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Abstract 

It holds that every product of natural numbers can also be written as a sum. The inverse does not hold 

when 1 is excluded from the product. For this reason, the investigation of natural numbers should be 

done through their sum and not through their product. Such an investigation is presented in the present 

article. We prove that primes play the same role for odd numbers as the powers of 2 for even numbers, 

and vice versa. The following theorem is proven: ‘’Every natural number, except for 0 and 1, can be 

uniquely written as a linear combination of consecutive powers  of 2 with the coefficients of the linear 

combination being -1 or +1.’’ This theorem reveals a symmetry between the distribution of the prime 

numbers and the composite prime numbers. From this symmetry a method for identifying large prime 

numbers is derived. This method is not associated with the sieve of Eratosthenes and other relevant 

methods. Starting from a pair of prime numbers we can obtain a set of different prime numbers which 

are extremely larger that the initially chosen pair. 

1. Introduction 

      It holds that every product of natural numbers can also be written as a sum. The inverse (i.e. each 

sum of natural numbers can be written as a product) does not hold when 1 is excluded from the 

product. This is due to prime numbers p  which can be written as a product only in the form of 

1p p  . For this reason, the investigation of natural numbers should be done through their sum and 

not through their product. Such an investigation is presented in the present article.       

We prove that each natural number can be written as a sum of three or more consecutive natural 

numbers except of the powers of 2 and the prime numbers. Each power of 2 and each prime number 

cannot be written as a sum of three or more consecutive natural numbers. Primes play the same role for 

odd numbers as the powers of 2 for even numbers, and vice versa.      

      We now prove a theorem which plays the role of the fundamental theorem of arithmetic when we 

study natural numbers based on their sum: ‘’Every natural number, with the exception of 0 and 1, can 

be written in a unique way as a linear combination of consecutive powers of 2, with the coefficients of 

the linear combination being -1 or +1.’’ This theorem reveals a set of symmetries in the internal order of 

natural numbers which cannot be derived when studying natural numbers on the basis of the product. 

From such a symmetry a method for identifying large prime numbers is derived.  Starting from a pair 

 ,q Q  of prime numbers, 3,5q   and 3,5Q  , we obtain a set of different prime numbers which are 

extremely larger than q and Q .   

2. THE SEQUENCE  μ k,n  
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We consider the sequence of natural numbers  
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.                                     (2.1) 

For the sequence  ,k n  the following theorem holds: 

Theorem 2.1. 

‘’ For the sequence  ,k n the following hold: 

1.   *,k n  . 

2. No element of the sequence is a prime number. 

3. No element of the sequence is a power of 2 . 

4. The range of the sequence is all natural numbers that are not primes and are not powers of

2 . 

Proof.  

1.   *,k n  as a sum of natural numbers. 

2. 2,3,4,...n A  and therefore it holds that 
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Also we have that  
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since *k and 2,3,4,...n A  . Thus, the product  
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is always a product of two natural numbers different than 1 , thus the natural number  ,k n  

cannot be prime.  
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3. Let that the natural number  
  1 2

,
2

n k n
k n

 
  is a power of 2 . Then, it exists  

such as 

   1 2
2

2

n k n  
   

   11 2 2n k n      .                                                                                                      (2.2) 

Equation (2.2) can hold if and only if there exist 1 2,    such as 

1 21 2 2 2n k n
 

      

and equivalently 
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.                                                                                                                       (2.3) 

We eliminate n  from equations (2.3) and we obtain 

1 22 1 2 2k
 
     

and equivalently 

2 12 1 2 2k
 

    

which is impossible since the first part of the equation is an odd number and the second part is 

an even number. Thus, the range of the sequence  ,k n does not include the powers of 2 . 

 4. We now prove that the range of the sequence  ,k n includes all natural numbers that are 

not primes and are not powers of 2 . Let a random natural number N which is not a prime nor a 

power of 2 . Then, N  can be written in the form 

N    

where at least one of the ,  is an odd number 3 . Let   be an odd number 3 . We will 

prove that there are always exist k  and 2,3,4,...n A  such as 

 ,N k n     . 

