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Abstract 
 
The internal Schwarzschild solution is examined in the context of a cosmological model 
where the intergalactic vacuum is described by the internal metric.  It is shown that the 
model predicts an accelerated expansion that agrees with current observations of the 
expansion history of our Universe, namely that the initial expansion is infinitely fast, and 
then the expansion slows for some time followed by an accelerated expansion.  An 
examination of the Hubble parameter and redshift is made and it is shown that the model 
agrees with cosmological data in predicting the transition redshift when the expansion of 
the Universe changes from deceleration to acceleration.  Distance modulus is plotted 
against redshift and compared to cosmological data.  The angular portion of the metric is 
interpreted and it is shown that the metric can be put into the same form as the FRW 
metric such that when the energy density of the Universe goes to zero, the internal metric 
can produce an accelerated expansion without a cosmological constant. 
  
 
Expansion Along a Timelike Dimension 
 
The current Big Bang model of the Universe says that the Universe expanded from an 
infinitely dense gravitational singularity at some time in the past.  Current cosmological 
data suggests that this expansion was slowing down for some time, but is now continuing 
to expand at an accelerated rate.  The Cosmological Principle suggests that from any 
reference frame in the Universe, the mass distribution is spherically symmetric and 
isotropic.  It is proposed here that the observed expansion of the Universe is the result of 
a freefall in the time dimension.  To analyze the spherically symmetric Universe 
freefalling through the time dimension, we need the Schwarzschild solution where the 
radial coordinate is the timelike coordinate.  The interior (𝑟 < 1) solution of the 
Schwarzschild field gives us precisely that.  For 𝑟 < 1 , the signature of the 
Schwarzschild metric flips and the radial coordinate becomes a dimension measuring 
time while the t coordinate becomes a dimension measuring space. 
 
Consider a test particle in intergalactic space (or the vacuum ‘bubbles’ between the large-
scale filaments).  This vacuum will be spherically symmetric in the vicinity of test 
particle if it is sufficiently far from all the surrounding galaxies (and the surrounding 
galaxies are uniformly distributed).  Since, according to Birkhoff’s theorem, the 
Schwarzschild solution is the only spherically symmetric vacuum solution to Einstein’s 
field equations, the vacuum occupied by the test particle must be described by the 
Schwarzschild metric.  But it cannot be described by the internal solution since that 
solution has a gravitational source at the spatial center of the vacuum.  It must therefore 
be described by the internal solution since the vacuum is surrounded by uniformly 
distributed masses as opposed to having a spherical mass at its center. 



So let us take the center of our galaxy as the origin of an inertial reference frame.  We can 
draw a line through the center of the reference frame that extends infinitely in both 
directions radially outward.  This line will correspond to fixed angular coordinates (𝜃, 𝜙).  
There are infinitely many such lines, but since we have an isotropic, spherically 
symmetric Universe, we only need to analyze this model along one of these lines, and the 
result will be the same for any line.  
  
The radial distance in this frame is kind of a compound dimension.  It is a distance in 
space as well as a distance in time.  The farther away a galaxy is from us, the farther back 
in time the light we currently receive from it was emitted.  Fortunately the 𝑟 < 1 
spacetime of the Schwarzschild solution plotted in Kruskal-Szekeres coordinates 
provides us with a method to understand this radial direction.  Figure 1 shows the 𝑟 < 1 
solution on a Kruskal-Szekeres coordinate chart where, in this model, the hyperbolas of 
constant r represent spacelike slices of constant cosmological time and the rays of t 
represent radial distances (each point on this plot is a 2-sphere and each hyperbola is a 3-
sphere).  To begin with, we will not be considering differences in angles so we only need 
to consider two quadrants of Figure 1.  We will focus on the upper right and lower left 
quadrants where the quadrants represent an observer pointed in a particular direction and 
the positive t’s in those quadrants represent the coordinate distance from the observer in 
that particular direction. 
 

 
Figure 1 – Freefall Through Cosmological Time1 

 
We must first determine the paths of inertial observers in the spacetime.  For this we need 
the internal Schwarzschild metric and the geodesic equations for the internal 
Schwarzschild metric [1].  In these equations u represents a time constant that in the 
external metric would be the Schwarzschild radius.  In Figure 1, the value of u is 1. 
 

