary constants, they can only be relatively arbitrary constants, because \(a \neq b \). If the solution of an algebraic equation is

\[
x = a - b.
\]
If \(a, b\) can be any constants, then they are absolutely arbitrary constants.

According to the above conclusions,

\[
a_1 u_{x_1} + a_2 u_{x_2} + a_3 u_{x_3} = 0,
\]

(18)

the general solution of Eq. (18) in \(\mathbb{R}^n\) is:

\[
u = \frac{a_2 c_2 - a_3 c_3}{a_1} x_1 + c_2 x_2 + c_3 x_3, \quad \frac{-a_2 c_5 - a_3 c_6}{a_1} x_1 + c_5 x_2 + c_6 x_3, x_4, x_5, \ldots x_n \right).
\]

(19)

That is, the general solution is related to the spatial dimension \(n\). According to (19) we can get the general solution of Eq. (22) and the complete general solution of Eq. (18) in \(\mathbb{R}^3\) is:

\[
u = \frac{a_2 c_2 - a_3 c_3}{a_1} x_1 + c_2 x_2 + c_3 x_3, \quad \frac{-a_2 c_5 - a_3 c_6}{a_1} x_1 + c_5 x_2 + c_6 x_3 \).
\]

(20)

Using the characteristic equation method, the general solution of Eq. (18) in \(\mathbb{R}^3\) is

\[
u = \frac{a_2 c_2 - a_3 c_3}{a_1} x_1 + c_2 x_2 + c_3 x_3, \quad \frac{-a_2 c_5 - a_3 c_6}{a_1} x_1 + c_5 x_2 + c_6 x_3 \right),
\]

(21)

is a special case of (20) as \(c_2 = c_6 = 1, c_3 = c_5 = 0\), so using the characteristic equation method can only get the incomplete general solution of Eq. (18) in \(\mathbb{R}^3\), and cannot obtain the general solution of Eq. (18) in \(\mathbb{R}^n\).

In \(\mathbb{R}^n\), consider the follow equation

\[
a_1 u_{x_1} + a_2 u_{x_2} + \ldots + a_m u_{x_m} = A(x_1, x_2, \ldots, x_n),
\]

(22)

where \(a_1, a_2 \ldots a_m\) are arbitrary known constants, \((m \leq n)\), and \(A(x_1, x_2, \ldots, x_n)\) is any known function. According to the previous analysis, we can see that the characteristic equation method cannot solve the general solution of Eq. (22) and the complete general solution of \(a_1 u_{x_1} + a_2 u_{x_2} + \ldots + a_m u_{x_m} = 0\).

According to \(Z_1\) Transformation, set \(u(x_1, x_2, \ldots, x_n) = u(y_1, y_2, \ldots, y_m, x_{m+1}, x_{m+2}, \ldots, x_n)\), \(A(x_1, x_2, \ldots, x_n) = A(y_1, y_2, \ldots, y_m, x_{m+1}, x_{m+2}, \ldots, x_n)\) and

\[
\begin{align*}
y_1 &= c_1 x_1 + c_2 x_2 + \ldots + c_m x_m \\
y_2 &= c_{m+1} x_1 + c_{m+2} x_2 + \ldots + c_{2m} x_m, \\
&\vdots \\
y_m &= c_{m(m-1)+1} x_1 + c_{m(m-1)+2} x_2 + \ldots + c_{m^2} x_m
\end{align*}
\]

and

\[
\frac{\partial (y_1, y_2, \ldots, y_m, x_{m+1}, x_{m+2}, \ldots, x_n)}{\partial (x_1, x_2, \ldots, x_n)} \neq 0,
\]

Similar to Eq. (17), we can solve the general solution of Eq. (22).

Example 1.2. In \(\mathbb{R}^4\), using \(Z_1\) Transformation to get the exact solution of

\[
a_1 (u) u_{tt} + a_2 (u) u_{xx} + a_3 (u) u_{yy} + a_4 (u) u_{zz} = a_5 (u),
\]

(23)

where \(a_i (u)\) is any known function, \((i = 1, 2, \ldots 5)\).

According to \(Z_1\) Transformation, set

\[
u (x, y, z, t) = f (v) = f (k_1 t + k_2 x + k_3 y + k_4 z + k_5),
\]
where \(k_1 - k_5 \) are constants to be determined, \(f \) is an undetermined unary function, then
\[
\begin{align*}
& a_1 (u) \ u_{tt} + a_2 (u) \ u_{xx} + a_3 (u) \ u_{yy} + a_4 (u) \ u_{zz} \\
& = k_1^2 a_1 (f) \ f'' + k_2^2 a_2 (f) \ f'' + k_3^2 a_3 (f) \ f'' + k_4^2 a_4 (f) \ f'' = a_5 (f),
\end{align*}
\]

namely
\[
\begin{align*}
f'' &= \frac{a_5 (f)}{k_1^2 a_1 (f) + k_2^2 a_2 (f) + k_3^2 a_3 (f) + k_4^2 a_4 (f)}.
\end{align*}
\]

So the particular solution of Eq. (23) is
\[
v = k_6 \pm \int \left(k_7 + 2 \int \frac{a_5 (u)}{k_1^2 a_1 (u) + k_2^2 a_2 (u) + k_3^2 a_3 (u) + k_4^2 a_4 (u)} \right)^{-\frac{1}{2}} du,
\]

where \(k_1 - k_7 \) are arbitrary constant.

Nonlinear wave equation
\[
u_{tt} - \alpha^2 \Delta u = g(u)
\]

is a special case of (23), the law of the equation has been the hotspot of the study [1-3], according to (24) we can get that the exact solution is
\[
v = k_6 \pm \int \left(k_7 + 2 \int \frac{g(u)}{k_1^2 - \alpha^2 (k_2^2 + k_3^2 + k_4^2)} \right)^{-\frac{1}{2}} du.
\]

In this paper, we also need a new theorem.

Theorem 2. *In the domain \(D, \ (D \subset \mathbb{R}^n) \) if \(v_i(x_1, x_2, \cdots, x_n) \) is an first differentiable functions, \(i \in \{1, 2, \cdots, m\}, m \leq n \), then:
\[
\frac{\partial}{\partial x_i} \int \cdots \int f(v_1, v_2, \cdots, v_m) \, dv_1 \, dv_2 \cdots dv_m = \sum_{j=1}^{m} v_{j,i} \int \cdots \int f(v_1, v_2, \cdots, v_m) \, dv_1 \, dv_2 \cdots dv_{j-1} \, dv_{j+1} \cdots \, dv_m,
\]

where \(f \) is an arbitrary integrable function with \(m \) independent variables.*

Proof. Set
\[
u(x_1, x_2, \cdots, x_n) = u(v_1, v_2, \cdots, v_m) = \int \cdots \int f(v_1, v_2, \cdots, v_m) \, dv_1 \, dv_2 \cdots dv_m.
\]

So
\[
u_{v_j} = \int \cdots \int f(v_1, v_2, \cdots, v_m) \, dv_1 \, dv_2 \cdots dv_{j-1} \, dv_{j+1} \cdots \, dv_m
\]

Then
\[
u_{x_i} = \frac{\partial}{\partial x_i} \int \cdots \int f(v_1, v_2, \cdots, v_m) \, dv_1 \, dv_2 \cdots dv_m = \sum_{j=1}^{m} v_{v_j} v_{j,i}
\]
\[
= \sum_{j=1}^{m} v_{j,i} \int \cdots \int f(v_1, v_2, \cdots, v_m) \, dv_1 \, dv_2 \cdots dv_{j-1} \, dv_{j+1} \cdots \, dv_m.
\]
2. Solutions of Mathematical Physics Equations I

Before studying solutions of mathematical physics equation, we first use \(Z_1 \) Transformation to obtain general solutions or exact solutions of three typical PDEs.

Example 2.1. In \(\mathbb{R}^n \), using \(Z_1 \) Transformation to get the exact solution of

\[
a_1 \left(u^{(m)}_{x_1} \right)^r + a_2 \left(u^{(m)}_{x_2} \right)^r + \ldots + a_n \left(u^{(m)}_{x_n} \right)^r + a_{n+1} \left(u^{(pq)}_{x_2 x_3} \right)^r = 0, \tag{27}
\]

where

\[
u_{x_i}^{(m)} = \frac{\partial^m u}{\partial x_i^m}, \quad u_{x_i x_j}^{(pq)} = \frac{\partial^{p+q} u}{\partial x_i^p \partial x_j^q},
\]

\(a_i, (i = 1, 2, \cdots n + 1) \) are arbitrary known constants, \(r \geq 1, 1 \leq p + q = m, \) the left of Eq. (27) could be added any number and types of \(\left(u^{(i_1 + i_2 + \cdots + i_n)}_{x_1 x_2 \cdots x_n} \right)^r \) with any constant coefficient, \((i_1 + i_2 + \cdots + i_n = m) \), since the similar calculation method, for facilitating writing there is only the \(a_{n+1} \left(u^{(pq)}_{x_2 x_3} \right)^r \) in Eq. (27).

By \(Z_1 \) Transformation, set \(u(x_1, \cdots x_n) = f(v), v(x_1, \cdots x_n) = k_1 x_1 + k_2 x_2 + \cdots + k_n x_n + k_{n+1} \), where \(k_1, k_2, \ldots k_{n+1} \) are unascertained constants and \(f \) is an undetermined unary \(m \)-differentiable function, then

\[
a_1 \left(u^{(m)}_{x_1} \right)^r + a_2 \left(u^{(m)}_{x_2} \right)^r + \ldots + a_n \left(u^{(m)}_{x_n} \right)^r + a_{n+1} \left(u^{(pq)}_{x_2 x_3} \right)^r = (a_1 k_1^{mr} + a_2 k_2^{mr} + \ldots + a_n k_n^{mr} + a_{n+1} k_2^{pr} k_3^{qr}) \left(f^{(m)}_v \right)^r = 0.
\]

The first case is

\[
\left(f^{(m)}_v \right)^r = 0, \tag{28}
\]

according to \(Z_1 \) Transformation the solution of Eq. (27) is

\[
u = f(v) = c_{m-1} v^{m-1} + c_{m-2} v^{m-2} + \ldots + c_1 v, \tag{29}
\]

where \(v(x_1, \cdots x_n) = k_1 x_1 + k_2 x_2 + \cdots + k_n x_n + k_{n+1} \), \(c_1 - c_{m-1} \) and \(k_1 - k_{n+1} \) are all arbitrary constants.

Since \(v \) contains arbitrary constants \(k_{n+1} \), so there is no arbitrary constants \(c_0 \) in (29).

The second case is

\[
a_1 k_1^{mr} + a_2 k_2^{mr} + \ldots + a_n k_n^{mr} + a_{n+1} k_2^{pr} k_3^{qr} = 0, \tag{30}
\]

if \(m \) and \(r \) are both odd, then

\[
k_1 = \left(-\frac{a_2 k_2^{mr} + a_3 k_3^{mr} + \ldots + a_n k_n^{mr} + a_{n+1} k_2^{pr} k_3^{qr}}{a_1} \right)^{\frac{1}{mr}}, \tag{31}
\]

where \(k_2 - k_{n+1} \) are all arbitrary constants. By \(Z_1 \) Transformation the solution of Eq. (27) is

\[
u = f \left(\frac{-a_2 k_2^{mr} + \ldots + a_n k_n^{mr} + a_{n+1} k_2^{pr} k_3^{qr}}{a_1} \right) x_1 + k_2 x_2 + \ldots + k_n x_n + k_{n+1}, \tag{32}
\]
where f is an arbitrary unary mth-differentiable function.

If there is at least one even number among m and r in Eq. (27), then

$$k_1 = \pm \left(-\frac{a_2k_1^{2r} + a_3k_1^{3r} + \ldots + a_nk_n^{mr} + a_{n+1}k_{n+1}^{pr}k_1^{qr}}{a_1} \right)^{\frac{1}{mr}}. \tag{33}$$

By Z_1 Transformation, except (29) and (32) another solution of Eq. (27) is

$$u = f \left(-\left(-\frac{a_2k_2^{2r} + \ldots + a_nk_n^{3r} + a_{n+1}k_{n+1}^{pr}k_1^{qr}}{a_1} \right)^{\frac{1}{mr}} x_1 + k_2x_2 + \ldots + k_nx_n + k_{n+1} \right). \tag{34}$$

In the case of $r = 1$, Eq. (27) becomes linear equation

$$a_1u_{x_1} + a_2u_{x_2} + \ldots + a_nu_{x_n} + a_{n+1}u_{x_{n+1}} = 0. \tag{35}$$

If m is odd, by (29) and (32) the solution of Eq. (27) is

$$u = f \left(\left(-\frac{a_2k_2^{2^m} + \ldots + a_nk_n^{3^m} + a_{n+1}k_{n+1}^{pr}k_1^{qr}}{a_1} \right)^{\frac{1}{m}} x_1 + k_2x_2 + \ldots + k_nx_n + k_{n+1} \right) + c_{n-1}v^{m-1} + c_{n-2}v^{m-2} + \ldots + c_1v, \tag{36}$$

where $v = C_1x_1 + C_2x_2 + \ldots + C_nx_n + C_{n+1}, C_1 - C_{n+1}$ are arbitrary constants. If m is even, by (29), (32) and (34) the solution of Eq. (35) is

$$u = f_1 \left(\left(-\frac{a_2k_2^{2^m} + \ldots + a_nk_n^{3^m} + a_{n+1}k_{n+1}^{pr}k_1^{qr}}{a_1} \right)^{\frac{1}{m}} x_1 + k_2x_2 + \ldots + k_nx_n + k_{n+1} \right)$$

$$+ f_2 \left(\left(-\frac{a_2k_2^{2^m} + \ldots + a_nk_n^{3^m} + a_{n+1}k_{n+1}^{pr}k_1^{qr}}{a_1} \right)^{\frac{1}{m}} x_1 + k_2x_2 + \ldots + k_nx_n + k_{n+1} \right) + c_{n-1}v^{m-1} + c_{n-2}v^{m-2} + \ldots + c_1v, \tag{37}$$

where f_1 and f_2 are arbitrary unary mth-differentiable functions, $k_2 - k_{n+1}$ and $l_2 - l_{n+1}$ are arbitrary constants. In Appendix A we proved that if $k_1, l_1 \neq 0$ and $k_1, l_1 \to 0$ in (37), c_1v can be described by f_1 and f_2.

If $m = 2, r = p = q = 1$, Eq. (27) becomes

$$a_1u_{x_1}^{(2)} + a_2u_{x_2}^{(2)} + \ldots + a_nu_{x_n}^{(2)} + a_{n+1}u_{x_{n+1}}^{(2)} = 0. \tag{38}$$

According to (37), the general solution of Eq. (38) is

$$u = f_1 \left(\left(-\frac{a_2k_2^2 + \ldots + a_nk_n^2 + a_{n+1}k_{n+1}^2}{a_1} \right)^{\frac{1}{2}} x_1 + k_2x_2 + \ldots + k_nx_n + k_{n+1} \right)$$

$$+ f_2 \left(\left(-\frac{a_2l_2^2 + \ldots + a_nl_n^2 + a_{n+1}l_{n+1}^2}{a_1} \right)^{\frac{1}{2}} x_1 + l_2x_2 + \ldots + l_nx_n + l_{n+1} \right) + c_1v. \tag{39}$$

(39) can be written as

$$u = \sum_{i=1}^{s} \left(f_1, \left(-\frac{a_2k_2^2 + \ldots + a_nk_n^2 + a_{n+1}k_{i_2}k_{i_3}}{a_1} \right)^{\frac{1}{2}} x_1 + k_{i_2}x_2 + \ldots + k_{i_n}x_n + k_{i_{n+1}} \right)$$

$$+ f_2, \left(-\frac{a_2l_2^2 + \ldots + a_nl_n^2 + a_{n+1}l_{i_2}l_{i_3}}{a_1} \right)^{\frac{1}{2}} x_1 + l_{i_2}x_2 + \ldots + l_{i_n}x_n + l_{i_{n+1}} \right) + c_1v \tag{40}$$
where \(f_1 \) and \(f_2 \) are arbitrary \(n \)th-differentiable functions, \(k_{i_2} - k_{i_{n+1}} \) and \(l_{i_2} - l_{i_{n+1}} \) are arbitrary determined constants.

Since Eq. (40) can have infinitely many series of functions, we call it a **series general solution**, and Eq. (39) is the **basic general solution**.

Consider the following Cauchy problem of Eq. (38)

\[
\begin{align*}
 u(0, x_2, \ldots, x_n) &= \sum_{i=1}^{s} \varphi_i \left(k_{i_2} x_2 + k_{i_3} x_3 + \ldots + k_{i_n} x_n + k_{i_{n+1}} \right), \\
 u_{x_1}(0, x_2, \ldots, x_n) &= \sum_{i=1}^{s} \psi_i \left(k_{i_2} x_2 + k_{i_3} x_3 + \ldots + k_{i_n} x_n + k_{i_{n+1}} \right),
\end{align*}
\]

where \(1 \leq s \leq \infty \), \(x_1 \) sometimes equal to time \(t \). In (40), set \(c_1 = 0, k_{i_j} = l_{i_j}, (i = 1, 2, \ldots, s, j = 2, 3, \ldots, n + 1) \), by further calculation which is in Appendix B, the exact solution of Eq. (38) in the conditions of (41) and (42) is

\[
 u = \frac{1}{2} \sum_{i=1}^{s} \left(\varphi_i (k_{i_1} x_1 + k_{i_2} x_2 + \ldots + k_{i_n} x_n + k_{i_{n+1}}) \\
 + \varphi_i (-k_{i_1} x_1 + k_{i_2} x_2 + \ldots + k_{i_n} x_n + k_{i_{n+1}}) \\
 + \frac{1}{k_{i_1}} \int_{-k_{i_1}, x_1, k_{i_2}, x_2, \ldots, k_{i_n}, x_n, k_{i_{n+1}}}^{k_{i_1}, x_1, k_{i_2}, x_2, \ldots, k_{i_n}, x_n, k_{i_{n+1}}} \psi(\xi) d\xi \right)
\]

where

\[
 k_{i_1} = \left(-\left(a_2 k_{i_2}^2 + \ldots + a_n k_{i_n}^2 + a_{n+1} k_{i_2} k_{i_3} \right)/a_1 \right)^{\frac{1}{2}}.
\]

Example 2.2. In \(\mathbb{R}^3 \), using \(Z_1 \) Transformation to get the general solution of

\[
 u_{xx} + u_{yy} + u_{zz} + 2u_{xy} - 2u_{yz} - 2u_{zx} = A(x, y, z),
\]

where \(A(x, y, z) \) is any known function.