         We consider the following two pairs of k and n : 
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        For every ,    it holds either the inequality 2 1    or the inequality 2 1   . 

Thus, for each pair of naturals  ,  , where   is odd, at least one of the pairs  1 1,k n , 

 2 2,k n  of equations (2.4), (2.5) is defined. We now prove that “when the natural number 1k of 

equation (2.4) is 1 0k  then the natural number 2k  of equation (2.5) is 2 1k  and additionally it 

holds that 2 2n  .”. For 1 0k  from equations (2.4) we take 

2 1    

and from equations (2.5) we have that 
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and because 2  we obtain 

2

2
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2 1 3 2

k
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. 

      We now prove that when 2 0k   in equations (2.5), then in equations (2.4) it is 1 1k   and 

1 2n  . For 2 0k  , from equations (2.5) we obtain 

2 1    

and from equations (2.4) we get 
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1

2 1 2 1
1

2
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k

n

 

 

  
 

    

. 

      We now prove that at least one of the 1k and 2k is positive. Let  

1 20 0k k   . 

Then from equations (2.4) and (2.5) we have that 

 

2 1 0 1 2 0          .                                                                                        (2.6) 

 

Taking into account that 1  is odd, that is 2 1,     , we obtain from inequalities 

(2.6) 

   2 1 2 1 0 2 1 1 2 0

2 2 0 2 2 2 0

1

   

   

   

        

     

   

  

which is absurd. Thus, at least one of 1k and 2k is positive. 

      For equations (2.4) we take 
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For equations (2.5) we obtain 
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Thus, there are always exist *k and 2,3,4,...n A  such as 

 ,N k n   for every N which is not a prime number and is not a power of 2 .   

Example 2.1. For the natural number 40N  we have 

40 5 8

5

8

N





  





 

and from equations (2.4) we get 

1

1

16 1 5
6

2

5 1 4

k k
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thus, we obtain 

 40 6,4 . 

Example 2.2. For the natural number 51N  , 

51 3 17 17 3N       

there are two cases. First case: 

51 3 17

3

17

N





  





 

and from equations (2.4) we obtain 
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1
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16

2
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k k
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thus,  

 51 16,2 . 

Second case: 
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51 17 3
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and from equations (2.5) we obtain 

2

2

17 1 6
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2

6 1 5

k k
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thus,  

 51 6,5 . 

     The second example expresses a general property of the sequence  ,k n . The more 

composite an odd number that is not prime (or an even number that is not a power of 2 ) is, the 

more are the  ,k n  combinations that generate it. 

Example 2.3. 

           

135 15 9 27 5 9 15 45 3 5 27 3 45

135 2,14 9,9 11,8 20,5 25,4 44,2     

           

     
 

a.    135 9 15 2,14 11,8      

135 2 3 4 ...... 15 16 11 12 13..... 18 19           . 

b.    135 5 27 9,9 25,4      

135 9 10 11 ..... 17 18 25 26 27 28 29           .  

c.    135 3 45 20,5 44,2      

135 20 21 22 23 24 25 44 45 46         . 

        In the transitive property of multiplication, when writing a composite odd number or an even 

number that is not a power of 2  as a product of two natural numbers, we use the same natural 

numbers ,   : 

       . 

On the contrary, the natural number   can be written in the form  ,k n  using different natural 

numbers *k and 2,3,4,...n A  , through equations (2.4), (2.5). This difference between the 

product and the sum can also become evident in example 2.3: 

135 3 45 45 3

135 44 45 46 20 21 22 23 24 25

   

        
. 

      From Theorem 2.1 the following corollary is derived: 



7 
 

Corollary 2.1. “1. Every natural number which is not a power of 2 and is not a prime can be written as 

the sum of three or more consecutive natural numbers. 

2. Every power of 2  and every prime number cannot be written as the sum of three or more 

consecutive natural numbers.” 

Proof. Corollary 2.1 is a direct consequence of Theorem 2.1.  