																																																								
1	Diagram	modified	from:	“Kruskal	diagram	of	Schwarzschild	chart"	by	Dr	Greg.	Licensed	under	CC	BY-SA	3.0	via	Wikimedia	
Commons	-	
http://commons.wikimedia.org/wiki/File:Kruskal_diagram_of_Schwarzschild_chart.svg#/media/File:Kruskal_diagram_of_Sch
warzschild_chart.svg	
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In Equations 1, 2, and 3, we use units where 𝑐 = 1 and equations 2 and 3 assume no 
angular motion.  Looking at points 0 < 𝑟 < 𝑢, then by inspection of Equation 2 it is clear 
that an inertial observer at rest at t will remain at rest at t (3

45
364

= 0 if 35
36
= 0).  Also, we 

see that if an observer is moving inertially with some initial 35
36

, then if 3-
36
< 0, the 

coordinate speed of the observer will be reduced over time (the coordinates are 
expanding beneath her) and if 3-

36
> 0, the coordinate speed will be increased over time 

(the coordinates are collapsing beneath her).   
 
Let us therefore examine Equation 3 for an observer with no angular motion. Combining 
Equations 1 and 3 with 𝑑Ω = 0, equation 3 becomes: 
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Notice that the observer’s acceleration through cosmological time is similar to the form 
of Newton’s law of gravity, where r (a time coordinate) varies from u to 0 (If the 
Schwarzschild constant was 2GM, as it would be in the external solution, Equation 4 
would be Newton’s gravity).  
 
So we will first use Figure 1 to describe the freefall of the galaxies through the 
cosmological time dimension where galaxies (or galaxy clusters) follow lines of constant 
t (and any such observer can choose 𝑡 = 0 as their coordinate).  The ‘Big Bang’ will have 
occurred at the center of Figure 1 at 𝑟 = 1.  We know this because the above analysis 
showed that space expands if 3-

36
 is negative, so for our current cosmological time, our 

worldlines must be moving toward 𝑟 = 0.  
 
 
How we see the Universe 
 
Looking at Figure 1, we should note that light signals travel on 45-degree angles.  So 
when we look out at the Universe, we can imagine that we are seeing light emitted from 
concentric 2-spheres from when the energy of the Universe was at the particular 
coordinate time corresponding to a particular 2-sphere.  They are 2-spheres because each 
sphere represents a specific coordinate time in the past and distance from us, they are not 
independent.  We can choose to observe the Universe at any arbitrary past time, but we 
cannot choose to observe the Universe at an arbitrary distance and time, the distance from 
us we observe depends on the present age of the Universe and the age of the 2-sphere we 



observe.  Nonetheless, each 2-sphere will appear to us to be spatially homogeneous and 
isotropic and this is reflected in Equation 2 (if we fix the r of a 2-sphere, the space will be 
homogenous and isotropic). 
 
 
The Scale Factor  
 
Expressions for the proper time interval along lines of constant t and Ω and the proper 
distance interval along hyperbolas of constant r and Ω from Equation 1 are: 
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Where a is the scale factor.  First we should notice that neither Equation 5 nor 6 depend 
on the t coordinate.  This is good because the t coordinate marks the position of other 
galaxies relative to ours.  Since all galaxies are freefalling in time inertially, the particular 
position of any one galaxy should not matter.  The proper velocity and proper distance 
only depends on the cosmological time r.   
 
What is notable here is that in Schwarzschild coordinates, the scale factor is equal to the 
velocity through the time dimension for an observer at rest 835

36
= 3C

36
= 09 when using 

Schwarzschild coordinates.  When 𝑟 = 𝑢, Equations 5 and 6 are both 0.  At this point (the 
Big Bang), it is our proper velocity in time that is zero.  So at that instant, we are no 
longer moving through time and therefore all points in space are coincident (the observer 
can reach every point in space without moving through time, paths are light-like).  So this 
why the scale factor goes to zero there and why the lines of t in Figure 1 converge at that 
point; it is an instant where our velocity through cosmological time goes to zero as our 
speed through cosmological time changes from positive to negative (we can see that if we 
draw a worldline through the center point, 3-

36
 will change signs as it passes the 𝑟 = 1 

point).  In fact, for any choice of time coordinate, that point will be a stationary point in 
those coordinates. 
 