According to \(Z_1 \) Transformation, set \(u(x, y, z) = u(p, q, r), A(x, y, z) = A(p, q, r), \) and

\[
 p = k_1 x + k_2 y + k_3 z, q = k_4 x + k_5 y + k_6 z, r = k_7 x + k_8 y + k_9 z,
\]

where \(k_1 - k_9 \) are undetermined constants, and set

\[
 \frac{\partial (p, q, r)}{\partial (x, y, z)} = -k_3 k_5 k_7 + k_2 k_6 k_7 + k_3 k_4 k_8 - k_1 k_6 k_8 - k_2 k_4 k_9 + k_1 k_5 k_9 \neq 0.
\]

By Eq. (46), we have

\[
 x = -\frac{-r k_3 k_5 + r k_2 k_6 + q k_3 k_8 - p k_6 k_8 - q k_2 k_9 + p k_3 k_9}{k_3 k_5 k_7 - k_2 k_6 k_7 - k_3 k_4 k_8 + k_1 k_6 k_8 + k_2 k_4 k_9 - k_1 k_5 k_9},
\]

\[
 y = -\frac{-r k_3 k_4 - r k_1 k_6 - q k_3 k_7 + p k_6 k_7 + q k_1 k_9 - p k_4 k_9}{k_3 k_5 k_7 - k_2 k_6 k_7 - k_3 k_4 k_8 + k_1 k_6 k_8 + k_2 k_4 k_9 - k_1 k_5 k_9},
\]

\[
 z = -\frac{-r k_2 k_4 + r k_1 k_5 - q k_2 k_7 + p k_5 k_7 + q k_1 k_8 - p k_4 k_8}{k_3 k_5 k_7 - k_2 k_6 k_7 - k_3 k_4 k_8 + k_1 k_6 k_8 + k_2 k_4 k_9 - k_1 k_5 k_9}.
\]
Thus

\[u_{xx} + u_{yy} + u_{zz} + 2u_{xy} - 2u_{yz} - 2u_{zz} = (k_1^2 + k_2^2 + k_3^2 + 2k_1 k_2 - 2k_2 k_3 - 2k_1 k_3) u_{pp} \]
\[+ (k_4^2 + k_5^2 + k_6^2 + 2k_4 k_5 - 2k_5 k_6 - 2k_4 k_6) u_{qq} \]
\[+ (k_7^2 + k_8^2 + k_9^2 + 2k_7 k_8 - 2k_8 k_9 - 2k_7 k_9) u_{rr} \]
\[+ 2 (k_1 k_4 + k_2 k_5 + k_3 k_6 + k_4 k_7 + k_5 k_8 - k_6 k_9 - k_3 k_4 - k_1 k_6 - k_4 k_7) u_{pq} \]
\[+ 2 (k_1 k_7 + k_2 k_8 + k_3 k_9 + k_4 k_8 + k_7 k_9 - k_2 k_8 - k_3 k_9 - k_1 k_9 - k_3 k_7) u_{pr} \]
\[+ 2 (k_4 k_7 + k_5 k_8 + k_6 k_9 + k_4 k_8 + k_5 k_7 - k_5 k_9 - k_4 k_9 - k_6 k_7) u_{qr} \]
\[= A (p, q, r). \]

Set

\[k_1^2 + k_2^2 + k_3^2 + 2k_1 k_2 - 2k_2 k_3 - 2k_1 k_3 = k_4^2 + k_5^2 + k_6^2 + 2k_4 k_5 - 2k_5 k_6 - 2k_4 k_6 = 0. \]

We get

\[k_3 = k_1 + k_2, k_6 = k_4 + k_5. \]

So

\[k_1 k_4 + k_2 k_5 + k_3 k_6 + k_4 k_7 + k_5 k_8 - k_6 k_9 - k_3 k_4 - k_1 k_6 - k_4 k_7 = 0, \]
\[k_1 k_7 + k_2 k_8 + k_3 k_9 + k_4 k_8 = 0, \]
\[k_4 k_7 + k_5 k_8 + k_6 k_9 + k_4 k_8 + k_5 k_7 - k_5 k_9 - k_4 k_9 = 0. \]

Note that we cannot further set \(k_1^2 + k_2^2 + k_3^2 + 2k_7 k_8 - 2k_3 k_9 - 2k_7 k_9 = 0, \) otherwise \(k_9 = k_7 + k_8 \) and \(-k_3 k_5 k_7 + k_2 k_6 k_7 + k_3 k_4 k_8 - k_1 k_6 k_8 - k_2 k_4 k_9 + k_1 k_5 k_9 = 0.\)

Thus

\[u_{xx} + u_{yy} + u_{zz} + 2u_{xy} - 2u_{yz} - 2u_{zz} = (k_1^2 + k_2^2 + k_3^2 + 2k_7 k_8 - 2k_3 k_9 - 2k_7 k_9) u_{rr} = A (p, q, r). \]

So the general solution of Eq. (45) is:

\[u = f_1 (p, q) + r f_2 (p, q) + B (x, y, z), \]

where

\[p = k_1 x + k_2 y + (k_1 + k_2) z, q = k_4 x + k_5 y + (k_4 + k_5) z, r = k_7 x + k_8 y + k_9 z, \]
\[-k_1 k_5 k_7 + k_2 k_4 k_7 + k_2 k_4 k_8 - k_1 k_3 k_5 - k_2 k_4 k_9 + k_1 k_5 k_9 \neq 0, \]
\[B (x, y, z) = \frac{\iint A (p, q, r) dr dr}{k_1^2 + k_2^2 + k_3^2 + 2k_7 k_8 - 2k_3 k_9 - 2k_7 k_9}, \]

\(f_1 \) and \(f_2 \) are arbitrary second differentiable functions, \(k_1, k_2, k_4, k_5 \) and \(k_7 - k_9 \) are relatively arbitrary constants which satisfy Eq. (54).

It can be verified that

\[u = f_1 (p, q) + r f_2 (p, q) \]

is the general solution of

\[u_{xx} + u_{yy} + u_{zz} + 2u_{xy} - 2u_{yz} - 2u_{xx} = 0. \]

Using theorem 2, we can verify

\[u = \frac{\iint A (p, q, r) dr dr}{k_1^2 + k_2^2 + k_3^2 + 2k_7 k_8 - 2k_3 k_9 - 2k_7 k_9} \]
is a special solution of Eq. (45).

Example 2.3. In \(\mathbb{R}^3 \), using \(Z_1 \) Transformation to get the general solution of

\[
a_1 u_{xx} + a_2 u_{yy} + a_3 u_{zz} = A(x, y, z),
\]

where \(a_1 - a_3 \) are arbitrary known constants and \(A(x, y, z) \) is any known function.

According to \(Z_1 \) Transformation, set \(u(x, y, z) = u(p, q, r) \), \(A(x, y, z) = A(p, q, r) \) and

\[
p = k_1 x + k_2 y + k_3 z, q = k_4 x + k_5 y + k_6 z, r = k_7 x + k_8 y + k_9 z,
\]

where \(k_1 - k_9 \) are undetermined constants, and set

\[
\frac{\partial (p, q, r)}{\partial (x, y, z)} = -k_3 k_5 k_7 + k_2 k_6 k_7 + k_3 k_4 k_8 - k_1 k_6 k_8 - k_2 k_4 k_9 + k_1 k_5 k_9 \neq 0.
\]

By Eq. (46), we get

\[
x = \frac{-r k_3 k_5 + r k_2 k_6 + q k_3 k_8 - p k_6 k_8 - q k_2 k_9 + p k_3 k_9}{k_3 k_5 k_7 - k_2 k_6 k_7 - k_3 k_4 k_8 + k_1 k_6 k_8 + k_2 k_4 k_9 - k_1 k_5 k_9},
\]

\[
y = \frac{-r k_3 k_4 - r k_1 k_5 - q k_3 k_7 + p k_4 k_7 + q k_1 k_9 - p k_4 k_9}{k_3 k_5 k_7 - k_2 k_6 k_7 - k_3 k_4 k_8 + k_1 k_6 k_8 + k_2 k_4 k_9 - k_1 k_5 k_9},
\]

\[
z = \frac{r k_3 k_4 - r k_1 k_5 - q k_3 k_7 + p k_4 k_7 + q k_1 k_9 - p k_4 k_9}{k_3 k_5 k_7 - k_2 k_6 k_7 - k_3 k_4 k_8 + k_1 k_6 k_8 + k_2 k_4 k_9 - k_1 k_5 k_9}.
\]

Then

\[
a_1 u_{xx} + a_2 u_{yy} + a_3 u_{zz}
\]

\[
= (a_1 k_1^2 + a_2 k_2^2 + a_3 k_3^2) u_{pp} + (a_1 k_4^2 + a_2 k_5^2 + a_3 k_6^2) u_{qq} + (a_1 k_7^2 + a_2 k_8^2 + a_3 k_9^2) u_{rr}
\]

\[
+ 2 (a_1 k_1 k_4 + a_2 k_2 k_5 + a_3 k_3 k_6) u_{pq} + 2 (a_1 k_1 k_7 + a_2 k_2 k_8 + a_3 k_3 k_9) u_{pr}
\]

\[
+ 2 (a_1 k_4 k_7 + a_2 k_5 k_8 + a_3 k_6 k_9) u_{qr}
\]

\[
= A(p, q, r).
\]

There are many methods for solving Eq. (60), a typical method is to set

\[
a_1 k_1^2 + a_2 k_2^2 + a_3 k_3^2 = a_1 k_4^2 + a_2 k_5^2 + a_3 k_6^2 = a_1 k_7^2 + a_2 k_8^2 + a_3 k_9^2 = 0.
\]

So

\[
k_4 = \pm \sqrt{-a_2 k_5^2 - a_3 k_6^2 \over a_1},
\]

\[
k_7 = \pm \sqrt{-a_2 k_8^2 - a_3 k_9^2 \over a_1}.
\]

Then set

\[
a_1 k_4 k_7 + a_2 k_5 k_8 + a_3 k_6 k_9 = 0.
\]

Hence

\[
a_1 k_4 k_7 + a_2 k_5 k_8 + a_3 k_6 k_9 = \pm a_1 \sqrt{-a_2 k_5^2 - a_3 k_6^2 \over a_1} \sqrt{-a_2 k_8^2 - a_3 k_9^2 \over a_1} + a_2 k_5 k_8 + a_3 k_6 k_9 = 0
\]

\[
\implies (a_2 k_5^2 + a_3 k_6^2) (a_2 k_8^2 + a_3 k_9^2) = (a_2 k_5 k_8 + a_3 k_6 k_9)^2
\]

\[
\implies k_5 k_8 = k_6 k_9.
\]

Namely

\[
k_8 = kk_9, k_5 = kk_6.
\]
It can be verified that if \(k_6k_9 > 0 \), \(k_4 \) and \(k_7 \) must satisfy \(k_4k_7 < 0 \); if \(k_6k_9 < 0 \), \(k_4 \) and \(k_7 \) must satisfy \(k_4k_7 > 0 \); otherwise \(q \) and \(r \) are function correlation.

For the unity and convenience, we set \(k_6k_9 > 0 \), namely

\[
k_4 = \sqrt{-\frac{-a_2k_5^2 - a_3k_6^2}{a_1}}, \quad k_7 = -\sqrt{-\frac{-a_2k_8^2 - a_3k_9^2}{a_1}}, \quad k_8 = kk_9, k_5 = kk_6, k_6k_9 > 0. \quad (63)
\]

Using the eliminant to solve

\[
\begin{align*}
 a_1k_4^2 + a_2k_5^2 + a_3k_6^2 &= 0 \\
 a_1k_7^2 + a_2k_8^2 + a_3k_9^2 &= 0, \\
 a_1k_4k_7 + a_2k_5k_8 + a_3k_6k_9 &= 0
\end{align*}
\]

we will get the same conclusion.

Further order

\[
a_1k_1k_4 + a_2k_2k_5 + a_3k_3k_6 = a_1k_1k_7 + a_2k_2k_8 + a_3k_3k_9 = 0 \quad (64)
\]

So

\[
a_1k_1k_4 + a_2k_2k_5 + a_3k_3k_6 = a_1k_1 \sqrt{-\frac{-a_2k_5^2 - a_3k_6^2}{a_1}} + a_2k_2k_5 + a_3k_3k_6 = 0
\]

\[
\Rightarrow k_1 = \frac{-a_2k_2k_6 - a_3k_3k_6}{a_1|k_6| \sqrt{-\frac{-a_2k^2 - a_3}{a_1}}}
\]

\[
a_1k_1k_7 + a_2k_2k_8 + a_3k_3k_9 = -a_1k_1 \sqrt{-\frac{-a_2k_8^2 - a_3k_9^2}{a_1}} + a_2k_2k_8 + a_3k_3k_9 = 0
\]

\[
\Rightarrow k_1 = \frac{a_2k_2k_9 + a_3k_3k_9}{a_1|k_9| \sqrt{-\frac{-a_2k^2 - a_3}{a_1}}}
\]

If \(k_6, k_9 > 0 \), then

\[
k_1 = \frac{-a_2k_2k_6 - a_3k_3k_6}{a_1|k_6| \sqrt{-\frac{-a_2k^2 - a_3}{a_1}}} = \frac{-a_2k_2k_9 + a_3k_3k_9}{a_1} \sqrt{-\frac{-a_2k^2 - a_3}{a_1}} = a_2k_2 + a_3k_3
\]

So \(k_1 = 0 \), and

\[
a_2k_2 + a_3k_3 = 0 \Rightarrow k_2 = \frac{-a_3k_3}{a_2k}
\]

If \(k_6, k_9 < 0 \), by the similar calculation, the conclusion is same.

If

\[
k_4 = \sqrt{-\frac{-a_2k_5^2 - a_3k_6^2}{a_1}}, \quad k_7 = -\sqrt{-\frac{-a_2k_8^2 - a_3k_9^2}{a_1}}, \quad k_8 = kk_9, k_5 = kk_6, k_6k_9 < 0.
\]

Then

\[
a_1k_1k_4 + a_2k_2k_5 + a_3k_3k_6 = a_1k_1 \sqrt{-\frac{-a_2k_5^2 - a_3k_6^2}{a_1}} + a_2k_2k_5 + a_3k_3k_6 = 0
\]

\[
\Rightarrow k_1 = \frac{-a_2k_2k_6 - a_3k_3k_6}{a_1|k_6| \sqrt{-\frac{-a_2k^2 - a_3}{a_1}}}
\]
According to (69), we can find and verify

\[a_1 k_1 k_7 + a_2 k_2 k_8 + a_3 k_3 k_9 = a_1 k_1 \sqrt{-\frac{a_2 k_2 k_8^2 - a_3 k_3^2}{a_1}} + a_2 k_2 k_9 + a_3 k_3 k_9 = 0 \]

\[\Rightarrow k_1 = \frac{-a_2 k_2 k_9 - a_3 k_3 k_9}{a_1 |k_1| \sqrt{\frac{-a_2 k_2^2 - a_3^2}{a_1}}} \]

If \(k_9 > 0, k_9 < 0 \), then

\[k_1 = \frac{-a_2 k_2 k_9 - a_3 k_3 k_9}{a_1 |k_9| \sqrt{\frac{-a_2 k_2^2 - a_3^2}{a_1}}} = \frac{-a_2 k_2 - a_3 k_3}{a_1 \sqrt{\frac{-a_2 k_2^2 - a_3^2}{a_1}}} a_2 k_2 + a_3 k_3 = 0 \]

So

\[a_2 k_2 + a_3 k_3 = 0 \Rightarrow k_2 = \frac{-a_3 k_3}{a_2 k} \]

If \(k_9 < 0, k_9 > 0 \), by the similar calculation, the conclusion is same. Thus

\[k_1 = 0, k_2 = \frac{-a_3 k_3}{a_2 k} \] (65)

Then Eq. (60) can be simplified as

\[(a_2 k^2_2 + a_3 k^2_3) u_{pp} = A(p, q, r) \] (66)

The general solution of Eq. (59) seems to be written as

\[u = f_1(q, r) + p f_2(q, r) + B(x, y, z), \] (67)

where

\[B(x, y, z) = \iint A(p, q, r) dp dp \frac{1}{a_2 k^2_2 + a_3 k^2_3} \] (68)

\(f_1 \) and \(f_2 \) are arbitrary 2th-differentiable functions, under the condition of (47), (63) and (65), there are four relatively arbitrary constants among \(k_2 - k_9 \), such as \(k_3, k_5, k_6 \) and \(k_8 \), \((k_5, k_6, k_8 \neq 0) \).

By theorem 2, it can be verified that \(u = B(x, y, z) \) is the correct special solution of Eq. (59), but \(u = f_1(q, r), u = p f_2(q, r) \) and \(u = f_1(q, r) + p f_2(q, r) \) are not the solutions of \(a_1 u_{xx} + a_2 u_{yy} + a_3 u_{zz} = 0 \). Because (63) can be verified the extraneous root of simultaneous Eq. (61) and (62) by the substitution of various numerical value, so (67) is not the correct general solution of Eq. (59). This phenomenon, which is caused by extraneous roots of algebraic equations, is called the excrecent general solution ; and we will find that it is more common.

By \(Z_1 \) Transformation, we get the special solution of Eq. (59):

\[u = \iint A(p, q, r) dp dp \frac{1}{a_2 k^2_2 + a_3 k^2_3}, \] (69)

where

\[p = k_2 y + k_3 z, q = k_4 x + k_5 y + k_6 z, r = k_7 x + k_8 y + k_9 z, \] (70)

\[-k_3 k_5 k_7 + k_2 k_6 k_7 + k_3 k_4 k_8 - k_2 k_6 k_9 \neq 0. \] (71)

According to (69), we can find and verify

\[u = \iint A(p, q, r) dq dq \frac{1}{a_1 k^2_4 + a_2 k^2_5 + a_3 k^2_6}, \] (72)
\[
\begin{align*}
\mathcal{J} &= \int \int \mathcal{A}(p, q, r) \, dr \, dq, \\
\mathcal{J} &= \int \int \mathcal{A}(p, y, z) \, dp \, dq, \\
\mathcal{J} &= \int \int \mathcal{A}(p, y, z) \, dp \, dq.
\end{align*}
\]
are all the special solutions of Eq. (59), and can further find the more concise special solution is
\[
\begin{align*}
u &= B(x, y, z) = \int \int \mathcal{A}(p, y, z) \, dp \, dq, \\
\mathcal{J} &= \int \int \mathcal{A}(p, y, z) \, dp \, dq.
\end{align*}
\]
where
\[
p = k_1 x + k_2 y + k_3 z, \quad (k_1, k_2, k_3 \neq 0)
\]
In front, we mentioned there were many methods for solving Eq. (60), such as set
\[
a_1 k_1^4 + a_2 k_2^2 + a_3 k_3^2 \mathcal{J} = a_1 k_1^4 + a_2 k_2^2 + a_3 k_3^2 = a_1 k_1 + a_2 k_2 + a_3 k_3 = a_1 k_1 k_2 + a_2 k_3 k_4 + a_3 k_5 k_6 = 0.
\]
We get
\[
\begin{align*}
\mathcal{J} &= (a_1 k_1^4 + a_2 k_2^2 + a_3 k_3^2) u_{pp} + 2(a_1 k_1 k_2 + a_2 k_3 k_4 + a_3 k_5 k_6) u_{pq} + 2(a_1 k_1 k_2 + a_2 k_3 k_4 + a_3 k_5 k_6) u_{pr} \\
\mathcal{J} &= A(p, q, r).
\end{align*}
\]
Then set \(w = u_p\), the general solution of Eq. (59) seems can be solved, but it can be verified that we may obtain a variety of special solutions by Eq. (60), and only obtain excrescent general solutions of Eq. (59).

According to (39),
\[
a_1 u_{xx} + a_2 u_{yy} + a_3 u_{zz} = 0.
\]
The general solution of Eq. (76) is
\[
\begin{align*}
u &= f_1(v_1) + f_2(v_2) + v_3, \\
\end{align*}
\]
where
\[
\begin{align*}
v_1 &= \left(-\frac{a_2 c_1^2 + a_3 c_2^2}{a_1}\right)^{1/2} x + c_1 y + c_2 z + c_3, \\
v_2 &= -\left(-\frac{a_2 c_1^2 + a_3 c_2^2}{a_1}\right)^{1/2} x + c_4 y + c_5 z + c_6, \\
v_3 &= c_7 x + c_8 y + c_9 z + c_{10},
\end{align*}
\]
f_1 and f_2 are arbitrary 2th-differentiable functions, c_1 - c_{10} are absolutely arbitrary constants. So the general solutions of Eq. (59) is
\[
\begin{align*}
u &= f_1(v_1) + f_2(v_2) + v_3 + B(x, y, z).
\end{align*}
\]

2.1. Laplace equation

Laplace equation is importantly used not only in classical electrodynamics, thermodynamics and fluid dynamics etc., but also in the modern theory of the invisible \([4, 5]\). In recent decades a research hotspot is using many numerical methods for solving Laplace’s equation in various geometries and boundary conditions, such as the moment methods \([6]\), quasi-reversibility methods \([7, 8]\), finite difference methods \([9]\) and so on.

In \(\mathbb{R}^3\), The form of Laplace equation in Cartesian coordinate system is
\[
\begin{align*}
u_{xx} + u_{yy} + u_{zz} = 0
\end{align*}
\]
Eq. (82) is a special case of Eq. (38) and (76), according to (39) and (40), its basic general solution and series general solution can be get respectively

\[u = f_1 \left(x \sqrt{-k_1^2 - k_2^2 + k_1 y + k_2 z + k_3} \right) + f_2 \left(-x \sqrt{-k_4^2 - k_5^2 + k_4 y + k_5 z + k_6} + k_7 x + k_8 y + k_9 z + k_{10} \right), \]

\[u = \sum_{i=1}^{s} \left(f_{1_i} \left(x \sqrt{-k_{1_i}^2 - k_{2_i}^2 + k_{1_i} y + k_{2_i} z + k_{3_i}} \right) + f_{2_i} \left(-x \sqrt{-k_{4_i}^2 - k_{5_i}^2 + k_{4_i} y + k_{5_i} z + k_{6_i}} \right) \right) \]

(83)

where \(f_1, f_2, f_{1_i}, \) and \(f_{2_i} \) are arbitrary second differentiable functions, \((1 \leq s \leq \infty), k_1 - k_{10} \) are absolutely arbitrary constants, and \(k_{1_i} - k_{10_i} \) are arbitrary determined constants.