 3. The concept of rearrangement  

      In this paragraph, we present the concept of rearrangement of the composite odd numbers and even 

numbers that are not power of 2. Moreover, we prove some of the consequences of the rearrangement 

in the Diophantine analysis. The concept of rearrangement is given from the following definition: 

Definition. ‘’We say that the sequence   *, , , 2,3,4,...k n k n A    is rearranged if there exist 

natural numbers *

1 1,k n A  ,    1 1, ,k n k n  such as  

   1 1, ,k n k n  .’’                                                                                                                          (3.1) 

From equation (2.1) written in the form of  

       , 1 2 .....k n k k k k n          

two different types of rearrangement are derived: The “compression”, during which n  decreases with a 

simultaneous increase of k . The «decompression», during which n  increases with a simultaneous 

decrease of k . The following theorem provides the criterion for the rearrangement of the sequence

 ,k n .  

Theorem 3.1. ‘’ ’1. The sequence   1 1,k n ,   *

1 1,k n A   can be compressed 

   1 1 1 1, ,k n k n                                                                                                               (3.2) 

 if and only if there exist *

1, , 2n      which satisfies the equation 
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1 1 1

*

1

2 2 1 2 2 1 0

,
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.                                                                             (3.3) 

2. The sequence  2 2,k n ,   *

2 2,k n A   can be decompressed 

   2 2 2 2, ,k n k n                                                                                                              (3.4) 

 if and only if there exist *

2, , 1k      which satisfies the equation  
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.                                                                            (3.5) 

3. The odd number 1   is prime if and only if the sequence  

 
*

, 2

, ,

lk n

l k n A

   

 
                                                                                                                                 (3.6) 

cannot be rearranged. 

4. The odd   is prime if and only if the sequence 

21
, 1

2


 
  

 
                                                                                                                      (3.7) 

cannot be rearranged.’’ 

Proof. 1,2. We prove part 1 of the corollary and similarly number 2 can also be proven. From equation 

(4.1) we conclude that the sequence  1 1,k n  can be compressed if and only if there exist 
*,   

such as 

   1 1 1 1, ,k n k n      . 

In this equation the natural number 1n   belongs to the set 2,3,4,...A  and thus 

1 12 2n n      . Next, from equations (2.1) we obtain 

   1 1 1 1, ,k n k n       

      1 1 11 1 1
1 21 2

2 2

n k nn k n             

and after the calculations we get equation (3.3). 

3. The sequence (3.6) is derived from equations (2.4) or (2.5) for   and 2l  . Thus, in the 

product   the only odd number is  . If the sequence  ,k n in equation (3.6) cannot be 

rearranged then the odd number   has no divisors. Thus,   is prime. Obviously, the inverse also 

holds. 

4. First, we prove equations (3.7). From equation (2.1) we obtain: 
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In case that the odd number   is prime in equations (2.4), (2.5) the natural numbers ,   are unique

   , and from equation (2.5) we get 
1

1
2

k n


   . Thus, the sequence 

 
1

, , 1
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k n 
 

  
 

cannot be rearranged. Conversely, if the sequence 

21
, 1

2


 
   

 
 cannot be rearranged the odd number   cannot be composite and 

thus  is prime.  

We now prove the following corollary: 

Corollary 3.1. ‘’1. The odd number  , 

2 1
, 1

2

1

odd


  

      
 

 

 

                                                                                                              (3.8) 

is decompressed and compressed if and only if the odd number   is composite. 

2. The even number 1 , 

1

1
2 2 , 1

2

3 2 1

, 2

l l

l
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l l

 
  

      
 

 

   

 

                                                                                              (3.9) 

cannot be decompressed, while it compresses if and only if the odd number   is composite. 

3. The even number 2 , 
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1
2 2 ,2 1

2

2 1

l l l

l

odd

l

  



  
     

 

 

  



                                                                                        (3.10) 

cannot be compressed, while it decompresses if and only if the odd number   is composite. 
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4. Every even number that is not a power of can be written either in the form of equation (3.9) or in the 

form of equation (3.10).’’ 

 

Proof.  

1. It is derived directly through number (4) of Theorem 3.1. A second proof can be derived through 

equations (2.4), (2,5) since every composite odd   can be written in the form of   , ,   ,

,   odds. 

2,3.  