At 𝑟 = 0, both equations 5 and 6 are infinite.  So when the worldlines enter or exit one of 
the 𝑟 = 0 hyperbolas, they do so at infinite proper speed through the time dimension. If 
something is travelling through space at the speed to light, the proper distance between 
points in space is zero.  In this case, since we have infinite proper velocity in the time 
dimension, the proper distance between points in space will be infinite, because you 
would traverse an infinite amount of time in order to move through an infinitesimal 
amount of space.  What we see then is that at 𝑟 = 0 space will be infinitely expanded and 
thus the scale factor is infinite.  A plot of the scale factor vs. r (with 𝑢 = 1) is given in 
Figure 2 below: 



 
Figure 2 – Scale Factor vs. r 

 
In Figure 2, there is an inflection point at 𝑟 = 0.75.  This is the point at which the 
expansion changes from decelerating to accelerating. 
 
 
Redshift and the Hubble Parameter 
 

We can use the fact that @(./-)
-

 is the scale factor and get the expression for cosmological 

redshift caused by the expansion [1]: 
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We can use Equation 7 to predict the redshift of the Universe at the time the expansion 
changed from decelerating to accelerating.  First, we must find the value of u.  For the 
external metric, this constant has the value of the Schwarzschild radius of a mass given 
by 2GM.  For the interior metric, this constant will need to be a time; specifically, it will 
be the coordinate time in years from the ‘Big Bang’ to 𝑟 = 0.  We can use the known 
Hubble parameter and current age of the Universe to find this constant.  The Hubble 
parameter is given by: 
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We know that the Universe is around 13.8 billion years old, so in Equation 8 we can 
make the substitution 𝑟 = 𝑢 − 13.8 (because the Big Bang occurs at 𝑟 = 𝑢).  The Hubble 
parameter at this time has been measured to be around 67.8 (km/s)/Mpc.  Converting that 
value to units of 1/(billion years), setting Equation 8 equal to that value and solving for u 
we get an approximate value of: 
 
  𝑢 ≈ 28.8	𝑏𝑖𝑙𝑙𝑖𝑜𝑛	𝑦𝑒𝑎𝑟𝑠 (9) 
 
We can now express r in units of billions of years from 𝑟 = 0 (the Big Bang occurs at 
𝑟 = 28.8).  A plot of Equation 8 with the value 𝑢 = 28.8	and the ΛCDM model [2] with 
Λ = 0.013 is given in Figure 3 below (our current time is shown as the dashed vertical 
line): 



 
Figure 3 – Hubble Parameter vs. r (𝑢 = 28.8, Λ = 0.013) 

 
Equation 7 can be used to find the transition redshift, which is the redshift we observe at 
the point when the Universe transitioned from a decelerating expansion to an accelerating 
expansion.  In Equation 7, this transition occurs at 𝑟_`a5 = 21.6 and our current time is 
𝑟 = 0.52.  Plugging those values into Equation 8 we get an estimated transition redshift 
of: 
  𝑧5 = 0.66 (10) 
 
This value is within the 2σ bound for the parameter [3,4], and therefore it does appear to 
be in agreement with cosmological measurements.  A plot of redshifts measured at our 
current time vs. time is given in Figure 4 below: 
 

 
 

Figure 4 – Redshift vs. Time 
 
Finally, the deceleration parameter is given by: 
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A plot of the deceleration parameter is given in Figure 5 below: 
 

 
Figure 5 – Deceleration Parameter vs. r 

 
 
Coordinate Distance & Distance Modulus 
 
Figure 1 is a plot of the metric on a Kruskal-Szekeres coordinate chart where the T-axis is 
the vertical axis and the X-axis is the horizontal axis.  The definition of T and X are given 
below for 𝑢 = 28.8: 

  𝑋 = sinh 8 5
lf.m

9@(28.8 − 𝑟)𝑒
n

4o.o (12) 
 

  𝑇 = cosh 8 5
lf.m

9@(28.8 − 𝑟)𝑒
n

4o.o (13) 
 