(83) and (84) can be abbreviated as

\[u = f_1 (v_1) + f_2 (v_2) + v_3, \]

\[u = \sum_{i=1}^{s} \left(f_{1_i} (v_{1_i}) + f_{2_i} (v_{2_i}) + v_{3_i} \right), \]

(85)

where \(v_1 = x \sqrt{-k_{1_i}^2 - k_{2_i}^2 + k_{1_i} y + k_{2_i} z + k_{3_i} v_3 = -x \sqrt{-k_{4_i}^2 - k_{5_i}^2 + k_{4_i} y + k_{5_i} z + k_{6},} \)

\(k_{9}, v_{1_i} = x \sqrt{-k_{1_i}^2 - k_{2_i}^2 + k_{1_i} y + k_{2_i} z + k_{3_i}}, v_{2_i} = -x \sqrt{-k_{4_i}^2 - k_{5_i}^2 + k_{4_i} y + k_{5_i} z + k_{6} - 2,} \) and \(v_{3_i} = k_{7}, x + k_{8} y + k_{9} z + k_{10}. \)

Assuming Eq. (82) satisfies the following boundary conditions

\[u (0, y, z) = \sum_{i=1}^{s} \varphi_i (k_{1_i} y + k_{2_i} z + k_{3_i}), u_x (0, y, z) = \sum_{i=1}^{s} \psi_i (k_{1_i} y + k_{2_i} z + k_{3_i}). \]

(87)

According to (43) and (44), the exact solution of Eq. (82) on the conditions of (87) is

\[u = \frac{1}{2} \sum_{i=1}^{s} \left(\varphi_i (x \sqrt{-k_{1_i}^2 - k_{2_i}^2 + k_{1_i} y + k_{2_i} z + k_{3_i}}) + \varphi_i (-x \sqrt{-k_{4_i}^2 - k_{5_i}^2 + k_{4_i} y + k_{5_i} z + k_{6_i}}) \right) \]

\[+ \frac{1}{\sqrt{-k_{1_i}^2 - k_{2_i}^2}} \int_{-x \sqrt{-k_{1_i}^2 - k_{2_i}^2 + k_{1_i} y + k_{2_i} z + k_{3_i}}}^{x \sqrt{-k_{1_i}^2 - k_{2_i}^2 + k_{1_i} y + k_{2_i} z + k_{3_i}}} \psi (\xi_i) d\xi_i \]

(88)

Solutions of some PDEs have special transformation laws, that is, if we know a solution, we can get another solution by the transformational rule. For example, solutions of Laplace equation have two important laws [10]:

\[\text{Suppose } u(x,y,z) \text{ is a solution of the Laplace equation. Then the functions} \]

\[u_1 = \frac{A}{r} u \left(\frac{x}{r^2}, \frac{y}{r^2}, \frac{z}{r^2} \right), r = \sqrt{x^2 + y^2 + z^2} \]

\[u_2 = \frac{A}{\sqrt{R}} u \left(\frac{x - ar^2}{R}, \frac{y - ar^2}{R}, \frac{z - ar^2}{R} \right), R = 1 - 2 (ax + by + cz) + (a^2 + b^2 + c^2) r^2 \]

where \(A, a, b \) and \(c \) are arbitrary constants, are also solutions of this equation.
According to these laws, the basic general solution (83) of the Laplace equation will be transformed into
\[
\begin{align*}
u &= \frac{A}{r} (f_1 \left(\frac{x}{r} \right) \sqrt{-k_1^2 - k_2^2 + \frac{k_1 y}{r^2} + \frac{k_2 z}{r^2} + k_3} + f_2 \left(\frac{x}{r} \right) \sqrt{-k_4^2 - k_5^2 + \frac{k_4 y}{r^2} + \frac{k_5 z}{r^2} + k_6}) \\
&\quad + \frac{k_7 x}{r^2} + \frac{k_8 y}{r^2} + \frac{k_9 z}{r^2} + k_{10}),
\end{align*}
\]
(91)

where \(f_1 \) and \(f_2 \) are arbitrary second differentiable functions, \(k_1 - k_{10} \) are absolutely arbitrary constants. According to (91) and (92), we can see that the structure of the general solution of the Laplace equation has become
\[
u = v_0 \left(f_1 (v_1) + f_2 (v_2) + v_3 \right),
\]
(93)
which is different from Eq. (85), so there is an important new question, whether or not are Eq. (83), (91) and (92) independent of each other? If they do not dependent on each other, according to the superposition principle, the number of arbitrary functions in the general solution of Laplace equation will be greater than 2.

The problem is not over here. Eq. (91) and (92) can deduce infinite new solutions by (89) and (90), so the structure of the general solution of the Laplace equation has evolved into
\[
u = \sum_{i=1}^{s} v_{0i} (f_{1i} (v_{1i}) + f_{2i} (v_{2i}) + v_{3i}), (1 \leq s \leq \infty)
\]
(94)

where \(f_{1i} \) and \(f_{2i} \) are arbitrary second differentiable functions, and
\[
\begin{align*}
v_{01} &= 1, v_{11} = x \sqrt{-k_1^2 - k_2^2 + k_1 y + k_2 z + k_3}, \\
v_{21} &= -x \sqrt{-k_4^2 - k_5^2 + k_4 y + k_5 z + k_6}, v_{3i} = k_{7i} x + k_{8i} y + k_{9i} z + k_{10}.
\end{align*}
\]
(95)

When \(i \geq 2 \), by (89) and (90) we can see \(v_{3i} \) has two choice, \((0 \leq j \leq 3) \), so the general solution of the Laplace equation is an infinite function series which contains infinite number of arbitrary constants. In order to classify these general solutions, we call (91) and (92) the transformational general solution, and (94) a generalized series general solution.

The transformation laws of the solution of Laplacian equation may be more than (89) and (90), so the concrete form of transformational general solution and generalized series general solution may be enriched.

2.2. Poisson equation

In \(\mathbb{R}^3 \), consider the following Poisson equation
\[
\triangle u = A (x, y, z).
\]
(96)

where \(\triangle \) is the Laplace operator and \(A(x, y, z) \) is any known function. Eq. (96) is a special case of Eq. (59), that is
\[
a_1 = a_2 = a_3 = 1,
\]
according to (74), (75) and (78-81), its basic general solution is
\[u = f_1 \left(x \sqrt{-k_1^2 - k_2^2 + k_1 y + k_2 z + k_3} \right) + f_2 \left(-x \sqrt{-k_1^2 - k_2^2 + k_4 y + k_5 z + k_6} \right) + k_7 x + k_8 y + k_9 z + \int_1^\infty A(p, y, z) \, dp \frac{d}{dp}, \]
where
\[p = k_{10} x + k_{11} y + k_{12} z, \]

where \(f_1 \) and \(f_2 \) are arbitrary second differentiable functions, \(k_1 - k_9 \) are absolute arbitrary constants, and \(k_{10} - k_{12} \) are relative arbitrary constants which are not equal to zero.

The series general solution of Eq. (96) is
\[u = \sum_{i=1}^s \left(f_{i1} \left(x \sqrt{-k_{i1}^2 - k_{i2}^2 + k_{i1} y + k_{i2} z + k_{i3}} \right) + f_{i2} \left(-x \sqrt{-k_{i1}^2 - k_{i2}^2 + k_{i4} y + k_{i5} z + k_{i6}} \right) \right) + k_7 x + k_8 y + k_9 z + \int_1^\infty A(p, y, z) \, dp \frac{d}{dp} \]
where \(f_{i1} \) and \(f_{i2} \) are arbitrary second differentiable functions, \(k_{i1} - k_{i6} \) are arbitrary determined constants.

Currently, using numerical methods to analyse Poisson equation is a hot research area [11]. Assuming Eq. (96) satisfies the following boundary conditions
\[u(0, y, z) = q(y, z) + \sum_{i=1}^s \varphi_i (k_{i1} y + k_{i2} z + k_{i3}), \]
\[u_x(0, y, z) = q_x(y, z) + \sum_{i=1}^s \psi_i (k_{i1} y + k_{i2} z + k_{i3}), \]
where \(\varphi_i, \psi_i \) and \(q \) are known functions, and
\[q(x, y, z) = k_7 x + k_8 y + k_9 z + \int_1^\infty A(p, x, y, z) \, dp \frac{d}{dp}, \]
k_7 - k_{12} are known constants.

By (99), set \(k_{i1} = k_{i4}, k_{i2} = k_{i5} \), and \(k_{i3} = k_{i6} \), similar to the calculation of (43) we get
\[f_{i1} (k_{i1} y + k_{i2} z + k_{i3}) + f_{i2} (k_{i1} y + k_{i2} z + k_{i3}) = \varphi_i (k_{i1} y + k_{i2} z + k_{i3}), \]
\[f_{i1} (k_{i1} y + k_{i2} z + k_{i3}) - f_{i2} (k_{i1} y + k_{i2} z + k_{i3}) = \frac{1}{\sqrt{-k_{i1}^2 - k_{i2}^2}} \int_{k_{i1} y + k_{i2} z + k_{i3}}^{k_{i1} y + k_{i2} z + k_{i3}} \psi_i (\xi) \, d\xi + f_{i1} (k_{i1} y_0 + k_{i2} z_0 + k_{i3}) \]
\[- f_{i2} (k_{i1} y_0 + k_{i2} z_0 + k_{i3}). \]

By the further calculation, the exact solution of Eq. (106) on the conditions of (100-102) is
\[u(x, y, z) = q(x, y, t) + \frac{1}{2} \sum_{i=1}^s (\varphi_i (x \sqrt{-k_{i1}^2 - k_{i2}^2} + k_{i1} y + k_{i2} z + k_{i3}) \]
\[+ \varphi_i (-x \sqrt{-k_{i1}^2 - k_{i2}^2} + k_{i1} y + k_{i2} z + k_{i3}) \]
\[+ \frac{1}{\sqrt{-k_{i1}^2 - k_{i2}^2}} \int_{-x \sqrt{-k_{i1}^2 - k_{i2}^2} + k_{i1} y + k_{i2} z + k_{i3}}^{x \sqrt{-k_{i1}^2 - k_{i2}^2} + k_{i1} y + k_{i2} z + k_{i3}} \psi_i (\xi) \, d\xi) \]
2.3. 2D wave equation

In \(\mathbb{R}^2 \), the form of 2D wave equation in Cartesian coordinate system is

\[
u_{tt} - a^2 u_{xx} - a^2 u_{yy} = 0. \tag{104}\]

Eq. (104) is an especial case of Eq. (38), by (39) its basic general solution can be obtained

\[
u = f_1 \left(k_1 x + k_2 y + at \sqrt{k_1^2 + k_2^2} + k_3 \right)
+ f_2 \left(k_4 x + k_5 y - at \sqrt{k_4^2 + k_5^2} + k_6 \right) + k_7 x + k_8 y + k_9 t + k_{10}
= g \left(\frac{k_1 x}{\sqrt{k_1^2 + k_2^2}} + \frac{k_2 y}{\sqrt{k_1^2 + k_2^2}} + bt + g_0 \right)
+ h \left(\frac{k_4 x}{\sqrt{k_4^2 + k_5^2}} - \frac{k_5 y}{\sqrt{k_4^2 + k_5^2}} - at + h_0 \right) + k_7 x + k_8 y + k_9 t + k_{10}, \tag{105}\]

where \(f_1, f_2, g, h \) are arbitrary unary second differentiable functions, \(k_1 - k_9, \theta, \varphi, g_0 \) and \(h_0 \) are arbitrary constants. \(g (x \cos \theta + y \sin \theta + at + g_0) \) is a parallel wave with the speed \(a \), the angle between \(x \) axis and spread direction of \(g \) is \(\theta \) which is arbitrary.

The series general solution of Eq. (104) is

\[
u(x, y, t) = \sum_i (g_i (x \cos \theta_i + y \sin \theta_i + at + g_{i0}) +
\quad h_i (x \cos \varphi_i + y \sin \varphi_i - at + h_{i0})) + k_7 x + k_8 y + k_9 t + k_{10}, \tag{106}\]

where \(g_i, h_i \) are arbitrary unary second differentiable functions, \(\theta_i, \varphi_i, g_{i0} \) and \(h_{i0} \) are arbitrary determined constants.

A research hotspot is using numerical methods to study the 2D wave equation [12]. Consider the following initial value problem of Eq. (104)

\[
u(x, y, 0) = \sum_i \varphi_i (k_{i1} x + k_{i2} y + k_{i3}),
\quad \nu_t (x, y, 0) = \sum_i \psi_i (k_{i1} x + k_{i2} y + k_{i3}). \tag{107}\]

Similar to the solving method of (43), the exact solution of Eq. (104) on the conditions of (107) can be got

\[
u = \frac{1}{2} \sum_i (\varphi_i (k_{i1} x + k_{i2} y - at \sqrt{k_{i1}^2 + k_{i2}^2} + k_{i3})
+ \varphi_i (k_{i1} x + k_{i2} y + at \sqrt{k_{i1}^2 + k_{i2}^2} + k_{i3})
+ \frac{1}{a \sqrt{k_{i1}^2 + k_{i2}^2}} \int_{k_{i1} x + k_{i2} y - at \sqrt{k_{i1}^2 + k_{i2}^2} + k_{i3}}^{k_{i1} x + k_{i2} y + at \sqrt{k_{i1}^2 + k_{i2}^2} + k_{i3}} \psi_i (\xi) d\xi). \tag{108}\]

Solutions of homogeneous 2D wave equation have two transformational laws as follows [10]:
Suppose \(u(x, y, z) \) is a solution of the 2D wave equation. Then the functions

\[
\begin{align*}
u_1 &= \frac{A}{\sqrt{r^2 - a^2 t^2}} u \left(\frac{x}{r^2 - a^2 t^2}, \frac{y}{r^2 - a^2 t^2}, \frac{t}{r^2 - a^2 t^2} \right), \\
u_2 &= \frac{A}{\sqrt{r^2}} u \left(\frac{x + B_1 (a^2 t^2 - r^2)}{R}, \frac{y + B_2 (a^2 t^2 - r^2)}{R}, \frac{at + B_3 (a^2 t^2 - r^2)}{aR} \right),
\end{align*}
\]

(109, 110)

where \(r = \sqrt{x^2 + y^2} \), \(R = 1 - 2(B_1 x + B_2 y - aB_3 t) + (B_1^2 + B_2^2 - B_3^2) (r^2 - a^2 t^2) \), according to the principle of superposition, the generalized series general solution of 2D wave equation can also be written as

\[
u = \sum_{i=1}^{\infty} \left(f_{i1}(v_{i1}, v_{i2}, v_{i3}) + f_{i2}(v_{i2}) + v_{i3} \right), (1 \leq s \leq \infty)
\]

(94)

In \(\mathbb{R}^3 \), the form of the nonhomogeneous 2D wave equation in Cartesian coordinate system is

\[
u_{tt} - a^2 \nabla^2 \nu = A(t, x, y),
\]

(114) is a special case of Eq. (59), namely

\[
t = z, a_1 = a_2 = -a^2, a_3 = 1.
\]

(115)

According to (74), (75) and (78-81), its basic general solution is

\[
u = f_1 \left(k_1 x + k_2 y + at \sqrt{k_1^2 + k_2^2 + k_3} \right) + f_2 \left(k_4 x + k_5 y - at \sqrt{k_4^2 + k_5^2} + k_6 \right) + k_7 x + k_8 y + k_9 t + k_{10} \int \int \frac{A(p, y, t) \, dp \, dp}{a_1 k_{11}^2 + a_2 k_{12}^2 + a_3 k_{13}^2},
\]

(116)

where

\[
p = k_{11} x + k_{12} y + k_{13} t, \quad (k_{11}, k_{12}, k_{13} \neq 0)
\]

(117)

\(f_1 \) and \(f_2 \) are arbitrary second differentiable functions, \(k_1 - k_{10} \) are absolutely arbitrary constants, and \(k_1 - k_3 \) are relatively arbitrary constants.
The series general solution of Eq. (114) is

\[u(x, y, z) = \sum_{i=1}^{s} \left(f_1(k_{i1}x + k_{i2}y + at\sqrt{k_{i1}^2 + k_{i2}^2 + k_{i3}}) + f_2(k_{i4}x + k_{i5}y - at\sqrt{k_{i4}^2 + k_{i5}^2 + k_{i6}}) \right) \\
+ k_7x + k_8y + k_9t + k_{10} + \int\int A(p, y, t) \, dp \, dp \right) , \quad (1 \leq s < \infty), \]

where \(f_1 \) and \(f_2 \) are arbitrary second differentiable functions, \(k_{i1} - k_{i6} \) are arbitrary determined constants.

Consider the following initial value problem of Eq. (114)

\[u(0, x, y) = q(x, y) + \sum_{i=1}^{s} \varphi_i \left(k_{i1}x + k_{i2}y + k_{i3} \right), \quad (119) \]

\[u_t(0, x, y) = q_t(x, y) + \sum_{i=1}^{s} \psi_i \left(k_{i1}x + k_{i2}y + k_{i3} \right), \quad (120) \]

where \(\varphi_i, \psi_i \) and \(q \) are known functions, and

\[q(x, y, t) = k_7x + k_8y + k_9t + k_{10} + \int\int A(p, y, t) \, dp \, dp \right) \], \quad (121) \]

\(k_7 - k_{13} \) are known constants.

Similar to the solving method of (103), the exact solution of Eq. (114) on the conditions of (119-121) is

\[u(x, y, z) \]

\[= q(x, y, t) + \frac{1}{2} \sum_{i=1}^{s} \left(\varphi_i \left(at\sqrt{k_{i1}^2 + k_{i2}^2 + k_{i3}}x + k_{i2}y + k_{i3} \right) \\
+ \psi_i \left(-at\sqrt{k_{i1}^2 + k_{i2}^2 + k_{i3}}x + k_{i2}y + k_{i3} \right) \right) \]

\[+ \frac{1}{\sqrt{k_{i1}^2 + k_{i2}^2}} \int_{-at\sqrt{k_{i1}^2 + k_{i2}^2 + k_{i3}}x + k_{i2}y + k_{i3}}^{at\sqrt{k_{i1}^2 + k_{i2}^2 + k_{i3}}x + k_{i2}y + k_{i3}} \psi_i(\xi) \, d\xi_i \] \quad (122) \]

The general solution and the exact solution of the problem of definite solution of the non-homogeneous 1D wave equation can be obtained similarly, which is in Appendix C.

2.4. Acoustic wave equation

In \(\mathbb{R}^4 \), the form of acoustic wave equation is

\[p_{tt} - c_0^2 \Delta p = 0 \] \quad (123) \]

where \(p \) is the sound pressure and \(c_0 \) is the sound speed. Eq. (123) is a special case of Eq. (38),
according to (39) its basic general solution in Cartesian coordinate system is

\[
p = f_1 \left(k_1 x + k_2 y + k_3 z + c_0 t \sqrt{k_1^2 + k_2^2 + k_3^2} + k_4 \right)
+ f_2 \left(k_5 x + k_6 y + k_7 z - c_0 t \sqrt{k_5^2 + k_6^2 + k_7^2} + k_8 \right) + k_9 x + k_{10} y + k_{11} z + k_{12} t + k_{13}
\]

\[
= g \left(\frac{k_1 x}{\sqrt{k_1^2 + k_2^2 + k_3^2}} + \frac{k_2 y}{\sqrt{k_1^2 + k_2^2 + k_3^2}} + \frac{k_3 z}{\sqrt{k_1^2 + k_2^2 + k_3^2}} + c_0 t + \frac{k_4}{\sqrt{k_1^2 + k_2^2 + k_3^2}} \right)
+ h \left(\frac{k_5 x}{\sqrt{k_5^2 + k_6^2 + k_7^2}} + \frac{k_6 y}{\sqrt{k_5^2 + k_6^2 + k_7^2}} + \frac{k_7 z}{\sqrt{k_5^2 + k_6^2 + k_7^2}} - c_0 t + \frac{k_8}{\sqrt{k_5^2 + k_6^2 + k_7^2}} \right)
+ k_9 x + k_{10} y + k_{11} z + k_{12} t + k_{13}
\]

\[
= g(x \sin \theta \cos \varphi + y \sin \theta \sin \varphi + z \cos \theta + c_0 t + g_0)
+ h(x \sin \phi \cos \psi + y \sin \phi \sin \psi + z \cos \phi - c_0 t + h_0)
+ k_9 x + k_{10} y + k_{11} z + k_{12} t + k_{13},
\]

where \(f_1, f_2, g\) and \(h\) are arbitrary second differentiable functions, \(k_1 - k_{10}, \theta, \varphi, g_0\) and \(h_0\) are arbitrary constants. \(g(x \sin \theta \cos \varphi + y \sin \theta \sin \varphi + z \cos \theta + c_0 t + g_0)\) is a parallel wave with the speed \(c_0\), \(\theta\) is the angle between \(x\) axis and spread direction of \(g\), \(\varphi\) is the angle between \(x\) axis and the projection in \(xy\) plane of spread direction of \(g\).