Let the even number  , 

*

2l

odd

l

  

 



.                                                                                                                                           (3.11) 

From equation (2.4) we obtain 

2 2 1 1
2

2 2

1

l
lk

n

    
  

  

                                                                                                       (3.12) 

and since , , 1 2k n k n    we get 

2 2 1
1

2

1 2

l  


  

 

and equivalently 

13 2 1l   . 

In the second of equations (3.12) the natural number n  obtains the maximum possible value of 

1n    , and thus the natural number k  takes the minimum possible value in the first of equations 

(3.12). Thus, the even number  

1

1
2 , 1

2

l 
 

   
 

 

cannot decompress. If the odd number   is composite then it can be written in the form of   ,
*,   , ,   odds, ,    , 

1 2l  . Therefore, the natural number 
1 2l   

decompresses since from equations (3.11) it can be written in the form of  1 ,k n   with

1 1n    . Similarly, the proof of 3 is derived from equations (2.5). 
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4. From the above proof process it follows that every even number that is not a power of 2 can be 

written either in the form of equation (3.9) or in the form of equation (3.10).  

      By substituting P prime    in equations of Theorem 3.1 and of corollary 3.1 four sets of 

equations are derived, each including infinite impossible diophantine equations. 

Example 3.1. The odd number 999961P   is prime. Thus, combining (1) of Theorem 3.1 with (1) of 

corollary 3.1 we conclude that there is no pair   2,   with 999958   which satisfies the 

diophantine equation 

 2 2999883 2 1999922 0       . 

            We now prove the following corollary: 

Corollary 3.2 ‘’The square of every prime number can be uniquely written as the sum of consecutive 

natural numbers.’’ 

Proof. For P prime   in equation (3.5) we obtain 

2 1
, 1

2

P
P P

 
  

 
.                                                                                                                  (3.13) 

According with 4 of Theorem 3.1 the odd 2P cannot be rearranged. Thus, the odd can be uniquely 

written as the sum of consecutive natural numbers, as given from equation (3.13).  

Example 3.2. The odd 17P  is prime. From equation (3.13) for 17P  we obtain 

 289 9,16  

and from equation (2.1) we get 

289 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25                  

which is the only way in which the odd number 289  can be written as a sum of consecutive natural 

numbers. 

4. NATURAL NUMBERS AS LINEAR COMBINATION OF CONSECUTIVE POWERS OF 2  

      According to the fundamental theorem of arithmetic, every natural number can be uniquely written 

as a product of powers of prime numbers.  The previously presented study reveals a correspondence 

between odd prime numbers and the powers of 2. Thus, the question arises whether there exists a 

theorem for the powers of 2 corresponding to the fundamental theorem of arithmetic. The answer is 

given by the following theorem: 

Theorem 4.1. ‘Every natural number, with the exception of 0 and 1, can be uniquely written as a linear 

combination of consecutive powers of 2, with the coefficients of the linear combination being -1 or +1.’’   

Proof. Let the odd number   as given from equation 
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1, 0,1,2,........, 1

i
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.                 (4.1)  

From equation (4.1) for 0  we obtain 

1 02 2 2 1 3      . 

We now examine the case where *  . The lowest value that the odd number   of equation (4.1) 

can obtain is 

  1 1 1 1

min 2 2 2 2 ........2 1               

  1

min 2 1     .                                                                                                            (4.2) 

The largest value that the odd number   of equation (4.1) can obtain is 

   1 1 1

max 2 2 2 ........2 1            

  2

max 2 1     .                                                                                                         (4.3) 

Thus, for the odd numbers  , i   of equation (4.1) the following inequality holds 

 1 2

min max2 1 , 2 1i

          .                                                                    (4.4) 

The number   , iN   of odd numbers in the closed interval 1 22 1,2 1      is 

  
   2 1

max min
2 1 2 1

, 1 1
2 2

iN

 

 

    
      

  , 2iN    .                                                                                                                 (4.5) 

The integers , 0,1,2,........, 1i i   in equation (4.1) can take only two values, 1 1i i      , thus 

equation (4.1) gives exactly   2 , iN    odd numbers. Therefore, for every *  equation (4.1) 

gives all odd numbers in the interval 1 22 1,2 1      . 