Light travels on 45-degree lines in these coordinates so if we consider our current 
reference frame at 𝑡 = 0 and 𝑟 = 15, we can find the coordinate distance t of some 
galaxy we observe along the 45-degree line at some r by setting Δ𝑋 = −Δ𝑇 and solving 
for t.  When we do this, we get: 
  𝑡 = 28.8	ln 8 +u.+u

+v.v/-
9 − 𝑟 (14) 

 
Where t is in billions of light years and 15 ≤ 𝑟 ≤ 28.8. Note that Equation 14 is only 
valid for the current cosmological time.  The 23.23 constant is specific to this time so for 
some other time, a different constant would be required and is given by the value 𝐶 =
(28.8 − 𝑟y)𝑒

nz
4o.o.  We can also use Equation 7 to find 𝑟_`a5  as a function of z and 

substitute that into Equation 14 to get the coordinate distance as a function of redshift.  If 
we set 𝑟 = 15 for 𝑢 = 28.8 in Equation 7 and solve for 𝑟_`a5 we get: 
 
  𝑟_`a5 = 28.8 {4|+{|}

{4|+{|}.~+
 (15) 

 
Substituting Equation 15 into 14 will give the coordinate distance as a function of 
measured redshift.  A commonly used parameter in cosmology is the distance modulus, µ, 
which is defined as: 
  𝜇 = 5	log}y 8

3
}y
9 (16) 



Where d is the distance measured in parsecs.  A plot of distance modulus vs. redshift 
obtained by combining Equations 14, 15, and 16 (where we use t measured in parsecs for 
d in Equation 16) is shown in Figure 6 below plotted over data obtained from the 
Supernova Cosmology Project [6]: 
 

 
Figure 6 – Distance Modulus vs. Redshift 

 
Note that all these predictions only required the spherical symmetry assumptions of the 
Schwarzschild metric and calculation of a single parameter, u, from cosmological data; it 
requires no information regarding the detailed energy distribution within the Universe.  In 
fact, the value of u only determines the units we are working in; it does not affect the 
form of the model.  This reflects the fact that the details of the expansion are the result of 
the vacuum solution alone.  Thus, we should expect that the model is accurate for the 
vacuum-dominated era of the Universe and less so for the matter and radiation dominated 
eras.  We see this in Figure 6 where the model starts to under predict the distance 
modulus at high redshifts. 
 
 
Proper Time of the Rest Observer 
 
Figure 7 shows the past light cone of an inertial observer at a given time during the 
expansion: 

z 

µ 



 
Figure 7 – Past Light Cone of Inertial Observer During the Expansion2 

 
We can calculate the duration of the expansion of the Universe in the frame of an inertial 
observer at rest by integrating Equation 5 from 0 to u.  The total time of expansion is 
therefore: 
  𝜏 = �

+
𝑢 (17) 

 
Where 𝜏 is measured in billions of years.  Equation 17 tells us that in the frame of an 
observer at rest at t, the time elapsed from the Big Bang to 𝑟 = 0 measured by her clock 
would be around 45.2 billion years and there is only about 8.8 billion years of proper time 
between now and 𝑟 = 0 for her.   
 
Thinking of 𝜏 in Equation 17 as a ‘Universal Period’ allows us to define a Universal 
constant 𝑈 = �

+
𝑢 for time and space.  Equation 17 is the maximum amount of time that 

can be measured between the Big Bang and 𝑟 = 0.  So if we set 𝑈 = �
+
𝑢 = 𝑐 = 1 then 

we are working in units where space and time have the same units and all measurable 
times will be between 0 and 1.  When working in these units, the constant in the interior 
Schwarzschild metric will be 𝑢 = +

�
. 