The series general solution of Eq. (123) is

\[
p = \sum_i \left(g_i (x \sin \theta_i \cos \varphi_i + y \sin \theta_i \sin \varphi_i + z \cos \theta_i + c_0 t + g_{i0})
+ h_i (x \sin \phi_i \cos \psi_i + y \sin \phi_i \sin \psi_i + z \cos \phi_i - c_0 t + h_{i0}) \right)
+ k_9 x + k_{10} y + k_{11} z + k_{12} t + k_{13},
\]

where \(g_i\) and \(h_i\) are arbitrary second differentiable functions, \(\theta_i, \varphi_i, g_{i0}\) and \(h_{i0}\) are arbitrary determined constants.

The solutions of Eq. (123) have transformational laws which similar to (109, 110), and a similar discussion can be made.

Consider the following initial value problem of Eq. (123)

\[
p(x, y, z, 0) = \sum \varphi_i (k_{i1} x + k_{i2} y + k_{i3} z + k_{i4}),
\]

\[
p_t(x, y, z, 0) = \sum \psi_i (k_{i1} x + k_{i2} y + k_{i3} z + k_{i4}).
\]

Similar to the solving method of (43), the exact solution of Eq. (123) on the conditions of (126) and (127) is

\[
p = \frac{1}{2} \sum_i \left(\varphi_i (k_{i1} x + k_{i2} y + k_{i3} z + c_0 t \sqrt{k_{i1}^2 + k_{i2}^2 + k_{i3}^2} + k_{i4})
+ \varphi_i (k_{i1} x + k_{i2} y + k_{i3} z - c_0 t \sqrt{k_{i1}^2 + k_{i2}^2 + k_{i3}^2} + k_{i4})
+ \frac{1}{c_0 \sqrt{k_{i1}^2 + k_{i2}^2 + k_{i3}^2}} \int_{k_{i1} x + k_{i2} y + k_{i3} z - c_0 t \sqrt{k_{i1}^2 + k_{i2}^2 + k_{i3}^2} + k_{i4}} \psi_i(\xi) d\xi \right)
\]

In \(\mathbb{R}^4\), consider the following nonhomogeneous acoustic wave equation

\[
p_{tt} - c_0^2 \Delta p = A(x, y, z, t)
\]
where \(A(x, y, z, t) \) is any known function. According to \(Z_1 \) Transformation, set \(p(x, y, z, t) = p(X, Y, Z, T), A(x, y, z, t) = A(X, Y, Z, T) \), and

\[
T = k_1 t + k_2 x + k_3 y + k_4 z \tag{130}
\]

\[
X = k_5 t + k_6 x + k_7 y + k_8 z \tag{131}
\]

\[
Y = k_9 t + k_{10} x + k_{11} y + k_{12} z \tag{132}
\]

\[
Z = k_{13} t + k_{14} x + k_{15} y + k_{16} z \tag{133}
\]

where \(k_1 - k_{16} \) are undetermined constants, and set

\[
\frac{\partial (X, Y, Z, T)}{\partial (x, y, z, t)} = E
\]

\[
= k_4 k_7 k_{10} k_{13} - k_3 k_8 k_{10} k_{13} - k_4 k_6 k_{11} k_{13} + k_2 k_8 k_{11} k_{13} + k_2 k_6 k_{12} k_{13} - k_2 k_7 k_{12} k_{13} - k_3 k_6 k_{11} k_{13} + k_1 k_8 k_{11} k_{13} - k_3 k_5 k_{12} k_{14} + k_1 k_7 k_{12} k_{14} + k_4 k_6 k_{10} k_{15} - k_4 k_6 k_{10} k_{15} + k_1 k_8 k_{10} k_{15} + k_2 k_5 k_{12} k_{15} - k_1 k_6 k_{12} k_{15} - k_3 k_6 k_{10} k_{16} + k_2 k_7 k_{10} k_{16} - k_1 k_7 k_{10} k_{16} + k_2 k_5 k_{11} k_{16} + k_1 k_6 k_{11} k_{16} \neq 0
\]

Then

\[
x = \frac{B}{C} \cdot y = -\frac{D}{E} \cdot z = -\frac{F}{E} \cdot t = \frac{G}{E}
\]

\[
B = ((-k_4 k_5 + k_1 k_8)(-k_3 k_9 + k_1 k_{11}) - (-k_3 k_5 + k_1 k_7)(-k_4 k_9 + k_1 k_{12}))((-k_4 k_5 + k_1 k_8)
\]

\[
- (Z k_1 + T k_3) - (-X k_1 + T k_5)(-k_4 k_{13} + k_1 k_{16})) - ((-k_4 k_5 + k_1 k_8)(-Y k_1 + T k_9)
\]

\[
- (X k_1 + T k_3)(-k_4 k_9 + k_1 k_{12}))((-k_4 k_5 + k_1 k_8)(-X k_3 + k_1 k_{15} - (-k_3 k_5 + k_1 k_7)
\]

\[
- (k_1 k_{13} + k_1 k_{16}))
\]

\[
C = ((-k_4 k_5 + k_1 k_8)(-k_3 k_9 + k_1 k_{11}) - (-k_3 k_5 + k_1 k_7)(-k_4 k_9 + k_1 k_{12}))((-k_4 k_5 + k_1 k_8)
\]

\[
- (k_2 k_{13} + k_1 k_{14}) - (-k_2 k_5 + k_1 k_6)(-k_4 k_{13} + k_1 k_{16})) - ((-k_4 k_5 + k_1 k_8)(-k_2 k_9 + k_1 k_{10})
\]

\[
- (k_2 k_5 + k_1 k_6)(-k_4 k_9 + k_1 k_{12}))((-k_4 k_5 + k_1 k_8)(-k_3 k_{13} + k_1 k_{15} - (-k_3 k_5 + k_1 k_7)
\]

\[
- (k_1 k_{13} + k_1 k_{16}))
\]

\[
D = -Z k_4 k_6 k_9 + Z k_2 k_8 k_9 + Z k_4 k_5 k_{10} - Z k_1 k_8 k_{10} - Z k_2 k_5 k_{12} + Z k_1 k_6 k_{12} + Y k_4 k_6 k_{13}
\]

\[
- Y k_2 k_8 k_{13} - X k_4 k_5 k_{13} + T k_8 k_9 k_{13} + X k_2 k_12 k_{13} - T k_6 k_{12} k_{13} - Y k_4 k_5 k_{14} + Y k_1 k_8 k_{14}
\]

\[
+ X k_4 k_9 k_{14} - T k_8 k_9 k_{14} - X k_1 k_{12} k_{14} + T k_5 k_{12} k_{14} + Y k_2 k_5 k_{16} - Y k_1 k_6 k_{16} - X k_2 k_9 k_{16}
\]

\[
+ T k_6 k_9 k_{16} + X k_1 k_{10} k_{16} - T k_5 k_{10} k_{16}
\]

\[
F = -Z k_3 k_6 k_9 + Z k_2 k_7 k_{10} + Z k_3 k_5 k_{10} - Z k_1 k_7 k_{10} - Z k_2 k_5 k_{11} + Z k_1 k_6 k_{11} + Y k_3 k_6 k_{13}
\]

\[
- Y k_2 k_{12} k_{13} - X k_3 k_{10} k_{13} + T k_7 k_{10} k_{13} + X k_2 k_{11} k_{13} - T k_6 k_{11} k_{13} - Y k_3 k_5 k_{14} + Y k_1 k_7 k_{14}
\]

\[
+ X k_3 k_{14} - T k_7 k_9 k_{14} - X k_1 k_{12} k_{14} + T k_5 k_{11} k_{14} + Y k_2 k_5 k_{15} - Y k_1 k_6 k_{15} - X k_2 k_9 k_{15}
\]

\[
+ T k_6 k_9 k_{15} + X k_1 k_{10} k_{15} - T k_5 k_{10} k_{15}
\]

\[
G = Z k_4 k_7 k_{10} - Z k_3 k_8 k_{10} - Z k_1 k_6 k_{11} + Z k_2 k_8 k_{11} + Z k_3 k_6 k_{12} - Z k_2 k_7 k_{12} - Y k_1 k_7 k_{14}
\]

\[
+ Y k_3 k_8 k_{14} + X k_4 k_{11} k_{14} - T k_8 k_{11} k_{14} + X k_3 k_{12} k_{14} + T k_7 k_{12} k_{14} + Y k_2 k_5 k_{15} - Y k_2 k_8 k_{15}
\]

\[
- X k_4 k_{10} k_{15} + T k_8 k_{10} k_{15} + X k_2 k_{12} k_{15} - T k_6 k_{12} k_{15} - Y k_3 k_6 k_{16} + Y k_2 k_7 k_{16} + X k_3 k_{10} k_{16}
\]

\[
- T k_7 k_{10} k_{16} - X k_2 k_{11} k_{16} + T k_6 k_{11} k_{16}
\]
So

\[
\begin{align*}
 \mathbf{u}_{tt} - \mathbf{a}^2 \Delta \mathbf{u} &= (k_1^2 - a^2 k_2^2 - a^2 k_3^2 - a^2 k_4^2) \mathbf{u}_{TT} + (k_5^2 - a^2 k_6^2 - a^2 k_7^2 - a^2 k_8^2) \mathbf{u}_{XX} \\
 &+ (k_3^2 - a^2 k_1^2 - a^2 k_4^2) \mathbf{u}_{YY} + (k_{13}^2 - a^2 k_{14}^2 - a^2 k_{15}^2 - a^2 k_{16}^2) \mathbf{u}_{ZZ} \\
 &+ 2 (k_1 k_5 - a^2 k_2 k_6 - a^2 k_3 k_7 - a^2 k_4 k_8) \mathbf{u}_{TX} \\
 &+ 2 (k_1 k_9 - a^2 k_2 k_{10} - a^2 k_3 k_{11} - a^2 k_4 k_{12}) \mathbf{u}_{TY} \\
 &+ 2 (k_1 k_{13} - a^2 k_2 k_{14} - a^2 k_3 k_{15} - a^2 k_4 k_{16}) \mathbf{u}_{TZ} \\
 &+ 2 (k_5 k_9 - a^2 k_6 k_{10} - a^2 k_7 k_{11} - a^2 k_8 k_{12}) \mathbf{u}_{XY} \\
 &+ 2 (k_5 k_{13} - a^2 k_6 k_{14} - a^2 k_7 k_{15} - a^2 k_8 k_{16}) \mathbf{u}_{XZ} \\
 &+ 2 (k_9 k_{13} - a^2 k_{10} k_{14} - a^2 k_{11} k_{15} - a^2 k_{12} k_{16}) \mathbf{u}_{YZ} \\
 &= A(X, Y, Z, T).
\end{align*}
\]

Similar to the solving method of (74), the particular solution of Eq. (129) is

\[
p = B(x, y, z, t) = \frac{\int \int \int A(x, y, z, T) \, dT \, dT}{k_1^2 - c_0^2 k_2^2 - c_0^2 k_3^2 - c_0^2 k_4^2},
\]

where

\[
T = k_1 t + k_2 x + k_3 y + k_4 z, \quad (k_1, k_2, k_3, k_4 \neq 0).
\]

It can be verified that we only obtain exccrescent general solutions of Eq. (129) by (134).

According to (124) and (135), the basic general solution of Eq. (129) may be written as

\[
p = \sum_{i=1}^{s} (f_i(1) + k_1 x + k_2 y + k_3 z + c_0 t \sqrt{k_{13}^2 + k_{14}^2 + k_{15}^2 + k_{16}^2})
\]

\[
+ \int \int \int A(x, y, z, T) \, dT \, dT
\]

where \(k_1 - k_{12}\) are absolutely arbitrary constants, \(k_{13} - k_{16}\) are relatively arbitrary constants, and \(T = k_{13} t + k_{14} x + k_{15} y + k_{16} z\).

The series general solution of Eq. (129) is

\[
p = \sum_{i=1}^{s} (f_i(1) + k_1 x + k_2 y + k_3 z + c_0 t \sqrt{k_{13}^2 + k_{14}^2 + k_{15}^2 + k_{16}^2})
\]

\[
+ \int \int \int A(x, y, z, T) \, dT \, dT
\]

Consider the following initial value problem of Eq. (129)

\[
u(0, x, y, z) = q(x, y, z) + \sum_{i=1}^{s} \varphi_i(1) (k_1 x + k_2 y + k_3 z + k_{14}),
\]

\[
u_t(0, x, y, z) = q_t(x, y, z) + \sum_{i=1}^{s} \psi_i(1) (k_1 x + k_2 y + k_3 z + k_{14}),
\]
where \(\varphi_i, \psi_i \) and \(q \) are known functions, and
\[
q(x, y, z, t) = k_9 x + k_{10} y + k_{11} z + k_{12} t + \int A(x, y, z, T) dT dT
\]
\[
k_{0} k_{16} = \text{known constants.}
\]

According to (109), set \(k_1 = k_{14}, k_2 = k_{15}, k_3 = k_{16} \), similar to the solving method of (103), the exact solution of Eq. (129) on the conditions of (138-140) is
\[
u(x, y, z, t) = q(x, y, z, t) + \frac{1}{2} \sum (\varphi_i(k_1 x + k_2 y + k_3 z + c_0 t \sqrt{k^2_1 + k^2_2 + k^2_3 + k_4})
\]
\[
+ \varphi_i(k_1 x + k_2 y + k_3 z + c_0 t \sqrt{k^2_1 + k^2_2 + k^2_3 + k_4})
\]
\[
+ \frac{1}{c_0 \sqrt{k^2_1 + k^2_2 + k^2_3 + k_4}} \int_{\psi_i(t, \xi)} \psi_i(\xi) d\xi).
\]

3. New principles and methods II

In \(Z_1 \) Transformation, \(y_i(x_1, \cdots, x_9) \) and \(f \) are both undetermined \((i = 1, 2, \cdots, l) \). To solve some PDEs we may be required to set \(f \) pending and \(y_i(x_1, \cdots, x_9) \) known, so put forward \(Z_2 \) Transformation.

Z_2 Transformation. In the domain \(D, (D \subset \mathbb{R}^n) \), any established \(m \)th-order PDE with \(n \) space variables \(F(x_1, \cdots, x_n, u, u_{x_1}, \cdots, u_{x_n}, u_{x_1 x_2}, \cdots) = 0 \), set \(y_i = y_i(x_1, \cdots, x_9) \) known and \(u = f(y_1, \cdots, y_l) \) undetermined \((u, y_k \in C^m(D), i \in \{1, 2, \cdots, l\}, 1 \leq l \leq n) \), \(y_1, y_2, \cdots, y_l \) are independent of each other, then substitute \(u = f(y_1, \cdots, y_l) \) and its partial derivatives into \(F = 0 \)

1. In case of working out \(f(y_1, \cdots, y_l) \), then \(u = f(y_1, \cdots, y_l) \) is the solution of \(F = 0 \),

2. In case of dividing out \(u = f(y_1, \cdots, y_l) \) and its partial derivative, also getting \(0 = 0 \), then \(u = f(y_1, \cdots, y_l) \) is the solution of \(F = 0 \), and \(f \) is an arbitrary \(m \)th differentiable function,

3. In case of dividing out \(u = f(y_1, \cdots, y_l) \) and its partial derivative, also getting \(k = 0 \), but in fact \(k \neq 0 \), then \(u = f(y_1, \cdots, y_l) \) is not the solution of \(F = 0 \), and \(f \) is an arbitrary \(m \)th differentiable function.

We will research the application of \(Z_2 \) Transformation later in this paper. Through the comparison, we can find that the traveling wave method and the solitary wave method are the concrete applications of \(Z_1 \) and \(Z_2 \) Transformation.

Now we study an important compound law of multivariate functions. In \(\mathbb{R}^n \) space \((n \geq 2) \), assuming \(u, g, h \) and \(y_i \) are smooth functions, and set
\[
u = g(x_1, x_2, \cdots, x_n) h(y_1, y_2, \cdots, y_l), (1 \leq l \leq n),
\]
where \(y_i = y_i(x_1, x_2, \cdots, x_n) \), and \(y_1, y_2, \cdots, y_l \) are independent of each other, then
\[
u u = u_{x_1} dx_1 + u_{x_2} dx_2 + \cdots + u_{x_n} dx_n = hdg + gdh
\]
\[
= (hg_{x_1} + g \sum_{i=1}^{l} h_{y_i} y_{x_1}) dx_1 + (hg_{x_2} + g \sum_{i=1}^{l} h_{y_i} y_{x_2}) dx_2 + \cdots
\]
\[
+ (hg_{x_n} + g \sum_{i=1}^{l} h_{y_i} y_{x_n}) dx_n.
\]
Higher order law may be deduced analogously.

\[u_{x_j} = hg_{x_j} + g \sum_{i=1}^{l} h_{y_i} y_{i x_j} \] \hspace{1cm} (142)

According to (142), we can get

\[u_{x_j x_k} = hg_{x_j x_k} + g \sum_{i=1}^{l} h_{y_i} y_{i x_j x_k} + g x_j \sum_{i=1}^{l} h_{y_i} y_{i x_k} + g x_k \sum_{i=1}^{l} h_{y_i} y_{i x_j} + g \sum_{i=1}^{l} h_{y_i y_i} y_{i x_j} y_{i x_k} \] \hspace{1cm} (143)

and

\[u_{x_j x_k} = hg_{x_j x_k} + 2g x_j \sum_{i=1}^{l} h_{y_i} y_{i x_j} + g \sum_{i=1}^{l} \sum_{s=1}^{l} h_{y_i y_s} y_{i x_j} y_{s x_k} \] \hspace{1cm} (144)

Higher order law may be deduced analogously.

According to the above laws we present \(Z_3 \) Transformation.

\textbf{Z} \(Z_3 \) \textbf{T} \textbf{r} \textbf{a} \textbf{n} \textbf{s} \textbf{f} \textbf{i} \textbf{c} \textbf{a} \textbf{t} \textbf{i} \textbf{o} \textbf{n} \textbf{.} \textit{In the domain} \(D \), \(D \subset \mathbb{R}^n \), \textit{any} established \(m \)-th-order PDE with \(n \) space variables \(F(x_1, \ldots, x_n, u, u_{x_1}, \ldots, u_{x_n}, u_{x_1 x_2}, \ldots) = 0 \), \textit{setting} \(g(x_1, \ldots, x_n), h(y_1, \ldots, y_l) \) \textit{and} \(y_i = y_i(x_1, \ldots, x_n) \) \textit{are all undetermined function,} \(y_1, y_2, \ldots, y_l \) \textit{are independent of each other,} \((g, h, y_i \in C^m(D)), i \in \{1, 2, \ldots, l\}, 1 \leq l \leq n \), \textit{then substitute} \(u = gh(y_1, \ldots, y_l) \) \textit{and its partial derivatives into} \(F = 0 \).

1. \textit{In case of working out} \(h, g \) \textit{and} \(y_i \), \textit{then} \(u = gh(y_1, \ldots, y_l) \) \textit{is the solution of} \(F = 0 \).
2. \textit{In case of dividing out} \(h \) \textit{and its partial derivative, also working out} \(g \) \textit{and} \(y_i \), \textit{then} \(u = gh(y_1, \ldots, y_l) \) \textit{is the solution of} \(F = 0 \), \textit{and} \(h \) \textit{is an arbitrary} \(m \)-th\textit{-differentiable function,}
3. \textit{In case of getting} \(k = 0 \), \textit{but in fact} \(k \neq 0 \), \textit{then} \(u = gh(y_1, \ldots, y_l) \) \textit{is not the solution of} \(F = 0 \).

In \(Z_3 \) Transformation \(y_i(x_1, \ldots, x_n) \) \textit{and} \(g(x_1, \ldots, x_n) \) \textit{may be unknown completely or have definite forms with unknown constants, the solution of} \(h, y_i \) \textit{and} \(g \) \textit{may not be single. If} \(h \) \textit{is an arbitrary} \(m \)-th\textit{-differentiable function, then} \(y_1, y_2 \ldots y_l \) \textit{and} \(g \) \textit{must be independent of each other, otherwise} \(u = gh(y_1, \ldots, y_l) = h(y_1, \ldots, y_l) \).