      We now prove the theorem for the even numbers. Every even number   which is a power of 2 can 

be uniquely written in the form of 
*2 ,   . We now consider the case where the even number 

  is not a power of 2 . In that case, according to corollary 3.1 the even number  is written in the form 

of 

*2 , odd, 1,l l      .                                                                                       (4.6) 
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We now prove that the even number  can be uniquely written in the form of equation (4.6). If we 

assume that the even number can be written in the form of  

' '

' '

'

' *

'

2 2

( )

,

,

l l

l l l l

l l

odd

    

 

  



  

                                                                                                                    (4.7) 

the we obtain 

'

' '

2 2 '

2

l l

l l

  

  
 

which is impossible, since the first part of this equation is even and the second odd. Thus, it is 'l l and 

we take that '   from equation (4.7). Therefore, every even number   that is not a power of 2

can be uniquely written in the form of equation (4.6). The odd number   of equation (4.6) can be 

uniquely written in the form of equation (4.1), thus from equation (4.6) it is derived that every even 

number   that is not a power of 2  can be uniquely written in the form of equation 
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                                                              (4.8) 

and equivalently 
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.                                                           (4.9) 

      For 1we take 

0

1 0

1 2

1 2 2



 
 

thus, it can be written in two ways in the form of equation (4.1). Both the odds of equation (4.1) and the 

evens of the equation (4.8) are positive. Thus, 0 cannot be written either in the form of equation (4.1) or 

in the form of equation (4.8).   

    In order to write an odd number 1,3  in the form of equation (4.1) we initially define the * 

from inequality (4.4). Then, we calculate the sum  
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12 2   . 

If it holds that 12 2     we add the 12  , whereas if it holds that 12 2     then we subtract 

it. By repeating the process exactly    times we write the odd number   in the form of equation (4.1). 

The number of    steps needed in order to write the odd number    in the form of equation (4.1) is 

extremely low compared to the magnitude of the odd number  , as derived from equation (4.1). 

Example 4.1. For the odd number 23   we obtain from inequality (4.4) 

1 2

1 2

1

2 1 23 2 1

2 2 24 2

2 12 2

 

 

 

 

 



   

  

 

  

thus 3  . Then, we have 

1 4 32 2 2 2 24 23        (thus 22 is subtracted) 

4 3 22 2 2 20 23     (thus 12 is added) 

4 3 2 12 2 2 2 22 23       (thus 02 1  is added) 

4 3 2 12 2 2 2 1 23     . 

      Fermat numbers sF  can be written directly in the form of equation (4.1), since they are of the form 

min , 

 2 2 2 1 2 2 2 3 1

min

*

2 1 2 1 2 2 2 2 ........ 2 1
s s s s ss

sF

s

             



.           (4.10) 

Mersenne numbers 
pM  can be written directly in the form of equation (4.1), since they are of the form 

max , 

  1 2 3 1

max2 1 2 2 2 2 ........ 2 1p p p p

pM p

p prime

           


.                      (4.11) 

      In order to write an even number  that is not a power of 2 in the form of equation (4.1), initially it 

is consecutively divided by 2 and it takes the of the form of equation (4.6). Then, we write the odd 

number  in the form of equation (4.1). 

Example 4.2. By consecutively dividing the even number 368   by 2  we obtain 4368 2 23    . 

Then, we write the odd number 23  in the form of equation (4.1), 4 3 2 123 2 2 2 2 1     , and we 

get 

 4 4 3 2 1

8 7 6 5 4

368 2 2 2 2 2 1

368 2 2 2 2 2

    

    

. 
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This equation gives the unique way in which the even number 368   can be written in the form of 

equation (4.9). 