 
 
Metric and Geodesics in Terms of the Hubble Parameter and Scale Factor 
 
We can re-express equations 1-4 in terms of the scale factor a and the Hubble parameter: 
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2	Diagram	modified	from:	“Kruskal	diagram	of	Schwarzschild	chart"	by	Dr	Greg.	Licensed	under	CC	BY-SA	3.0	via	Wikimedia	
Commons	-	
http://commons.wikimedia.org/wiki/File:Kruskal_diagram_of_Schwarzschild_chart.svg#/media/File:Kruskal_diagram_of_Sch
warzschild_chart.svg	
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Equation 21 gives us a quantity analagous to the surface gravity used in the external 
solution.  The non-zero Christoffel symbols of the model (for 𝑑Ω = 0) in terms of H are: 
 
  Γ--- = −𝐻 (22) 
 
  Γ5-5 = Γ-55 = 𝐻 (23) 
 
  Γ55- = 𝑎e𝐻 (24) 
 
 
Angular Distance and Relationship to the FRW Metric 
 
We have to this point ignored the angular portion of the Schwarzschild metric.  For the 
internal metric, the angular term seems initially curious because the radius associated 
with it is a time rather than a distance.  According to Figure 1, if we look out at the 
Universe to a sphere of fixed r, we are also seeing a slice of the Universe that is a fixed t 
from our position at that r.  Thus, in our frame, dt between objects on that shell is zero.  
But we know that some distance separates them and that distance must come from the 
angular part of the metric.  But the radius of the angular part of the metric is independent 
of the distance of a shell from us.  This means that the angles in the metric must have 
some t dependence built into them (because objects at that same r and greater t from us 
than the ones we can see must have greater angular separation from each other than the 
objects we actually see). 
 
The metric in this form might be thought of by considering the sun-earth-moon system 
where the spatial coordinates are defined as r being the distance from the sun and t being 
the distance from the earth.  In this case, the moon will revolve around the earth with 
fixed t (assuming circular orbit) where one full orbit will correspond to an angle of 2𝜋 in 
the reference frame of the earth.  But in the frame of the sun, the angle will be much 
smaller such that the orbit sweeps out a cone rather than a disk.  Thus, the angle of a full 
orbit will be less than 2𝜋 in the frame of the sun because the moon does not revolve 
around the sun, but around the earth.  The internal metric is similar to this, except rather 
than the sun being the origin of the coordinates, 𝑟 = 0 (a time) is the center. 
 
But what we need is the metric in a form that allows us to measure arc length in the frame 
of some observer at 𝑡 = 0 and some r.  Consider Figure 8 below: 
 



 
Figure 8 – Arc Length in Vacuum Cosmology 

 
In Figure 8, we see Scout at the center of the diagram at 𝑡 = 0 and some r.  Dill on the 
left and Jem on the right are at the same r as Scout (all three of them are space-like 
separated) and they are both the same coordinate distance t from Scout.  We know from 
Equation 6 that the proper distance between Scout and Jem/Dill is 𝑠 = 𝑎𝑡.  Multiplying s 
by ΩB gives us the proper arc length between Jem and Dill.  But we also know that the 
proper arc length in the metric is given by 𝑟Ω.  Since these are both the proper arc 
lengths, we can equate them giving us: 
  Ω = M5

-
ΩB (25) 

 
Thus, we see that if ΩB = 2𝜋, Ω can be larger or smaller than that depending on the 
radius of the orbit and the cosmological time at which the motion is occurring.  Note that 
this relationship will also hold true of Jem travels toward Dill along some compound 
angular path such that: 
 
  𝑟+𝑑Ω+ = 𝑟+(𝑑𝜃+ + sin+(𝜃)𝑑𝜑+) = 𝑎+𝑡+(𝑑𝜃B+ + sin+(𝜃B)𝑑𝜑B+) (26) 
We can use Equation 26 to express the metric in a form where the angular part of the 
metric is centered on Scout rather than 𝑟 = 0: 
 
  𝑑𝜏+ = 𝑎/+𝑑𝑟+ − 𝑎+𝑑𝑡+ − 𝑎+𝑡+[𝑑𝜃B+ + sin+(𝜃B)𝑑𝜑B+] (27) 
 
Where the t in the final term is the coordinate distance from Scout and 𝜃 and 𝜑 represent 
the angular portions of the metric measured in Scout’s frame.   
 