To solve some PDEs we may be required to set \(h, y_i(x_1, \ldots, x_n) \) \textit{undetermined and} \(g \) \textit{known or set} \(g, h \) \textit{undetermined and} \(y_i(x_1, \ldots, x_n) \) \textit{known and so on. The forms of these laws are similar to} \(Z_3 \) Transformation, \textit{we will not present here.}

4. Solutions of Mathematical Physics Equations II

4.1. Helmholtz equation

Before research Helmholtz equation, we first consider a PDE as follows

\[a_1 u_{xx} + a_2 u_{yy} + a_3 u_{zz} + a_4 u_{xy} + a_5 u_{yz} + a_6 u_{zx} = a_7, \] \hspace{1cm} (145)

where \(a_i = a_i(x, y, z, u), (i = 1, 2, \ldots, 7) \), according to \(Z_1 \) Transformation, set

\[u(x, y, z) = f(v) = f(k_1 x + k_2 y + k_3 z + k_4), \] \hspace{1cm} (146)

where \(k_1 - k_4 \) \textit{are constants to be determined,} \(f \) \textit{is an undetermined unary function, then}

\[a_1 f_{xx} + a_2 f_{yy} + a_3 f_{zz} + a_4 f_{xy} + a_5 f_{yz} + a_6 f_{zx} \]

\[= k_1^2 a_1 f_{v v} + k_2^2 a_2 f_{v v} + k_3^2 a_3 f_{v v} + k_1 k_2 a_4 f_{v v} + k_2 k_3 a_5 f_{v v} + k_1 k_3 a_6 f_{v v} \]

\[= a_7. \]
Namely

\[f''_v = \frac{a_7}{k_1^2a_1 + k_2^2a_2 + k_3^2a_3 + k_1k_2a_4 + k_2k_3a_5 + k_1k_3a_6}. \]

(147)

If \(\frac{a_7}{k_1^2a_1 + k_2^2a_2 + k_3^2a_3 + k_1k_2a_4 + k_2k_3a_5 + k_1k_3a_6} \) can be converted into \(g(v) \) or \(h(f) \), it can be further computed, set

\[a_i (x, y, z, u) = a_i (v), (i = 1, 2, \ldots 7), \]

(148)

So the particular solution of Eq. (145) on the condition of (148) is

\[u (x, y, z) = \int \int \frac{a_7dvdv}{k_1^2a_1 + k_2^2a_2 + k_3^2a_3 + k_1k_2a_4 + k_2k_3a_5 + k_1k_3a_6} + C_1 v + C_2, \]

(149)

where \(C_1 \) and \(C_2 \) are arbitrary constant, \(k_1 - k_4 \) are determinate constants. For instance

\[u_{xx} + (k_1x + k_2y + k_3z + k_4)^m u_{yy} + (k_2x + k_2y + k_3z + k_4)^n u_{zz} = \sin (k_1x + k_2y + k_3z + k_4). \]

(150)

According to (149) its particular solution is

\[u (x, y, z) = \int \int \frac{\sin u dudv}{k_1^2 + k_2^2v^m + k_3^2v^n} + C_1 v + C_2, \]

where \(v(x, y, z) = k_1x + k_2y + k_3z + k_4 \). Set

\[a_i (x, y, z, u) = a_i (u), (i = 1, 2, \ldots 7). \]

(151)

From (146)-(147) we have

\[f''_v = \frac{a_7}{k_1^2a_1 + k_2^2a_2 + k_3^2a_3 + k_1k_2a_4 + k_2k_3a_5 + k_1k_3a_6} \]

\[\implies v = C_1 \pm \int \left(C_2 + 2 \int \frac{a_7df}{k_1^2a_1 + k_2^2a_2 + k_3^2a_3 + k_1k_2a_4 + k_2k_3a_5 + k_1k_3a_6} \right)^{-\frac{1}{2}} df, \]

where \(k_1 - k_4, C_1 \) and \(C_2 \) are arbitrary constant. Namely

\[a_1 (u) u_{xx} + a_2 (u) u_{yy} + a_3 (u) u_{zz} + a_4 (u) u_{xy} + a_5 (u) u_{yz} + a_6 (u) u_{zx} = a_7 (u). \]

(152)

The particular solution of Eq. (152) is

\[v = C_1 \pm \int \left(C_2 + 2 \int \frac{a_7du}{k_1^2a_1 + k_2^2a_2 + k_3^2a_3 + k_1k_2a_4 + k_2k_3a_5 + k_1k_3a_6} \right)^{-\frac{1}{2}} du. \]

(153)

The solving method of Eq. (145) can be extended to any similar PDEs with \(n \) space variables. Emden-Fowler equation [13, 14], Klein-Gordon equation [15, 16] and sine-Gordon equation [17] are special cases of Eq. (145), which are the hotspots of current research.

Consider the following PDE

\[a_1u_{xx} + a_2u_{yy} + a_3u_{zz} + k^2u = 0 \]

(154)
Substituting from (161) into (159) we get

\[v = C_1 \pm \int \left(C_2 - 2 \int \frac{k^2 u du}{k_1^2 a_1 + k_2^2 a_2 + k_3^2 a_3} \right)^{-\frac{1}{2}} du \]

\[= C_1 \pm \sqrt{\frac{k^2 a_1 + k_2^2 a_2 + k_3^2 a_3}{k^2}} \arcsin (C_3 u) \]

\[\Rightarrow u = \frac{1}{C_3} \sin \left(\pm \frac{k (v - C_1)}{\sqrt{k_1^2 a_1 + k_2^2 a_2 + k_3^2 a_3}} \right) \]

\[= \pm C_3 \sin \left(\frac{C_5 + k (k_1 x + k_2 y + k_3 z)}{\sqrt{k_1^2 a_1 + k_2^2 a_2 + k_3^2 a_3}} \right). \]

Since \(C_4 \) is an arbitrary constant, so the particular solution of Eq. (154) can be written as

\[u (x, y, z) = C_3 \sin \left(\frac{C_5 + k (k_1 x + k_2 y + k_3 z)}{\sqrt{k_1^2 a_1 + k_2^2 a_2 + k_3^2 a_3}} \right), \quad (155) \]

where \(k_1 - k_3, C_4 \) and \(C_5 \) are arbitrary constant.

We use \(Z_3 \) Transformation to obtain the general solution of Eq. (154), set

\[u (x, y, z) = g (x, y, z) h (w) = g (x, y, z) h (l_1 x + l_2 y + l_3 z + l_4), \quad (156) \]

where \(w (x, y, z) = l_1 x + l_2 y + l_3 z + l_4, l_1 - l_4 \) are undetermined parameters, \(h(w) \) and \(g(x, y, z) \) are undetermined second differentiable functions, so

\[a_1 u_{xx} + a_2 u_{yy} + a_3 u_{zz} + k^2 u \]

\[= a_1 h_{xx} + 2a_1 l_1 g_x h'_{w} + a_1 l_1^2 g ''_{w} + a_2 h_{yy} + 2a_2 l_2 g_y h'_{w} \]

\[+ a_3 h_{zz} + 2a_3 l_3 g_z h'_{w} + a_3 l_3^2 g ''_{w} + k^2 g. \]

Namely

\[(a_1 l_1^2 + a_2 l_2^2 + a_3 l_3^2) h''_{w} + 2 (a_1 l_1 g_x + a_2 l_2 g_y + a_3 l_3 g_z) h'_{w} + (a_1 g_{xx} + a_2 g_{yy} + a_3 g_{zz} + k^2 g) h = 0. \quad (157) \]

Set \(h(w) \) an arbitrary unary second differentiable function, according to (157) we obtain

\[a_1 l_1^2 + a_2 l_2^2 + a_3 l_3^2 = 0 \Rightarrow l_1 = \pm \sqrt{-\frac{a_2 l_2^2 - a_3 l_3^2}{a_1}}, \quad (158) \]

\[a_1 l_1 g_x + a_2 l_2 g_y + a_3 l_3 g_z = 0, \quad \text{(159)} \]

\[a_1 g_{xx} + a_2 g_{yy} + a_3 g_{zz} + k^2 g = 0. \quad \text{(160)} \]

By (155) the particular solution of Eq. (160) is

\[g (x, y, z) = C_4 \sin \left(\frac{C_5 + k (k_1 x + k_2 y + k_3 z)}{\sqrt{k_1^2 a_1 + k_2^2 a_2 + k_3^2 a_3}} \right). \quad (161) \]

Substituting from (161) into (159) we get

\[a_1 l_1 g_x + a_2 l_2 g_y + a_3 l_3 g_z \]

\[= \frac{a_1 l_1 C_4 k k_1 + a_2 l_2 C_4 k k_2 + a_3 l_3 C_4 k k_3}{\sqrt{k_1^2 a_1 + k_2^2 a_2 + k_3^2 a_3}} \cos \left(\frac{C_5 + k (k_1 x + k_2 y + k_3 z)}{\sqrt{k_1^2 a_1 + k_2^2 a_2 + k_3^2 a_3}} \right) = 0 \]

\[\Rightarrow a_1 l_1 C_4 k k_1 + a_2 l_2 C_4 k k_2 + a_3 l_3 C_4 k k_3 = 0. \]
Namely
\[k_1 = \frac{-a_2 k_2 l_2 - a_3 k_3 l_3}{a_1 l_1}. \] (162)

Then
\[
u(x, y, z) = g(x, y, z) h(w)
= \sin \left(\frac{C_5 + k (k_1 x + k_2 y + k_3 z)}{\sqrt{k_1^2 a_1 + k_2^2 a_2 + k_3^2 a_3}} \right) h(l_1 x + l_2 y + l_3 z + l_4)
= \sin \left(\frac{C_5 a_1 l_1 - k (a_2 k_2 l_2 + a_3 k_3 l_3) x + k a_1 l_1 (k_2 y + k_3 z)}{(a_2 k_2 l_2 + a_3 k_3 l_3)^2 + (a_2 k_2^2 + a_3 k_3^2) a_1^2 l_1^2} \right) h(l_1 x + l_2 y + l_3 z + l_4).
\]

So the general solution of Eq. (154) is
\[
u = g_1 h(w_1) + g_2 h(w_2)
= \sin \left(\frac{l_5 - k (a_2 k_2 l_2 + a_3 k_3 l_3) x + k \sqrt{-a_1 a_2 l_2^2 - a_1 a_3 l_3^2} (k_2 y + k_3 z)}{(a_2 k_2 l_2 + a_3 k_3 l_3)^2 - a_1 (a_2 k_2^2 + a_3 k_3^2) (a_2 l_2^2 + a_3 l_3^2)} \right)
\left(\frac{-a_2 l_2^2 - a_3 l_3^2}{a_1} x + l_2 y + l_3 z + l_4 \right)
+ \sin \left(\frac{l_{15} - k (a_2 k_2 l_2 + a_3 k_3 l_3) x - k \sqrt{-a_1 a_2 l_2^2 - a_1 a_3 l_3^2} (k_2 y + k_3 z)}{(a_2 k_2 l_2 + a_3 k_3 l_3)^2 - a_1 (a_2 k_2^2 + a_3 k_3^2) (a_2 l_2^2 + a_3 l_3^2)} \right)
\left(\frac{-a_2 l_2^2 - a_3 l_3^2}{a_1} x + l_2 y + l_3 z + l_{14} \right),
\] (163)

where \(h_1 \) and \(h_2 \) are arbitrary second differentiable functions, \(k_2, k_3, k_12, k_13, l_2 - l_5 \) and \(l_{12} - l_{15} \) are arbitrary constants.

It is important to emphasize that (154) might have other special solutions that can satisfy the above calculations. If these special solutions are independent of (155), \(\sqrt{-a_2 l_2^2 - a_3 l_3^2} x + l_2 y + l_3 z + l_4 \) and \(-\sqrt{-a_2 l_2^2 - a_3 l_3^2} x + l_2 y + l_3 z + l_{14} \), by the superposition principle, the general solution of (154) will be more complicated. If a new special solution is independent with \(\sqrt{-a_2 l_2^2 - a_3 l_3^2} x + l_2 y + l_3 z + l_4 \) and \(-\sqrt{-a_2 l_2^2 - a_3 l_3^2} x + l_2 y + l_3 z + l_{14} \), but not independent with (155), then can we use the superposition principle? We will analyze these issues in a follow-up paper.

Consider the following 3D Helmholtz equation
\[u_{xx} + u_{yy} + u_{zz} + k^2 u = 0. \] (164)
According to (163) we can get the general solution of Eq. (164) is

\[u = \sin \left(\frac{l_5 - k (k_2 l_2 + k_3 l_3) x + k \sqrt{-l_2^2 - l_3^2 (k_2 y + k_3 z)}}{(k_2 l_2 + k_3 l_3)^2 - (k_2^2 + k_3^2) (l_2^2 + l_3^2)} \right) h_1 \left(\sqrt{-l_2^2 - l_3^2 x + l_2 y + l_3 z + l_4} \right) \]

\[+ \sin \left(\frac{l_5 - k (k_1 l_2 + k_3 l_3) x - k \sqrt{-l_2^2 - l_3^2 (k_1 y + k_3 z)}}{(k_1 l_2 + k_3 l_3)^2 - (k_1^2 + k_3^2) (l_2^2 + l_3^2)} \right) h_2 \left(-\sqrt{-l_2^2 - l_3^2 x - l_2 y + l_3 z + l_4} \right), \]

(165)

Consider the following 2D Helmholtz equation

\[u_{xx} + u_{yy} + k^2 u = 0. \]

(166)

By (163) the general solution of Eq. (166) could be got

\[u = \sin \left(\frac{C_6 - k (a_2 k_2 l_2 + a_3 k_3 l_3) x + k \sqrt{-a_1 a_2 l_2^2 - a_1 a_3 l_3^2 (k_2 y + k_3 z)}}{(a_2 k_2 l_2)^2 - (a_2 k_2^2) (a_2 l_2^2)} \right) \]

\[h_1 \left(\sqrt{-a_2 l_2^2 a_1 x + l_2 y + l_4} \right) \]

\[+ \sin \left(\frac{C_8 - k (a_2 k_1 l_2 + a_3 k_3 l_3) x - k \sqrt{-a_1 a_2 l_2^2 - a_1 a_3 l_3^2 (k_1 y + k_3 z)}}{(a_2 k_1 l_2)^2 - (a_2 k_1^2) (a_2 l_2^2)} \right) h_2 \left(-\sqrt{-a_2 l_2^2 a_1 x + l_2 y + l_3 z + l_4} \right). \]

The denominator of the above equation is equal to zero, so we can preliminarily judge that Eq. (166) has no general solution.

For the 1D Helmholtz equation \(u_{xx} + k^2 u = 0 \), according to (163) we can get that the denominator is equal to zero, so it can be judged preliminarily that 1D Helmholtz equation has no general solution.

Currently analysing the Helmholtz equation is mainly used numerical methods [18-21]. Here we consider the following boundary value problem of Eq. (164)

\[u (0, y, z) = \sin \left(\sqrt{2}k \ (y + 2z) \right) \varphi (y + z), \]

(167)

\[u_x (0, y, z) = \sqrt{-2} \sin \left(\sqrt{2}k \ (y + 2z) \right) \phi' (x + y) + 3k \cos \left(\sqrt{2}k \ (y + 2z) \right) \phi (x + y), \]

(168)

where \(\varphi, \phi \) are known function, comparing (165) with (167) we obtain

\[k_2 = k_{12} = l_2 = l_3 = l_{12} = l_{13} = 1, k_3 = k_{13} = 2, l_4 = l_{14} = C_6 = C_8 = 0. \]

Namely

\[u = \sin \left(3k i x + \sqrt{2}k \ (y + 2z) \right) h_1 \left(\sqrt{-2}x + y + z \right) \]

\[+ \sin \left(3k i x - \sqrt{2}k \ (y + 2z) \right) h_2 \left(-\sqrt{-2}x + y + z \right). \]

(169)
Then

\[u(0, y, z) = \sin(\sqrt{2}k(y + 2z)) h_1(y + z) - \sin(\sqrt{2}k(y + 2z)) h_2(y + z) = \sin(\sqrt{2}k(y + 2z)) \varphi(y + z) \implies h_1(y + z) - h_2(y + z) = \varphi(y + z), \]

\[u_x(0, y, z) = \sqrt{-2}\sin(\sqrt{2}k(y + 2z)) \left(h'_1(y + z) + h'_2(y + z) \right) + 3k\cos(\sqrt{2}k(y + 2z)) (h_1(y + z) + h_2(y + z)) = \sqrt{-2}\sin(\sqrt{2}k(y + 2z)) \varphi'(x + y) + 3k\cos(\sqrt{2}k(y + 2z)) \varphi(x + y) \implies h_1(y + z) + h_2(y + z) = \varphi(x + y). \]

Namely

\[h_1(y + z) - h_2(y + z) = \varphi(y + z) \tag{170} \]

\[h_1(y + z) + h_2(y + z) = \varphi(x + y) \tag{171} \]

Then

\[h_1(y + z) = \frac{1}{2} (\varphi(y + z) + \varphi(y + z)) \implies h_1(\sqrt{-2}x + y + z) = \frac{1}{2} (\varphi(\sqrt{-2}x + y + z) + \varphi(\sqrt{-2}x + y + z)), \]

\[h_2(y + z) = \frac{1}{2} (\varphi(y + z) - \varphi(y + z)) \implies h_2(-\sqrt{-2}x + y + z) = \frac{1}{2} (\varphi(-\sqrt{-2}x + y + z) - \varphi(-\sqrt{-2}x + y + z)). \]

So the exact solution of Eq. (164) on the conditions of (167) and (168) can be get

\[u = \frac{1}{2} \sin(3kix + \sqrt{2}k(y + 2z)) \left(\varphi(\sqrt{-2}x + y + z) + \varphi(\sqrt{-2}x + y + z) \right) + \frac{1}{2} \sin(3kix - \sqrt{2}k(y + 2z)) \left(\varphi(\sqrt{-2}x + y + z) - \varphi(\sqrt{-2}x + y + z) \right). \tag{172} \]

In \(\mathbb{R}^3 \), we use \(Z_3 \) Transformation to get the general solution of the nonhomogeneous Helmholtz equation.

\[u_{xx} + u_{yy} + u_{zz} + k^2 u = A(x, y, z), \tag{173} \]

where \(A(x, y, z) \) is any known function. According to \(Z_3 \) Transformation, set

\[u(x, y, z) = g(x, y, z) h(p, q, r) \tag{174} \]

\[p = k_1x + k_2y + k_3z, q = k_4x + k_5y + k_6z, r = k_7x + k_8y + k_9z, \tag{46} \]

and

\[-k_3k_5k_7 + k_2k_6k_7 + k_3k_4k_8 - k_1k_6k_8 - k_2k_4k_9 + k_1k_5k_9 \neq 0. \tag{47} \]

\[x = -\frac{-r k_3k_5 + r k_2k_6 + qk_3k_8 - pk_6k_8 - qk_2k_9 + pk_5k_9}{k_3k_5k_7 - k_2k_6k_7 - k_3k_4k_8 + k_1k_6k_8 + k_2k_4k_9 - k_1k_5k_9}, \tag{48} \]

\[y = -\frac{r k_3k_4 - r k_1k_6 - qk_3k_7 + pk_6k_7 + qk_1k_9 - pk_4k_9}{k_3k_5k_7 - k_2k_6k_7 - k_3k_4k_8 + k_1k_6k_8 + k_2k_4k_9 - k_1k_5k_9}, \tag{49} \]

\[z = \frac{r k_2k_4 - rk_1k_5 - qk_2k_7 + pk_3k_7 + qk_1k_8 - pk_4k_8}{k_3k_5k_7 - k_2k_6k_7 - k_3k_4k_8 + k_1k_6k_8 + k_2k_4k_9 - k_1k_5k_9}. \tag{50} \]
So

\[a_1u_{xx} + a_2u_{yy} + a_3u_{zz} + a_4u \]

\[= (g_{xx} + g_{yy} + g_{zz} + k^2g) h + 2(k_1g_x + k_2g_y + k_3g_z) h_p + 2(k_4g_x + k_5g_y + k_6g_z) h_q \]

\[+ 2(k_7g_x + k_8g_y + k_9g_z) h_r + \left(k_1^2 + k_2^2 + k_3^2 \right) g_{pp} + \left(k_4^2 + k_5^2 + k_6^2 \right) g_{qq} \]

\[+ (k_7^2 + k_8^2 + k_9^2) gh_{rr} + 2(k_1k_4 + k_2k_5 + k_3k_6) gh_{pq} + 2(k_1k_7 + k_2k_8 + k_3k_9) gh_{pr} \]

\[+ 2(k_4k_7 + k_5k_8 + k_6k_9) gh_{qr} = A(p, q, r) \, . \]

Set

\[g_{xx} + g_{yy} + g_{zz} + k^2g = 0, \]

\[k_1g_x + k_2g_y + k_3g_z = 0, \]

\[k_4g_x + k_5g_y + k_6g_z = 0, \]

\[k_7g_x + k_8g_y + k_9g_z = 0. \]

By (155), the particular solution of Eq. (176) is

\[g(x, y, z) = c_4 \sin \left(\frac{c_5 + k \left(c_1x + c_2y + c_3z \right)}{\sqrt{c_1^2 + c_2^2 + c_3^2}} \right), \]

where \(c_1 - c_5 \) are arbitrary constants. Substituting from (180) into (177-179) we get

\[k_1g_x + k_2g_y + k_3g_z = \frac{a_1k_1c_4k_1c_1 + a_2k_2c_4k_2c_2 + a_3k_3c_4k_3c_3}{\sqrt{c_1^2a_1 + c_2^2a_2 + c_3^2a_3}} \cos \left(\frac{c_5 + k \left(c_1x + c_2y + c_3z \right)}{\sqrt{c_1^2a_1 + c_2^2a_2 + c_3^2a_3}} \right) = 0 \]

\[\Rightarrow a_1k_1c_4k_1 + a_2k_2c_4k_2 + a_3k_3c_4k_3 = 0. \]

Namely

\[c_1 = \frac{-k_2c_2 - k_3c_3}{k_1}. \]

\[k_4g_x + k_5g_y + k_6g_z = \frac{a_1k_4c_4k_1c_1 + a_2k_5c_4k_2c_2 + a_3k_6c_4k_3c_3}{\sqrt{c_1^2a_1 + c_2^2a_2 + c_3^2a_3}} \cos \left(\frac{c_5 + k \left(c_1x + c_2y + c_3z \right)}{\sqrt{c_1^2a_1 + c_2^2a_2 + c_3^2a_3}} \right) = 0 \]

\[\Rightarrow a_1k_4c_4k_1 + a_2k_5c_4k_2 + a_3k_6c_4k_3 = 0. \]

So

\[c_1 = \frac{-k_5c_2 - k_6c_3}{k_4}. \]

\[k_7g_x + k_8g_y + k_9g_z = \frac{a_1k_7c_4k_1c_1 + a_2k_8c_4k_2c_2 + a_3k_9c_4k_3c_3}{\sqrt{c_1^2a_1 + c_2^2a_2 + c_3^2a_3}} \cos \left(\frac{c_5 + k \left(c_1x + c_2y + c_3z \right)}{\sqrt{c_1^2a_1 + c_2^2a_2 + c_3^2a_3}} \right) = 0 \]

\[\Rightarrow a_1k_7c_4k_1 + a_2k_8c_4k_2 + a_3k_9c_4k_3 = 0. \]

Thus

\[c_1 = \frac{-k_8c_2 - k_9c_3}{k_7}. \]

So Eq. (175) is simplified as

\[u_{xx} + u_{yy} + u_{zz} + k^2u \]

\[= (k_1^2 + k_2^2 + k_3^2) gh_{pp} + (k_4^2 + k_5^2 + k_6^2) gh_{qq} + (k_7^2 + k_8^2 + k_9^2) gh_{rr} \]

\[+ 2(k_1k_4 + k_2k_5 + k_3k_6) gh_{pq} + 2(k_1k_7 + k_2k_8 + k_3k_9) gh_{pr} \]

\[+ 2(k_4k_7 + k_5k_8 + k_6k_9) gh_{qr} = A(p, q, r) \, . \]
The particular solution of Eq. (189) is

\[v \]

where

\[(k_1^2 + k_2^2 + k_3^2) h_{pp} + (k_1^2 + k_2^2 + k_3^2) h_{qq} + (k_1^2 + k_2^2 + k_3^2) h_{rr} + 2(k_1k_4 + k_2k_5 + k_3k_6) h_{pq} + 2(k_1k_7 + k_2k_8 + k_3k_9) h_{pr} + 2(k_4k_7 + k_5k_8 + k_6k_9) h_{qr} = \frac{A(p, q, r)}{g}. \]

Eq. (185) is completely similar to Eq. (60), using similar calculations we can obtain its ex crescens general solutions and special solution which is

\[h = \int \int \frac{A(p, q, r)}{g(p, q, r)} dp dp. \]

Namely

\[w = \int \int \frac{A(p, q, r)}{g(p, q, r)} dp dp. \]

So the special solution of Eq. (173) is

\[u = gh = \frac{g \int \int \frac{A(p, q, r)}{g(p, q, r)} dp dp}{k_1^2 + k_2^2 + k_3^2}. \]

Combining (165), we can get the basic general solution of Eq. (173).

For 2D nonhomogeneous Helmholtz equation

\[u_{xx} + u_{yy} + k^2 u = A(x, y). \]

By similar method we can get its particular solution.

4.2. Heat equation and diffusion equation

In \(\mathbb{R}^4 \), consider the following PDE

\[a_0 u_t + a_1 u_{xx} + a_2 u_{yy} + a_3 u_{zz} = 0, \tag{189} \]

where \(a_i \) are known constants. For solving its particular solution, by \(Z_1 \) transformation we set

\[u(t, x, y, z) = f(v) = f(k_0 t + k_1 x + k_2 y + k_3 z + k_4), \tag{190} \]

where \(v(t, x, y, z) = k_0 t + k_1 x + k_2 y + k_3 z + k_4 \), \(k_0, k_1, k_2, k_3, k_4 \) are constants to be determined, \(f \) is an undetermined second differentiable function. So

\[a_0 u_t + a_1 u_{xx} + a_2 u_{yy} + a_3 u_{zz} = a_0 k_0 f'_v + (a_1 k_1^2 + a_2 k_2^2 + a_3 k_3^2) f''_v = 0. \]

Set \(w = f'_v \), then

\[a_0 k_0 f'_v + (a_1 k_1^2 + a_2 k_2^2 + a_3 k_3^2) f''_v = 0 \]

\[\Rightarrow \begin{align*} & (a_1 k_1^2 + a_2 k_2^2 + a_3 k_3^2) w'_v = -a_0 k_0 w \\ & \Rightarrow w = k_7 e^{\frac{-a_0 k_0 v}{a_1 k_1^2 + a_2 k_2^2 + a_3 k_3^2}} \\ & \Rightarrow f(v) = -k_7 a_1 k_1^2 + a_2 k_2^2 + a_3 k_3^2 \frac{-a_0 k_0 v}{a_0 k_0} e^{\frac{-a_0 k_0 v}{a_1 k_1^2 + a_2 k_2^2 + a_3 k_3^2}} + k_6. \end{align*} \]

So the particular solution of Eq. (189) is

\[u(t, x, y, z) = k_5 e^{\frac{-a_0 k_0 (k_0 t + k_1 x + k_2 y + k_3 z)}{a_1 k_1^2 + a_2 k_2^2 + a_3 k_3^2}} + k_6. \]

\[\tag{191} \]
where \(k_0 - k_6 \) are arbitrary constants.

In order to obtain the general solution of Eq. (189), according to \(Z_3 \) Transformation, we set

\[
u (t, x, y, z) = gh (w) = g (t, x, y, z) h (l_0 t + l_1 x + l_2 y + l_3 z + l_4),
\]

where \(w (t, x, y, z) = l_0 t + l_1 x + l_2 y + l_3 z + l_4, l_0 - l_4 \) are constants to be determined, \(h \) and \(g \) are undetermined second differentiable functions. Then

\[
a_0 u_t + a_1 u_{xx} + a_2 u_{yy} + a_3 u_{zz} = (a_1 l_1^2 + a_2 l_2^2 + a_3 l_3^2) \frac{g h''}{a_1} + (a_0 g + 2 a_1 l_1 g_x + 2 a_2 l_2 g_y + 2 a_3 l_3 g_z) h_w + (a_0 g_t + a_1 g_{xx} + a_2 g_{yy} + a_3 g_{zz}) h = 0.
\]

Set \(h (w) \) an arbitrary second differentiable function, according to (193) we get

\[
a_1 l_1^2 + a_2 l_2^2 + a_3 l_3^2 = 0 \implies l_1 = \pm \sqrt{-\frac{a_2 l_2^2 - a_3 l_3^2}{a_1}},
\]

\[
a_0 g + 2 a_1 l_1 g_x + 2 a_2 l_2 g_y + 2 a_3 l_3 g_z = 0,
\]

\[
a_0 g_t + a_1 g_{xx} + a_2 g_{yy} + a_3 g_{zz} = 0.
\]

By (191) the particular solution of Eq. (196) is

\[
g (t, x, y, z) = k_5 e^{-a_0 k_0 k_6 (k_0 t + k_1 x + k_2 y + k_3 z)} + k_6.
\]

Set \(k_6 = 0 \), and substituting from (197) into (195), then

\[
a_0 g + 2 a_1 l_1 g_x + 2 a_2 l_2 g_y + 2 a_3 l_3 g_z = 0
\]

We have

\[
l_0 = 2 k_0 \frac{a_1 l_1 k_1 + a_2 l_2 k_2 + a_3 l_3 k_3}{a_1 k_1^2 + a_2 k_2^2 + a_3 k_3^2}.
\]

Therefore

\[
u (x, y, z, t) = gh (w) = k_5 e^{-a_0 k_0 k_6 (k_0 t + k_1 x + k_2 y + k_3 z)} h (l_0 t + l_1 x + l_2 y + l_3 z + l_4) = e^{-a_0 k_0 k_6 (k_0 t + k_1 x + k_2 y + k_3 z)} h \left(\frac{2 k_0 (a_1 l_1 k_1 + a_2 l_2 k_2 + a_3 l_3 k_3) t}{a_1 k_1^2 + a_2 k_2^2 + a_3 k_3^2} + l_1 x + l_2 y + l_3 z + l_4 \right).
\]

So the general solution of Eq. (189) is

\[
u = g_1 h (w_1) + g_2 h (w_2)
\]

\[
e^{-a_0 k_0 k_6 (k_0 t + k_1 x + k_2 y + k_3 z)} h_1 \left(\frac{2 k_0 (a_1 l_1^2 + a_3 l_3^2) + a_2 l_2 k_2 + a_3 l_3 k_3) t}{a_1 k_1^2 + a_2 k_2^2 + a_3 k_3^2} + \sqrt{-\frac{a_2 l_2^2 - a_3 l_3^2}{a_1} x + l_2 y + l_3 z + l_4} \right) + e^{-a_0 k_0 k_6 (k_0 t + k_1 x + k_2 y + k_3 z)} h_2 \left(\frac{2 k_0 (a_1 l_1^2 + a_3 l_3^2) + a_2 l_2 k_2 + a_3 l_3 k_3) t}{a_1 k_1^2 + a_2 k_2^2 + a_3 k_3^2} + \sqrt{-\frac{a_2 l_2^2 - a_3 l_3^2}{a_1} x + l_2 y + l_3 z + l_4} \right)
\]

\[
+ \sqrt{-\frac{a_2 l_2^2 - a_3 l_3^2}{a_1} x + l_2 y + l_3 z + l_4},
\]

(199)
where \(h_1 \) and \(h_2 \) are arbitrary unary second differentiable functions, \(k_0 - k_3, k_{10} - k_{13}, l_2 - l_4 \) and \(l_{12} - l_{14} \) are arbitrary constants.

The form of 3D heat equation and diffusion equation is

\[
u_t - a^2 (u_{xx} + u_{yy} + u_{zz}) = 0.\tag{200}\]

According to (199) we can get the general solution of Eq. (200) is

\[
u(t) = e^{k_0(k_2l_1^2 + k_3l_2^2 + k_4l_3^2)} h_1 \left(\frac{2k_0 \left(\sqrt{-l_2^2 - l_3^2} k_1 + l_2 k_2 + l_3 k_3 \right)}{k_1^2 + k_2^2 + k_3^2} t + \sqrt{-l_2^2 - l_3^2} x + l_2 y + l_3 z + l_4 \right)
+ e^{k_{10}(l_{10}k_1 + k_{11}l_{12} + k_{13}l_{14})} h_2 \left(\frac{2k_{10} \left(-\sqrt{-l_2^2 - l_3^2} k_1 + l_2 k_2 + l_3 k_3 \right)}{k_1^2 + k_2^2 + k_3^2} t - \sqrt{-l_2^2 - l_3^2} x + l_2 y + l_3 z + l_4 \right).	ag{201}\]

The form of 2D heat equation and diffusion equation is

\[
u_t - a^2 (u_{xx} + u_{yy}) = 0.\tag{202}\]

By (199) the general solution of Eq. (202) could be got

\[
u(t) = e^{k_0(k_1l_1^2 + k_2l_2^2)} h_1 \left(\frac{2k_0 (il_2 k_1 + l_2 k_2)}{k_1^2 + k_2^2} t + il_2 x + l_2 y + l_4 \right)
+ e^{k_{10}(k_{10}l_{11} + k_{11}l_{12})} h_2 \left(\frac{2k_{10} (-il_2 k_1 + l_2 k_2)}{k_1^2 + k_2^2} t - il_2 x + l_2 y + l_4 \right).	ag{203}\]

The solutions of Eqs. (200, 202) have transformational laws which similar to (109, 110), and a similar discussion can be made.

The form of 1D heat equation and diffusion equation is

\[
u_t - a^2 u_{xx} = 0.\tag{204}\]

According to (199) we have

\[
u = Ce^{k_0(k_1l_1^2 + k_2l_2^2)} / a^2 \cdot e^{k_{10}(k_{10}l_{11} + k_{11}l_{12}) / a^2}.	ag{205}\]

Therefore, it can be preliminarily determined that Eq. (204) has no general solution.

Nonlinear problem [22-25] and numerical methods [26-28] are the research hotspots of the heat equation, here we consider the following initial value problem of Eq. (200)

\[
u(x, y, z, 0) = e^{x+y+z} \left(\varphi_1 (\sqrt{-2} x + y + z) + \varphi_2 (-\sqrt{-2} x + y + z) \right).\tag{206}\]

Comparing (201) with (206) we get

\[
k_1 = k_2 = k_3 = k_4 / 3, k_{11} = k_{12} = k_{13} = k_{14} / 3, l_2 = l_3 = l_{12} = l_{13} = 1, l_5 = l_{15} = 0.
\]

So

\[
u(x, y, z, t) = e^{x+y+z} \left(\varphi_1 (\sqrt{-2} x + y + z + (4 + 2\sqrt{-2}) t) + \varphi_2 (-\sqrt{-2} x + y + z + (4 - 2\sqrt{-2}) t) \right).\tag{207}\]
Then
\[u(x, y, z, 0) = e^{-\frac{\kappa y + z}{\alpha^2}} (\varphi_1 (\sqrt{-2}x + y + z) + \varphi_2 (\sqrt{-2}x + y + z)) \]
\[= e^{-\frac{\kappa y + z}{\alpha^2}} (h_1 (\sqrt{-2}x + y + z) + h_2 (\sqrt{-2}x + y + z)) \]
\[
\Rightarrow \varphi_1 (\sqrt{-2}x + y + z) + \varphi_2 (\sqrt{-2}x + y + z) = h_1 (\sqrt{-2}x + y + z) + h_2 (\sqrt{-2}x + y + z)
\]
\[
\Rightarrow \varphi_1 (\sqrt{-2}x + y + z + (4 + 2\sqrt{-2}) t) = h_1 (\sqrt{-2}x + y + z) + (4 + 2\sqrt{-2}) t)
\]
\[
\varphi_2 (\sqrt{-2}x + y + z + (4 - 2\sqrt{-2}) t) = h_2 (\sqrt{-2}x + y + z) + (4 - 2\sqrt{-2}) t) .
\]
Namely
\[
h_1 (\sqrt{-2}x + y + z + (4 + 2\sqrt{-2}) t) = \varphi_1 (\sqrt{-2}x + y + z + (4 + 2\sqrt{-2}) t) ,
\]
\[
h_2 (\sqrt{-2}x + y + z + (4 - 2\sqrt{-2}) t) = \varphi_2 (\sqrt{-2}x + y + z + (4 - 2\sqrt{-2}) t) .
\]
So the exact solution of Eq. (200) on the conditions of (206) can be get
\[
u(x, y, z, t) = e^{-\frac{\kappa y + z}{\alpha^2}} (\varphi_1 (\sqrt{-2}x + y + z + (4 + 2\sqrt{-2}) t) + \varphi_2 (\sqrt{-2}x + y + z + (4 - 2\sqrt{-2}) t) .
\]

(208)

In \(\mathbb{R}^4 \), we use \(Z_3 \) Transformation to get the general solution of the nonhomogeneous heat equation.
\[u_t - a^2 (u_{xx} + u_{yy} + u_{zz}) = A(x, y, z, t) , \]
where \(A(x, y, z, t) \) is any known function. According to \(Z_3 \) Transformation, set
\[u(x, y, z, t) = g(x, y, z) h(X, Z, t) , \]

(210)

where
\[
T = k_1 t + k_2 x + k_3 y + k_4 z ,
\]
\[
X = k_5 t + k_6 x + k_7 y + k_8 z ,
\]
\[
Y = k_9 t + k_{10} x + k_{11} y + k_{12} z ,
\]
\[
Z = k_{13} t + k_{14} x + k_{15} y + k_{16} z ,
\]

(214)
k_1 - k_{16} are undetermined constants, and set
\[
\frac{\partial (X, Y, Z, T)}{\partial (x, y, z, t)} = E
\]
\[
= k_{14} k_7 k_{10} k_{13} - k_3 k_8 k_{10} k_{13} - k_4 k_6 k_{11} k_{13} + k_2 k_8 k_{11} k_{13} + k_3 k_6 k_{12} k_{13} - k_2 k_7 k_{12} k_{13}
\]
\[
- k_4 k_7 k_9 k_{14} + k_3 k_8 k_9 k_{14} + k_4 k_5 k_{11} k_{14} - k_1 k_8 k_{11} k_{14} - k_3 k_5 k_{12} k_{14} + k_1 k_7 k_{12} k_{14}
\]
\[
+ k_4 k_6 k_9 k_{15} - k_2 k_8 k_9 k_{15} - k_4 k_3 k_{10} k_{15} + k_1 k_8 k_{10} k_{15} + k_2 k_5 k_{12} k_{15} - k_1 k_6 k_{12} k_{15}
\]
\[
- k_3 k_6 k_9 k_{16} + k_2 k_7 k_9 k_{16} + k_3 k_5 k_{10} k_{16} - k_1 k_7 k_{10} k_{16} - k_2 k_5 k_{11} k_{16} + k_1 k_6 k_{11} k_{16} \neq 0.
\]

(215)

So
\[
x = -\frac{B}{G} , \quad y = -\frac{D}{E} , \quad z = \frac{F}{E} , \quad t = \frac{G}{E} .
\]

(216)
By (191), the particular solution of Eq. (218) is
\[g(t,x,y,z) = c_5 e^{\frac{\alpha t(x+y+z+c_1)}{a^2(x^2+y^2+z^2)}} + c_6, \]

According to Eq. (217), set
\[g_t - a^2 g_{xx} - a^2 g_{yy} - a^2 g_{zz} = 0, \]
\[k_1 g - 2a^2 k_2 g_x - 2a^2 k_3 g_y - 2a^2 k_4 g_z = 0, \]
\[k_5 g - 2a^2 k_6 g_x - 2a^2 k_7 g_y - 2a^2 k_8 g_z = 0, \]
\[k_9 g - 2a^2 k_{10} g_x - 2a^2 k_{11} g_y - 2a^2 k_{12} g_z = 0, \]
\[k_{13} g - 2a^2 k_{14} g_x - 2a^2 k_{15} g_y - 2a^2 k_{16} g_z = 0. \]
where \(c_1 - c_6 \) are arbitrary constants. Setting \(c_6 = 0 \) and substituting Eq. (223) into (219-222) respectively, we get

\[
a_0k_{1g} + 2a_1k_g z + 2a_2k_{3g} y + 2a_3k_{4g} z = a_0k_{1c} e - \frac{a_0q(aq + c_1 + c_2 + c_3)}{a_1e^2 + a_2e^2 + a_3e^2} a_1k_{2c} + a_2k_{3c} + a_3k_{4c} = 0.
\]

Namely

\[
k_1 = 2c_0 \frac{k_{2c} + k_{3c} + k_{4c}}{c_1^2 + c_2^2 + c_3^2}.
\] \hspace{1cm} (224)

\[
a_0k_{5g} + 2a_1k_g y + 2a_2k_{7g} y + 2a_3k_{8g} z = a_0k_{5c} e - \frac{a_0q(aq + c_1 + c_2 + c_3)}{a_1e^2 + a_2e^2 + a_3e^2} a_1k_{6c} + a_2k_{7c} + a_3k_{8c} = 0.
\]

That is

\[
k_5 = 2c_0 \frac{k_{6c} + k_{7c} + k_{8c}}{c_1^2 + c_2^2 + c_3^2}.
\] \hspace{1cm} (225)

\[
a_0k_{9g} + 2a_1k_{10g} x + 2a_2k_{11g} y + 2a_3k_{12g} z = a_0k_{9c} e - \frac{a_0q(aq + c_1 + c_2 + c_3)}{a_1e^2 + a_2e^2 + a_3e^2} a_1k_{10c} + a_2k_{11c} + a_3k_{12c} = 0.
\]

Namely

\[
k_9 = 2c_0 \frac{k_{10c} + k_{11c} + k_{12c}}{c_1^2 + c_2^2 + c_3^2}.
\] \hspace{1cm} (226)

\[
a_0k_{13g} + 2a_1k_{14g} x + 2a_2k_{15g} y + 2a_3k_{16g} z = a_0k_{13c} e - \frac{a_0q(aq + c_1 + c_2 + c_3)}{a_1e^2 + a_2e^2 + a_3e^2} a_1k_{14c} + a_2k_{15c} + a_3k_{16c} = 0.
\]