Note that the metric in this form is nearly identical to the form of the FRW metric for flat 
space, but in this case, the stress-energy tensor is zero and the time coordinate is not the 
proper time of an observer at rest.  Thus, this metric would correspond to an FRW 
cosmology with zero energy density and no cosmological constant.  So as the Universe 
expands and the energy density drops, Equation 27 will become more and more accurate 
in its predictions since the Universe will become vacuum-dominated.  Most notably, this 
metric, whose form is the same as that of the FRW metric, predicts an accelerated 
expansion without the need for a cosmological constant.  A benefit of the internal 
metric’s coordinates is that it captures the directionality of the time coordinate itself with 
the 𝑔yy = 𝑎/+ function. 
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The geodesic equation for r with these new angular coordinates included (derived from 
[1]) is given by: 
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Given that the speed of light has been set to 1 in Equation 28, we can see that this angular 
correction will only be relevant on astronomical scales for current and past times.  In the 
future, where a approaches infinity, the correction becomes very large.  
 
 
The ‘Big Bounce’ and the ‘Anit-Universe’ 
 
A plot of 𝜏 vs. r from the uppermost to lowermost hyperbola in Figure 1 is given in 
Figure 9 below.  It illustrates well the relationship to typical spatial projectile motion (for 
𝑢 = 1). 

 
Figure 9 -	𝜏 vs. r 

 
Consider a perfectly rigid and elastic ball in simple Newtonian mechanics.  If we throw it 
straight up in the air with initial velocity 3�

36
, the velocity will continuously decrease until 

at some height 3�
36
= 0, at which point the ball will reverse direction and fall with 

increasingly negative 3�
36

 until it returns to the ground.  When it hits the ground (which we 
will assume has infinite inertia), since the ball is perfectly rigid and elastic, it will 
experience an infinite acceleration that will bounce it back toward its maximum height 
and this cycle will continue ad infinitum.  So there are two turnaround points for the ball.  
One point is maximum height, where the ball does not experience any special 
acceleration; it just stops moving through space as it turns around.  The second point is a 
hard acceleration that the ball can really feel a (infinite) force changing its direction. 
 
Likewise, we can see that the Schwarzschild cosmology is a similar situation except that 
the Universe is the ball and the acceleration is through time rather than space.  The Big 
Bang corresponds to maximum height, where the Universe’s velocity through time 
changes sign.  The 𝑟 = 0 hyperbolas are, perhaps, the ‘bounce’.  When the ball bounced, 
it experienced an infinite acceleration.  In the cosmological case, when 𝑟 = 0  the 
curvature of the spacetime is infinite [1].  This infinite curvature may be a point in time 
where the worldlines of the Universe turn back on themselves as if the spacetime is 
folded there and the worldlines go up one side and down the other (the infinite curvature 
is at the fold). 



But what would the Universe bounce off of?  The author can only speculate about this, 
but here is one possibility.  We have until now only discussed the positive t axes in 
describing our Universe, but there is also the collection of negative t’s that are present in 
Figure 1.  Perhaps Figure 1 is showing 2 Universes, one corresponding to the positive t’s 
and one corresponding to the negative t’s.  We might think of these as a Universe and an 
anti-Universe.  So in Figure 9, the anti-Scout’s real axes in Figure 9 would correspond to 
the negative t axes in Figure 1.  
 
We said that the Universe corresponds to positive t’s on Figure 1 whereas the negative t’s 
correspond to the ‘anti-Universe’.  At 𝑟 = 0, the proper distances expand out to infinity, 
so perhaps as the worldlines enter 𝑟 = 0 they expand out to positive infinity and then 
come back in from negative infinity, where the Universe begins its recollapse, essentially 
becoming the aforementioned ‘anti-Universe’.  This process would be the ‘bounce’ 
resulting from the infinite curvature at 𝑟 = 0. 
 
Of course, there is currently no evidence directly supporting these hypotheses at this 
time. 
 
 
Relationship to the External Solution 
 
Let us consider a meter stick at rest at the center of a collapsing spherically symmetric 
collapsing shell.  The meter stick inside the shell stretches from the center of the shell out 
to a distance 2GM (the shell is at a radius greater than 2GM so the entire stick is in flat 
space).  An observer in freefall on the collapsing shell does so with speed (in natural units 
measured by her clock) [5]: 
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Therefore, the freefall observer will see observers at rest at r moving past her at the speed 
given in Equation 29.  Since the meter stick is also at rest relative to observers at rest at 
any r, Equation 29 will also give the relative velocity between the freefall observer and 
the meter stick when the shell is at r.  Since the spacetime between the freefall observer 
and central observer is flat, they will each see the other’s clock dilated by the Special 
Relativity Relationship: 