Namely

\[
k_9 = 2c_0 \frac{k_{14c} + k_{15c} + k_{16c}}{c_1^2 + c_2^2 + c_3^2}.
\] \hspace{1cm} (227)

So (217) is simplified as

\[
\begin{align*}
&u_t - a^2 (u_{xx} + u_{yy} + u_{zz}) \\
&= -a^2 (k_2^2 + k_3^2 + k_4^2) gh_{TT} - a^2 (k_6^2 + k_7^2 + k_8^2) gh_{XX} - a^2 (k_{10}^2 + k_{11}^2 + k_{12}^2) gh_{YY} \\
&- a^2 (k_{14}^2 + k_{15}^2 + k_{16}^2) gh_{ZZ} - 2a^2 (k_{2} k_{6} + k_{3} k_{7} + k_{4} k_{8}) gh_{TX} \\
&- 2a^2 (k_{2} k_{10} + k_{3} k_{11} + k_{4} k_{12}) gh_{TY} - 2a^2 (k_{2} k_{14} + k_{3} k_{15} + k_{4} k_{16}) gh_{TZ} \\
&- 2a^2 (k_{6} k_{10} + k_{7} k_{11} + k_{8} k_{12}) gh_{XY} - 2a^2 (k_{6} k_{14} + k_{7} k_{15} + k_{8} k_{16}) gh_{XZ} \\
&- 2a^2 (k_{10} k_{14} + k_{11} k_{15} + k_{12} k_{16}) gh_{YZ} = A (X, Y, Z, T).
\end{align*}
\]

Set

\[
k_6^2 + k_7^2 + k_8^2 = k_2^2 + k_4^2 + k_5^2 = k_2^2 + k_4^2 + k_5^2 = k_{14}^2 + k_{15}^2 + k_{16}^2 = 0.
\] \hspace{1cm} (229)

We have

\[
k_6 = \pm \sqrt{-k_2^2 - k_4^2}, k_{10} = \pm \sqrt{-k_2^2 - k_5^2}, k_{14} = \pm \sqrt{-k_1^2 - k_1^2}.
\] \hspace{1cm} (230)
Further set
\[a_1 k_2 k_6 + a_2 k_3 k_7 + a_3 k_4 k_8 = a_1 k_2 k_{10} + a_2 k_3 k_{11} + a_3 k_4 k_{12} = a_1 k_2 k_{14} + a_2 k_3 k_{15} + a_3 k_4 k_{16} = a_1 k_6 k_{10} + a_2 k_7 k_{11} + a_3 k_8 k_{12} = a_1 k_6 k_{14} + a_2 k_7 k_{15} + a_3 k_8 k_{16} = a_1 k_{10} k_{14} + a_2 k_{11} k_{15} + a_3 k_{12} k_{16} = 0. \] (231)

Similar to the solving method of (63), we obtain
\[k_7 k_{12} = k_8 k_{11}, k_7 k_{16} = k_8 k_{15}, k_{11} k_{16} = k_{12} k_{15}, \] (232)
and
\[u_t - a^2 (u_{xx} + u_{yy} + u_{zz}) = -a^2 (k_2^2 + k_3^2 + k_4^2) gh_{TT} = A (X, Y, Z, T). \] (233)
The special solution of Eq. (233) is
\[h = - \int \int \frac{A (X, Y, Z, T)}{a^2 (k_2^2 + k_3^2 + k_4^2) g} dTdT. \]
Similar to Eq. (67), it can be verified that the excrescent general solutions of Eq. (223) is
\[h = h_1 (X, Y, Z) + Th_2 (X, Y, Z) - \int \int \frac{A (X, Y, Z, T)}{a^2 (k_2^2 + k_3^2 + k_4^2) g} dTdT. \]
We do not carry out specific analysis.
So the special solution of Eq. (209) is
\[u = -g \int \int \frac{A (X, Y, Z, T)}{a^2 (k_2^2 + k_3^2 + k_4^2) g} dTdT. \] (234)
Combining (201), we can have the basic general solution of Eq. (209).

For the 2D nonhomogeneous heat equation
\[u_t - a^2 (u_{xx} + u_{yy}) = A (x, y, t). \]
By the similar method we can get its particular solution and general solution.

4.3. Schrödinger Equation

Linear [29-31] and nonlinear [32, 33] stationary state Schrödinger equation are the focus of current research. Consider the following linear equation
\[\frac{\hbar^2}{2m} \triangle u - (V (x, y, z) - E) u = 0, \] (235)
where \(m \) is the mass of the described particle and \(\hbar \) is the reduced Plank constant, by \(Z_2 \) Transformation, set
\[u (x, y, z) = f (v) = f (k_1 x + k_2 y + k_3 z + k_4), \] (236)
\[V (x, y, z) - E = a (v) = a (k_1 x + k_2 y + k_3 z + k_4), \] (237)
where \(v(x, y, z) = k_1 x + k_2 y + k_3 z + k_4, k_1 - k_4 \) are known parameters, \(V(x, y, z) - E = a(v) \) is a known function, \(f \) is an undetermined second differentiable function, then
\[\frac{\hbar^2}{2m} \triangle u - (V (x, y, z) - E) u = \frac{\hbar^2}{2m} (k_1^2 + k_2^2 + k_3^2) f''_v - a (v) f = 0. \]
Namely

\[f'' + b(v) f = 0. \] \hspace{1cm} (238)

where

\[b(v) = \frac{-2m(V(x,y,z) - E)}{\hbar^2 (k_1^2 + k_2^2 + k_3^2)}. \] \hspace{1cm} (239)

If \(b(v) \) is some special function \([34]\), Eq. (238) has a particular solution and its general solution may be obtained by the law of second-order linear ODEs (LODEs), such as

\[b(v) = -c,cv^n + n v^{n-1}, \] \hspace{1cm} (240)

\[V(x,y,z) = a(v) + E = \frac{c\hbar^2 (k_1^2 + k_2^2 + k_3^2)}{2m} (cv^n + n v^{n-1}) + E, \] \hspace{1cm} (241)

where \(c \) is an arbitrary constant, the particular solution of Eq. (238) under the condition of (241) is

\[f(v) = \exp\left(\frac{cv^{n+1}}{n+1}\right) = \exp\left(\frac{c(k_1 x + k_2 y + k_3 z + k_4)^{n+1}}{n+1}\right). \]

So the particular solution of Eq. (235) under the condition of (241) is

\[u(x,y,z) = \exp\left(\frac{c(k_1 x + k_2 y + k_3 z + k_4)^{n+1}}{n+1}\right), \] \hspace{1cm} (242)

For getting the general solution of Eq. (235) under the condition of (241), according to \(Z_3\) Transformation, we set

\[u(x,y,z) = g(x,y,z) h(w) = g(x,y,z) h(l_1 x + l_2 y + l_3 z + l_4), \] \hspace{1cm} (243)

where \(w(x,y,z) = l_1 x + l_2 y + l_3 z + l_4, l_1 - l_4 \) are parameters to be determined, \(h(w) \) and \(g(x,y,z) \) are undetermined second differentiable function, so

\[u_{xx} = h g_{xx} + 2 l_1 g_x h'_{w} + l_1^2 g h''_{w}, \] \hspace{1cm} (244)

\[u_{yy} = h g_{yy} + 2 l_2 g_y h'_{w} + l_2^2 g h''_{w}, \] \hspace{1cm} (245)

\[u_{zz} = h g_{zz} + 2 l_3 g_z h'_{w} + l_3^2 g h''_{w}. \] \hspace{1cm} (246)

Then

\[\frac{\hbar^2}{2m} \Delta u - V((x,y,z) - E) u \]

\[= \frac{\hbar^2}{2m} (l_1^2 + l_2^2 + l_3^2) g h''_{w} + \frac{\hbar^2}{m} (l_1 g_x + l_2 g_y + l_3 g_z) h'_{w} \]

\[+ \left(\frac{\hbar^2}{2m} g_{xx} + \frac{\hbar^2}{2m} g_{yy} + \frac{\hbar^2}{2m} g_{zz} + (V(x,y,z) - E) g \right) h = 0. \] \hspace{1cm} (247)

Set \(h(w) \) an arbitrary second differentiable function, by (247) we get

\[l_1^2 + l_2^2 + l_3^2 = 0 \implies l_4 = \pm \sqrt{-l_1^2 - l_2^2}, \] \hspace{1cm} (248)

\[l_1 g_x + l_2 g_y + l_3 g_z = 0, \] \hspace{1cm} (249)
According to Substituting from (251) into (249) we get

\[
\frac{h^2}{2m} g_{xx} + \frac{h^2}{2m} g_{yy} + \frac{h^2}{2m} g_{zz} + (V(x, y, z) - E) g = 0. \tag{250}
\]

By (242), the particular solution of Eq. (250) on the condition of (241) is

\[
g(x, y, z) = \exp\left(\frac{c(k_1 x + k_2 y + k_3 z + k_4)^{n+1}}{n + 1}\right). \tag{251}
\]

Substituting from (251) into (249) we get

\[
l_1 c k_1 (k_1 x + k_2 y + k_3 z + k_4)^n \exp\left(\frac{c(k_1 x + k_2 y + k_3 z + k_4)^{n+1}}{n + 1}\right)
+ l_2 c k_2 (k_1 x + k_2 y + k_3 z + k_4)^n \exp\left(\frac{c(k_1 x + k_2 y + k_3 z + k_4)^{n+1}}{n + 1}\right)
+ l_3 c k_3 (k_1 x + k_2 y + k_3 z + k_4)^n \exp\left(\frac{c(k_1 x + k_2 y + k_3 z + k_4)^{n+1}}{n + 1}\right) = 0
\]

\[
\Rightarrow l_1 = \frac{-k_2 l_2 - k_3 l_3}{k_1} = \pm \sqrt{-l_2^2 - l_3^2}
\]

Namely

\[
l_2 = \frac{-k_1 k_2 l_3 \pm \sqrt{-k_1^2 l_2^2 - k_1^2 k_2^2 l_3^2 - k_3^2 k_1^2 l_2^2}}{k_1^2 + k_2^2}. \tag{252}
\]

Then

\[
u(x, y, z) = g(x, y, z) h(w) = \exp\left(\frac{c(k_1 x + k_2 y + k_3 z + k_4)^{n+1}}{n + 1}\right) h(l_1 x + l_2 y + l_3 z + l_4).
\]

So the general solution of Eq. (235) on the condition of (241) is

\[
u = g(h(w_1) + h(w_2))
= \exp\left(\frac{c(k_1 x + k_2 y + k_3 z + k_4)^{n+1}}{n + 1}\right)
\left(h_1 \left(\sqrt{-l_2^2 - l_3^2} x + l_2 y + l_3 z + l_4\right) + h_2 \left(-\sqrt{-l_2^2 - l_3^2} x + l_2 y + l_3 z + l_4\right)\right), \tag{253}
\]

where \(h_1\) and \(h_2\) are arbitrary second differentiable unary function, \(k_1 - k_4\) and \(c\) are determinate parameters, \(l_3, l_4, l_{13}\) and \(l_{14}\) are arbitrary constants, \(l_{12} = \frac{-k_1 k_2 l_3 l_{13} \pm l_{13} \sqrt{-k_1^2 l_2^2 - k_1^2 k_2^2 - k_3^2 k_1^2 l_2^2}}{k_1^2 + k_2^2}\).

Time dependent Schrödinger equation is always the focus of research [35-40], in addition, the related nonlinear equation [41, 42] and the time fractional Schrödinger equations (TFSEs) [43, 44] are the deeply researched field. Consider the following linear equation

\[
i h u_t + \frac{h^2}{2m} \Delta u - V(x, y, z, t) u = 0. \tag{254}
\]

According to \(Z_2\) Transformation, set

\[
u(x, y, z, t) = f(v) = f(k_1 x + k_2 y + k_3 z + k_4 t + k_5), \tag{255}
\]
\[V(x, y, z, t) = a(v) = a(k_1 x + k_2 y + k_3 z + k_4 t + k_5), \quad (256) \]

where \(v = k_1 x + k_2 y + k_3 z + k_4 t + k_5, k_1 - k_5 \) are known parameters, \(V(x, y, z, t) = a(v) \) is a known function, \(f \) is an undetermined second differentiable function, then

\[i h u_t + \frac{h^2}{2m} \triangle u - V(x, y, z, t) u = i h k_4 f'_v + \frac{h^2}{2m} \left(k_1^2 + k_2^2 + k_3^2 \right) f''_v - a(v) f = 0. \]

Namely

\[f''_v + k f'_v + b(v) f = 0, \quad (257) \]

where

\[k = \frac{i 2 m k_4}{h \left(k_1^2 + k_2^2 + k_3^2 \right)}, \quad b(v) = \frac{-2 m a(v)}{h^2 \left(k_1^2 + k_2^2 + k_3^2 \right)}. \quad (258) \]

If \(b(v) \) is some special function \([34]\), Eq. (257) has a particular solution, such as

\[b(v) = c \left(-c v^{2n} + k v^n + n v^{n-1} \right). \]

The particular solution of Eq. (257) is

\[f(v) = \exp \left(-\frac{c v^{n+1}}{n+1} \right). \]

Namely

\[V(x, y, z, t) = a(v) = \frac{-c h^2 \left(k_1^2 + k_2^2 + k_3^2 \right)}{2m} \left(-c v^{2n} + k v^n + n v^{n-1} \right). \quad (259) \]

The particular solution of Eq. (254) on the condition of (259) is

\[u(x, y, z, t) = \exp \left(-\frac{c (k_1 x + k_2 y + k_3 z + k_4 t + k_5)^{n+1}}{n+1} \right). \quad (260) \]

By

\[f''_v + (g(v) + h(v)) f'_v + \left(g(v) h(v) + g'_v \right) f = 0. \quad (261) \]

The particular solution of Eq. (261) is

\[f(v) = \exp \left(-\int g(v) \, dv \right). \quad (262) \]

Set \(h(v) = -g(v) + k \), where \(g(v) \) is an arbitrary unary first differentiable function, then

\[b(v) = -g^2(v) + k g(v) + g'_v. \quad (263) \]

Namely

\[V(x, y, z, t) = a(v) = \frac{h^2 \left(k_1^2 + k_2^2 + k_3^2 \right)}{2m} \left(g^2(v) - k g(v) - g'_v \right). \quad (264) \]

The particular solution of Eq. (254) on the condition of (264) is

\[u(x, y, z, t) = f(v) = \exp \left(-\int g(v) \, dv \right). \quad (265) \]

For getting the general solution of Eq. (254) on the condition of (259), according to \(Z_3 \) Transformation, we set

\[u(x, y, z, t) = g(x, y, z, t) h(w) = g(x, y, z, t) h \left(l_1 x + l_2 y + l_3 z + l_4 t + l_5 \right), \quad (266) \]
where \(w = l_1 x + l_2 y + l_3 z + l_4 t + l_5 \), \(l_1 - l_5 \) are constants to be determined, \(h \) and \(g \) are undetermined second differentiable functions, by (266), we have

\[
-i h u_t + \frac{h^2}{2m} \triangle u - V(x, y, z, t) u = \frac{h^2}{2m} (l_1^2 + l_2^2 + l_3^2) g h'' + h \left(i l_4 g + \frac{h}{m} l_1 g_x + \frac{h}{m} l_2 g_y + \frac{h}{m} l_3 g_z \right) h' + \left(i h g_t + \frac{h^2}{2m} g_{xx} + \frac{h^2}{2m} g_{yy} + \frac{h^2}{2m} g_{zz} - V g \right) h = 0.
\] (267)

Set \(h(w) \) an arbitrary second differentiable function, by (267) we get

\[
l_1^2 + l_2^2 + l_3^2 = 0 \implies l_1 = \pm \sqrt{-l_2^2 - l_3^2},
\] (268)

\[
i l_4 g + \frac{h}{m} l_1 g_x + \frac{h}{m} l_2 g_y + \frac{h}{m} l_3 g_z = 0,
\] (269)

\[
i h g_t + \frac{h^2}{2m} g_{xx} + \frac{h^2}{2m} g_{yy} + \frac{h^2}{2m} g_{zz} - V g = 0.
\] (270)

By (260) the particular solution of Eq. (270) on the condition of (259) is

\[
g(x, y, z, t) = \exp \left(-\frac{c(k_1 x + k_2 y + k_3 z + k_4 t + k_5)^{n+1}}{n + 1} \right).
\] (271)

Substituting from (271) into (269) we get

\[
-i l_4 \exp \left(-\frac{c(k_1 x + k_2 y + k_3 z + k_4 t + k_5)^{n+1}}{n + 1} \right)
- \frac{h}{m} l_1 c k_1 (k_1 x + k_2 y + k_3 z + k_4 t + k_5)^n \exp \left(-\frac{c(k_1 x + k_2 y + k_3 z + k_4 t + k_5)^{n+1}}{n + 1} \right)
- \frac{h}{m} l_2 c k_2 (k_1 x + k_2 y + k_3 z + k_4 t + k_5)^n \exp \left(-\frac{c(k_1 x + k_2 y + k_3 z + k_4 t + k_5)^{n+1}}{n + 1} \right)
- \frac{h}{m} l_3 c k_3 (k_1 x + k_2 y + k_3 z + k_4 t + k_5)^n \exp \left(-\frac{c(k_1 x + k_2 y + k_3 z + k_4 t + k_5)^{n+1}}{n + 1} \right) = 0.
\]

Namely

\[
l_4 = -\frac{hc}{m} (l_1 k_1 + l_2 k_2 + l_3 k_3) (k_1 x + k_2 y + k_3 z + k_4 t + k_5)^n.
\] (272)

Since \(l_4 \) is a constant and is not a function of \(x, y, z \) and \(t \), if (271) is the particular solution of Eq. (270), by (272) \(n \) must equal 0, then

\[
V = -\frac{ch^2 (k_1^2 + k_2^2 + k_3^2)}{2m} (-cu^2 + kv^2 + nu^2) = -\frac{ch^2 (k_1^2 + k_2^2 + k_3^2)}{2m} (-c + k).
\] (273)

Since \(k_1 - k_5, k \) and \(c \) are determinate constants, so \(V(x, y, z, t) \) is an determinate constants too, namely

\[
l_4 = -\frac{hc}{m} (l_1 k_1 + l_2 k_2 + l_3 k_3).
\] (274)

Then

\[
u = gh = \exp \left(-\frac{c(k_1 x + k_2 y + k_3 z + k_4 t + k_5)^{n+1}}{n + 1} \right) h (l_1 x + l_2 y + l_3 z + l_4 t + l_5).
\]
So the general solution of Eq. (254) on the condition of (273) is
\[u = g \left(h(u_1) + h(u_2) \right) = e^{-c(k_1x+k_2y+k_3z+k_4t+k_5)} \]
\[\left(h_1 \left(\sqrt{-l_{12}^2 - l_{13}^2} x + l_{12}y + l_{13}z + l_{14}t + l_{15} \right) \right) + h_2 \left(-\sqrt{l_{12}^2 - l_{13}^2} x + l_{12}y + l_{13}z + l_{14}t + l_{15} \right) \]
(275)
where \(h_1 \) and \(h_2 \) are arbitrary second differentiable functions, \(l_{14} = -\frac{m}{c} (l_{11}k_1 + l_{12}k_2 + l_{13}k_3) \), \(l_2, l_3, l_5, l_{12}, l_{13} \) and \(l_{15} \) are arbitrary constants.

According to \(Z_3 \) Transformation, if set
\[u(x, y, z, t) = g(x, y, z, t) h(X, Y, Z, T), \]
where
\[
\begin{align*}
T &= k_1 t + k_2 x + k_3 y + k_4 z, \\
X &= k_5 t + k_6 x + k_7 y + k_8 z, \\
Y &= k_9 t + k_{10} x + k_{11} y + k_{12} z, \\
Z &= k_{13} t + k_{14} x + k_{15} y + k_{16} z,
\end{align*}
\]
\[
\frac{\partial (X, Y, Z, T)}{\partial (x, y, z, t)} = k_4 k_7 k_10 k_{13} - k_3 k_8 k_10 k_{13} - k_4 k_6 k_{11} k_{13} + k_2 k_8 k_{11} k_{13} + k_3 k_6 k_{12} k_{13} - k_2 k_7 k_{12} k_{13} - k_4 k_7 k_9 k_{14} + k_3 k_8 k_9 k_{14} + k_4 k_3 k_{11} k_{14} - k_1 k_8 k_{11} k_{14} - k_3 k_3 k_{12} k_{14} + k_1 k_7 k_{12} k_{14} + k_4 k_6 k_{13} k_{15} - k_3 k_8 k_{10} k_{15} + k_1 k_8 k_{10} k_{15} + k_2 k_5 k_{12} k_{15} - k_1 k_6 k_{12} k_{15} - k_3 k_6 k_9 k_{16} + k_2 k_7 k_9 k_{16} + k_3 k_5 k_{10} k_{16} - k_1 k_7 k_{10} k_{16} - k_3 k_5 k_{11} k_{16} + k_1 k_6 k_{11} k_{16} \neq 0.
\]
It can be verified that we only obtain excrecent general solutions of Eq. (254) on the condition of (273), which is similar to Eq. (235), and do not carry out specific analysis.

Consider the following initial value problem of Eq. (254) on the condition of (273)
\[u(x, y, z, 0) = e^{x+y+z} \left(\varphi_1 \left(\sqrt{-2} x + y + z \right) + \varphi_2 \left(-\sqrt{-2} x + y + z \right) \right), \]
(276)
\[u_t(x, y, z, 0) = e^{x+y+z} \left(\varphi_1 \left(\sqrt{-2} x + y + z \right) + \varphi_2 \left(-\sqrt{-2} x + y + z \right) \right) + \frac{h}{m} e^{x+y+z} \left((2 + \sqrt{-2}) \varphi_1' \left(\sqrt{-2} x + y + z \right) + (2 - \sqrt{-2}) \varphi_2' \left(-\sqrt{-2} x + y + z \right) \right). \]
(277)
Comparing (275) with (276) we have
\[k_1 = k_2 = k_3 = -\frac{1}{c}, l_2 = l_3 = l_{12} = l_{13} = 1, k_5 = l_5 = l_{15} = 0. \]
By further calculation which is in Appendix D, the exact solutions of the initial value problem is
\[u = e^{x+y+z+t} \left(\varphi_1(\sqrt{-2} x + y + z + \frac{h}{m} (2 + \sqrt{-2}) t) + \varphi_2(-\sqrt{-2} x + y + z + \frac{h}{m} (2 - \sqrt{-2}) t) \right). \]
(278)
When \(V(x, y, z, t) \) is a constant, Eq. (254) is also an important case of the diffusion equation with a source [45], its general solution and the exact solutions of the Cauchy problem are
applicable to the diffusion equation.

5. Conclusions

In this paper, we propose a verification axiom and a conjecture that the general solution of PDEs is related to the spatial dimension, and put forward a concept and the relevant law of the equivalent function.

In order to effectively solve the linear and nonlinear PDEs, we propose three kinds of Z transformations. According to the actual case, we find that the arbitrary constants in solutions of PDEs have two types which are absolutely arbitrary constants and relatively arbitrary constants. We find the limitation of the characteristic equation method to solve some first order PDEs.

Since mathematical physics equations (MPEs) are very important in PDEs, their progress is always been noticed especially [46]. In this paper, we have obtained the general solutions and exact solutions of the problems of definite solutions of various typical MPEs, and found that in the more universal case PDEs have basic general solution, series general solution, transformational general solution, generalized series general solution and so on.

Appendix A

In (37) it can be proved that if $k_1,l_1 \neq 0$ and $k_1,l_1 \rightarrow 0$, c_1v can be described by f_1 and f_2, set

$$k_i = l_i = C_i, (i = 2, 3, \ldots, n + 1).$$

Then

$$f_1 = f_1 (kx_1 + C_2x_2 + \ldots + C_nx_n + C_{n+1}),$$

$$f_2 = f_2 (-kx_1 + C_2x_2 + \ldots + C_nx_n + C_{n+1}),$$

where

$$k = \left(-\frac{a_2C_2^2 + a_3C_3^2 + \ldots + a_nC_n^2 + a_{n+1}C_2C_3}{a_1}\right)^{\frac{1}{2}}.$$

Set

$$Ac_1(kx_1 + C_2x_2 + \ldots + C_nx_n + C_{n+1}) + Bc_1(-kx_1 + C_2x_2 + \ldots + C_nx_n + C_{n+1}) = (A + B)c_1(C_1x_1 + C_2x_2 + \ldots + C_nx_n + C_{n+1}) \implies C_1 = \frac{A - B}{A + B}k.$$

If $A = B \neq 0$, then $\frac{A - B}{A + B} = 0$. If $B = -A + 1$, then

$$\lim_{A \to \infty} \frac{A - B}{A + B} = \lim_{A \to \infty} (2A - 1) \rightarrow \infty, \quad \lim_{A \to \infty} \frac{A - B}{A + B} = \lim_{A \to \infty} (2A - 1) \rightarrow -\infty.$$

Namely $\frac{A - B}{A + B} \in (-\infty, \infty)$, if $k \neq 0$ and $k \rightarrow 0$, selecting A, B felicitously, C_1 may equal to arbitrary real number, so c_1v can be described by f_1, f_2, and

$$c_1v = c_1 (C_1x_1 + C_2x_2 + \ldots + C_nx_n + C_{n+1})$$

$$= \frac{Ac_1}{A + B} (kx_1 + C_2x_2 + \ldots + C_nx_n + C_{n+1})$$

$$+ \frac{Bc_1}{A + B} (-kx_1 + C_2x_2 + \ldots + C_nx_n + C_{n+1}),$$

where $C_1 = \frac{A - B}{A + B}k$.
Appendix B

The calculation of (43) as follows.
In (40), set \(c_1 = 0, k_{ij} = l_{ij}, (i = 1, 2, \ldots, s, j = 2, 3, \ldots, n + 1)\)
\[
k_{i1} = \left(-\left(a_2 k_{i2}^2 + \ldots + a_{n+1} k_{i(n+1)}^2 / a_1 \right)^{\frac{1}{2}} \right).
\] (44)

According to (40)-(42)
\[
u(x_2, x_3, \ldots, x_n) = \sum_{i=1}^{s} \left(f_1(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}) + f_2(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)})\right)
\]
\[= \sum_{i=1}^{s} \varphi_i(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}),
\]
\[
u_x(x_2, x_3, \ldots, x_n) = \sum_{i=1}^{s} \left(k_{i1} f_1(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}) - k_{i1} f_2'(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)})\right)
\]
\[= \sum_{i=1}^{s} \psi_i(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}).
\]

We have
\[
f_1(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}) + f_2(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)})
= \varphi_i(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}),
\] (279)
\[
k_{i1} f_1'(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}) - k_{i1} f_2'(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)})
= \psi_i(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}),
\] (280)

According to (280) we get
\[
f_1(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}) - \frac{1}{k_{i1}} \int_{k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}} \psi(\xi) d\xi + f_1(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)})\]
\[\quad - f_2(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)})
\] (281)

Combining (279) and (281), then
\[
f_1(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)})
= \frac{1}{2} \varphi_i(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}) + \frac{1}{k_{i1}} \int_{k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}} \psi(\xi) d\xi \]
\[\quad + \frac{1}{2} f_1(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}) - \frac{1}{2} f_2(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)})
\]
\[\implies f_1(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)})
\]
\[
f_2(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)})
\]
\[\]
\[
f_1(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}) - \frac{1}{k_{i1}} \int_{k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}} \psi(\xi) d\xi \]
\[\quad + \frac{1}{2} f_1(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}) + \frac{1}{k_{i1}} \int_{k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}} \psi(\xi) d\xi\]
\[\quad + \frac{1}{2} f_1(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}) - \frac{1}{2} f_2(k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)})
\]
\[\implies f_1(-k_{i1} x_1 + k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)})
\]
\[
f_2(-k_{i1} x_1 + k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)})
\]
\[\]
\[
f_1(-k_{i1} x_1 + k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}) - \frac{1}{k_{i1}} \int_{-k_{i1} x_1 + k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}} \psi(\xi) d\xi \]
\[\quad + \frac{1}{2} f_1(-k_{i1} x_1 + k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}) + \frac{1}{k_{i1}} \int_{-k_{i1} x_1 + k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}} \psi(\xi) d\xi\]
\[\quad - \frac{1}{2} f_1(-k_{i1} x_1 + k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)}) + \frac{1}{2} f_2(-k_{i1} x_1 + k_{i2} x_2 + \ldots + k_{in} x_n + k_{i(n+1)})
\].
In the conditions of (41) and (42), the exact solution of Eq. (38) is

$$u = \frac{1}{2} \sum_{i=1}^{s} (\varphi_i(k_i, x_1 + k_i x_2 + \ldots + k_i x_n + k_i x_{n+1})$$

$$+ \varphi_i(-k_i, x_1 + k_i x_2 + \ldots + k_i x_n + k_i x_{n+1})$$

$$+ \frac{1}{k_i} \int_{-k_i x_1 + k_i x_2 + \ldots + k_i x_n + k_i x_{n+1}} \psi(\zeta_i) d\zeta_i).$$

Appendix C

In \mathbb{R}^n, using Z_1 Transformation to get the general solution of

$$a_1 u_{x_1} + a_2 u_{x_2} = A(x_1, x_2, \ldots, x_n),$$

where a_1 and a_2 are arbitrary known constants, $A(x_1, x_2, \ldots, x_n)$ is any known function.

According to Z_1 Transformation, set

$$y_1 = k_1 x_1 + k_2 x_2, y_2 = k_3 x_1 + k_4 x_2,$$

where $k_1 - k_4$ are undetermined constants, and set

$$\frac{\partial}{\partial x_1} (y_1, y_2, x_3, x_4, \ldots, x_n) = k_1 k_4 - k_2 k_3 \neq 0.$$ (284)

By Eq. (283), we get

$$x_1 = \frac{k_4 y_1 - k_2 y_2}{k_1 k_4 - k_2 k_3}, x_2 = \frac{-k_3 y_1 + k_1 y_2}{k_1 k_4 - k_2 k_3}.$$ (285)

Then

$$a_1 u_{x_1} + a_2 u_{x_2}$$

$$= (a_1 k_1^2 + a_2 k_2^2) u_{y_1 y_1} + (a_1 k_3^2 + a_2 k_4^2) u_{y_2 y_2} + 2 (a_1 k_3 + a_2 k_4) u_{y_1 y_2}$$

$$= A(x_1, x_2, \ldots, x_n).$$ (286)

Set

$$a_1 k_1^2 + a_2 k_2^2 = a_1 k_3^2 + a_2 k_4^2 = 0 \implies k_1 = \pm \sqrt{-\frac{a_2}{a_1}}, k_3 = \pm \sqrt{-\frac{a_2}{a_1}}.$$ (287)

And set

$$k_1 k_4 - k_2 k_3 = 2 \sqrt{-\frac{a_2}{a_1}} k_2 k_4 \neq 0.$$ (288)

So

So

Thus

$$a_1 u_{x_1} + a_2 u_{x_2} = 2 (a_1 k_1 k_3 + a_2 k_2 k_4) u_{y_1 y_2}$$

$$= 2 \left(-a_1 \sqrt{-\frac{a_2}{a_1}} k_2 \sqrt{-\frac{a_2}{a_1}} k_4 + a_2 k_2 k_4 \right) u_{y_1 y_2}$$

$$= 4 a_2 k_2 k_4 u_{y_1 y_2} = A(x_1, x_2, \ldots, x_n).$$ (289)

So the general solution of Eq. (282) is

$$u = f_1(y_1, x_3, x_4, \ldots, x_n) + f_2(y_2, x_3, x_4, \ldots, x_n) + \frac{\int A(x_1, x_2, \ldots, x_n) dy_1 dy_2}{4 a_2 k_2 k_4},$$
where

\[y_1 = \sqrt{\frac{-a_2}{a_1} k_2 x_1 + k_2 x_2}, \quad y_2 = -\sqrt{\frac{-a_2}{a_1} k_4 x_1 + k_4 x_2}, \]

\(f_1 \) and \(f_2 \) are arbitrary second differentiable functions, \(k_2 \) and \(k_4 \) are relatively arbitrary constants which cannot equal to zero.

If set \(k_2 = k_4 = 1 \).

Then
\[x_1 = \frac{k_4 y_1 - k_2 y_2}{k_1 k_4 - k_2 k_3}, \quad x_2 = \frac{-k_3 y_1 + k_1 y_2}{k_1 k_4 - k_2 k_3} = y_1 + y_2. \]

The general solution of Eq. (282) may be written as

\[u = f_1 \left(\sqrt{\frac{-a_2}{a_1} x_1} + x_2, x_3, x_4, \ldots x_n \right) + f_2 \left(-\sqrt{\frac{-a_2}{a_1} x_1} + x_2, x_3, x_4, \ldots x_n \right) + \frac{1}{4a_2} \iint A \left(\sqrt{\frac{-a_1}{a_2} \frac{y_1 - y_2}{2}, \frac{y_1 + y_2}{2}}, x_3, x_4, \ldots x_n \right) dy_1 dy_2, \] (290)

where
\[y_1 = \sqrt{\frac{-a_2}{a_1} x_1 + x_2}, \] (291)
\[y_2 = -\sqrt{\frac{-a_2}{a_1} x_1 + x_2}. \] (292)

In \(\mathbb{R}^2 \), the form of the nonhomogeneous 1D wave equation in Cartesian coordinate system is

\[u_{tt} - a^2 u_{xx} = A(x, t). \] (293)

According to (290-292), its basic general solution is

\[u = f_1 (x + at) + f_2 (x - at) - \frac{1}{4a^2} \iint A \left(\frac{y_1 - y_2}{2a}, \frac{y_1 + y_2}{2} \right) dy_1 dy_2, \] (294)

where
\[y_1 = x + at, \quad y_2 = x - at. \] (295)

Consider the following initial value problem of Eq. (293)

\[u(0, x) = \varphi(x), \] (266)
\[u_t(0, x) = \psi(x). \] (267)

Set
\[B(t, x) = -\frac{1}{4a^2} \iint A \left(\frac{y_1 - y_2}{2a}, \frac{y_1 + y_2}{2} \right) dy_1 dy_2. \] (298)

Then
\[u(0, x) = f_1(x) + f_2(x) + B(0, x) = \varphi(x), \] (299)
\[u_t(0, x) = a f'_1(x) - a f'_2(x) + B_t(0, x) = \psi(x). \] (300)

So
\[f_1(x) + f_2(x) = \varphi(x) - B(0, x), \]
\[a f'_1(x) - a f'_2(x) = \psi(x) - B_t(0, x) \Rightarrow f_1(x) - f_2(x) = \frac{1}{a} \int_{x_0}^{x} (\psi(\xi) - B_t(0, \xi)) d\xi. \]
Then comparing (275) with (276) we have

\[f_1(x) = \frac{1}{2} \left(\varphi(x) - B(0,x) + \frac{1}{a} \int_{x_0}^{x} (\psi(\xi) - B_t(0,\xi)) \, d\xi \right) \]

\[\Rightarrow f_1(x + at) = \frac{1}{2} \left(\varphi(x + at) - B(0,x + at) + \frac{1}{a} \int_{x_0}^{x+at} (\psi(\xi) - B_t(0,\xi)) \, d\xi \right) , \]

\[f_2(x) = \frac{1}{2} \left(\varphi(x) - B(0,x) - \frac{1}{a} \int_{x_0}^{x} (\psi(\xi) - B_t(0,\xi)) \, d\xi \right) \]

\[\Rightarrow f_2(x - at) = \frac{1}{2} \left(\varphi(x - at) - B(0,x - at) - \frac{1}{a} \int_{x_0}^{x-at} (\psi(\xi) - B_t(0,\xi)) \, d\xi \right) . \]

Thus

\[u = f_1(x + at) + f_2(x - at) + B(t, x) \]

\[= \frac{1}{2} \left(\varphi(x + at) - B(0,x + at) + \frac{1}{a} \int_{x_0}^{x+at} (\psi(\xi) - B_t(0,\xi)) \, d\xi \right) \]

\[+ \frac{1}{2} \left(\varphi(x - at) - B(0,x - at) - \frac{1}{a} \int_{x_0}^{x-at} (\psi(\xi) - B_t(0,\xi)) \, d\xi \right) + B(t, x) . \]

So the exact solution of Eq. (293) on the conditions of (296) and (297) is

\[u = \frac{1}{2} \left(\varphi(x + at) + \varphi(x - at) - B(0, x + at) - B(0, x - at) + \frac{1}{a} \int_{x_0}^{x+at} (\psi(\xi) - B_t(0,\xi)) \, d\xi \right) \]

\[+ B(t, x) . \]

(301)

Appendix D

Consider the following initial value problem of Eq. (254) on the condition of (273)

\[u(x, y, z, 0) = e^{x+y+z} \left(\varphi_1(\sqrt{-2}x + y + z) + \varphi_2(-\sqrt{-2}x + y + z) \right) , \]

(276)

\[u_t(x, y, z, 0) \]

\[= e^{x+y+z} \left(\varphi_1(\sqrt{-2}x + y + z) + \varphi_2(-\sqrt{-2}x + y + z) \right) \]

\[+ \frac{h}{m} e^{x+y+z} \left((2 + \sqrt{-2}) \varphi_1'(\sqrt{-2}x + y + z) + (2 - \sqrt{-2}) \varphi_2'(\sqrt{-2}x + y + z) \right) . \]

(277)

Comparing (275) with (276) we have

\[k_1 = k_2 = k_3 = -\frac{1}{c} , l_2 = l_3 = l_{12} = l_{13} = 1 , k_5 = l_5 = l_{15} = 0 . \]

Then

\[u(x, y, z, t) = e^{x+y+z-ckt} \left(h_1(\sqrt{-2}x + y + z + \frac{h}{m}(2 + \sqrt{-2})t) \right. \]

\[+ h_2(-\sqrt{-2}x + y + z + \frac{h}{m}(2 - \sqrt{-2})t) , \]

\[(x, y, z, t) = -ck_4 e^{x+y+z-ckt} \left(h_1(\sqrt{-2}x + y + z + \frac{h}{m}(2 + \sqrt{-2})t) \right. \]

\[+ h_2(-\sqrt{-2}x + y + z + \frac{h}{m}(2 - \sqrt{-2})t) \]

\[+ \frac{h}{m} (2 + \sqrt{-2}) h_1'(\sqrt{-2}x + y + z + \frac{h}{m}(2 + \sqrt{-2})t) \]

\[\left. + \frac{h}{m} (2 - \sqrt{-2}) h_2'(\sqrt{-2}x + y + z + \frac{h}{m}(2 - \sqrt{-2})t) . \right) \]
Thus

\[u(x, y, z, 0) = e^{x+y+z} (\varphi_1(\sqrt{-2}x + y + z) + \varphi_2(-\sqrt{-2}x + y + z)) \]

\[= e^{x+y+z} (h_1(\sqrt{-2}x + y + z) + h_2(-\sqrt{-2}x + y + z)) \]

\[\Rightarrow h_1(\sqrt{-2}x + y + z) = \varphi_1(\sqrt{-2}x + y + z) \]

\[\Rightarrow h_1\left(\sqrt{-2}x + y + z + \frac{h}{m}(2 + \sqrt{-2})t\right) = \varphi_1\left(\sqrt{-2}x + y + z + \frac{h}{m}(2 + \sqrt{-2})t\right). \]

Namely

\[h_1\left(\sqrt{-2}x + y + z + \frac{h}{m}(2 + \sqrt{-2})t\right) = \varphi_1\left(\sqrt{-2}x + y + z + \frac{h}{m}(2 + \sqrt{-2})t\right), \quad (302) \]

\[h_2\left(-\sqrt{-2}x + y + z + \frac{h}{m}(2 - \sqrt{-2})t\right) = \varphi_2\left(-\sqrt{-2}x + y + z + \frac{h}{m}(2 - \sqrt{-2})t\right). \quad (303) \]

Thus

\[u_t(x, y, z, 0) = e^{x+y+z} (\varphi_1(\sqrt{-2}x + y + z) + \varphi_2(-\sqrt{-2}x + y + z)) \]

\[+ \frac{h}{m} e^{x+y+z} \left[(2 + \sqrt{-2}) \varphi_1'(\sqrt{-2}x + y + z) + (2 - \sqrt{-2}) \varphi_2'(-\sqrt{-2}x + y + z)\right] \]

\[= -ck_4 e^{x+y+z} (h_1(\sqrt{-2}x + y + z) + h_2(-\sqrt{-2}x + y + z)) \]

\[+ e^{x+y+z} \left(\frac{h}{m}(2 + \sqrt{-2})h_1(\sqrt{-2}x + y + z) + \frac{h}{m}(2 - \sqrt{-2})h_2(-\sqrt{-2}x + y + z)\right) \]

\[\Rightarrow k_4 = -\frac{1}{c}. \]

So the exact solutions of the initial value problem is

\[u = e^{x+y+z+t}(\varphi_1(\sqrt{-2}x + y + z + \frac{h}{m}(2 + \sqrt{-2})t) \]

\[+ \varphi_2(-\sqrt{-2}x + y + z + \frac{h}{m}(2 - \sqrt{-2})t)). \quad (278) \]

References