  𝑑𝜏 = 𝑑𝑡√1 − 𝑉+ = 𝑑𝑡@1 − +��
-

 (30) 

 
Because the meter stick will appear to be moving in the frame of the freefalling observer, 
its length in her frame would be: 

  𝐿 = 2𝐺𝑀@1 − +��
-

 (31) 

 
We see from Equation 31 that as the freefalling observer approaches 𝑟 = 2𝐺𝑀 the length 
of the meter stick in her frame will contract to zero length.  So observers in freefall will 
see the space beyond 𝑟 = 2𝐺𝑀 fully contracted as they approach 𝑟 = 2𝐺𝑀. 



Let us make a radial coordinate change for the freefalling observer.  We choose R such 
that 3�
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.  This coordinate varies identically to the r coordinate for large r and 

then diverges from it at the horizon.  Note that 𝑅 → ∞ as 𝑟 → ∞ and 𝑅 → −∞ as 𝑟 →
2𝐺𝑀. The coordinate velocity of the freefalling observer with this coordinate is given by: 

   3�
35
= −@+��

-
= −@ +��

�(_���)|}
 (32) 

 
Where W is the product-log function.  This coordinate choice is also useful because the 
speed of light in these coordinates is 1 independent of R and t.  The external 
Schwarzschild metric with the new coordinate becomes: 
 
  𝑑𝜏+ = -/+��

-
[𝑑𝑡+ − 𝑑𝑅+] (33) 

 
A plot of the integral of Equation 32 is given in Figure 10 below: 
 

 
Figure 10 – Light Signals on t-R Chart 

 
Figure 10 is a t-R chart that shows a single infalling signal representing the signal to 
which the freefall worldline is asymptotic.  The freefalling observer will never receive 
this signal or any subsequent signal before the Universe reaches 𝑟 = 0.  The dots in 
Figure 10 represent intervals of equal proper time along the worldline and we can see that 
rest observers will receive signals from the freefalling observer at longer and longer 
intervals. 
 
In the frame of the freefalling observer, rest observers will be moving away from her at 
the speed given in Equation 32.  Therefore, she will see the external Universe 
accelerating away from her at an even faster rate than observers at infinity see other 
observers at infinity accelerating away from them, their signals increasingly redshifted as 
time passes.  Nonetheless, the freefalling observer will never fall into a ‘black hole’.  It 
would take an infinite amount of time in the frame of an observer at infinity for the 
freefalling observer to reach the event horizon.  But the intergalactic bubbles in the 
Universe will expand and recollapse in a finite amount of time in the frame of the infinite 
observer and therefore the freefalling observer will only reach the 𝑟 = 2𝐺𝑀 location 
when the Universe itself has recollapsed.  We know this because the proper time of an 
observer at rest in the internal solution is the coordinate time of the external solution: 
 



 𝑑𝑡_�5_-�M� = 𝑎𝑑𝑟a�5_-�M� (34) 
 
Since it takes a freefalling observer an infinite amount of coordinate time to reach the 
horizon in the external solution, but there is only a finite amount of proper time to 𝑟 = 0 
and then back to 𝑟 = 𝑢 in the internal solution, the freefaller can never reach the horizon 
during the expansion or collapse of the Universe.  When she reaches 𝑟 = 2𝐺𝑀, the entire 
Universe will be fully contracted (it will have reached the 𝑎 = 0 state described in the 
previous sections) as though everything in the Universe has collapsed to the same 𝑟 =
2𝐺𝑀, and the observer as well as the entire Universe will have reached the next ‘Big 
Bang’ state at which point it will presumably begin its expansion once more.  This is how 
the internal and external Schwarzschild solutions relate to one another, they both 
correspond to the ‘Big Bang’ state of the Universe. 
 
 
Conclusion 
 
It has been shown that the internal Schwarzschild metric will give observations that very 
closely resemble cosmological observations in our Universe.  So either the internal 
solution is in fact a cosmological solution, or observers inside a Black Hole will see a 
spacetime that evolves in a strikingly similar way to the evolution of large-scale 
Universe.  
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