      We now prove the following corollary of theorem 4.1: 

Corollary 4.1. ‘’1. Every odd number 1   can be written either in the form of equation  

  1 2 1 2

1 2 1 2

1 1 2

2

*

, 2 2

, , ,

, , 1

1

,

x

i D D

D D odd

D D

x

 



        

  

 

 



                                                             (4.12) 

or in the form of equation  

22 3,                                                                                                      (4.13) 

or in the form of equation  

22 1,    .                                                                                                  (4.14) 

2. Every even number  is either a power of 2 , 

  
*2 ,                                                                                                            (4.15) 

or can be written in the form of equation  

    *

1 2 1 22 2 2 2 ,l l xa D D l                                                            (4.16) 

or in the form of equation  

 2 *2 2 3 , ,la l                                                                                  (4.17) 

 or in the form of equation  

 2 *2 2 1 , ,la l     .                                                                             (4.18) 

3. For the odd numbers 1 2 1 2, , ,D D  the following inequalities hold 

2

1

1

2

1

1

1

2

3 2 1 2 3

1 2 1

3 2 1

3 2 3

D

D

 















     

   

  

  

.’’                                                                                     (4.19) 
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Proof. In equation (4.1) is either 0 1    or 0 1   . We first examine the case in which 0 1   . From 

equation (4.1) for 0 1    we obtain 

1
1

1

2 2 2 1i

i

i


  






      .                                                                                (4.20) 

We first study the case that there exists at least one 1, 1,2,3,........, 1s s     . In that case, we 

separate the positive and the negative 1, 1,2,3,........, 1i i     and we get 

1

1 1

2 2 2 2 1
j k

j k

j k

 

 

 

 

       .                                                      (4.21) 

In equation (4.21) we also include 0 1   in the sum 1

1

2 2 2
j

j

j

 







    and expressing by 1 the 

odd number 

1

1

1

2 2 2 1
j

j

j

 







                                                                                 (4.22) 

we take 

1

1

2
k

k

k






     

and equivalently 

1

1

2
k

k

k






 
     

 
 .                                                                                     (4.23) 

Expressing by 2 the lowest power of the sum  
1

2
k

k

k






    in equation (4.23) we take 

1

1

2 2
k

k

k

 



 



 
     

 
  .                                                                           (4.24) 

In equation (4.24) exactly one of the differences k   is equal to zero. Therefore, the expression

1

2
k

k

k





 



  is a sum of powers of 2 with the lowest being the 02 1 ; thus it is an odd number and 

expressing by 2 , 

2

1

2
k

k

k





 



                                                                                                 (4.25) 

we take 

1 22     
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which is the first of equations (4.12). 

      We now include the 0 1   in the negative sum 
1

2
k

k

k





 



  and we obtain 

1

1 1

2 2 2 ( 2 1)
j k

j k

j k

 

 

 

 

          

and expressing by 2D the odd number 

2

1

2 1
k

k

kD





                                                                                                (4.26) 

we take 

1

2

1

2 2 2
j

j

j D 







     .                                                                        (4.27) 

Expressing by 2x  the lowest power of the sum 
1

2
j

j

j






  in equation (4.27) we take 

1

2

1

2 (2 2 2 )
j

x x x j x

j D 



   



     .                                                      (4.28) 

 In equation (4.28) exactly one of the differences j x  is equal to zero. Therefore, the expression  
1

1

2 2 2
j

x x j x

j

 



   



    is a sum of powers of 2 with the lowest being the 02 1 ; thus it is an odd 

number and expressing by
1D , 

1

1

1

2 2 2
j

x x j x

jD  



   



                                                                            (4.29) 

we take 

1 22x D D     

which is the second of equations (4.12). 

  In the case that equation (4.20) is  1 1,2,3,........, 1i i       we obtain from equation (4.21)  

1 1 1 1 2 12 2 2 ........ 2 1 2(2 2 2 ........ 1) 1 2(2 1) 1                          

and equivalently 

22 3,     

which is equation (4.13). 

      For 0 1    in equation (4.1) we take 
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1
1

1

2 2 2 1i

i

i


  






     .                                                                           (4.30) 

In the case there exists at least one 1, 1,2,3,........, 1s s     in equation (4.30) we separate the 

positive and negative 1, 1,2,3,........, 1i i     , we repeat the previous proof process and we 

obtain the odd number   in the form  

1 2 1 22 2x D D        

thus, in the form of equation (4.12). In the case that 1 1,2,3,........, 1i i      in equation (4.30) 

we get 

1 1 12 2 2 ........ 2 1           

and equivalently  

22 1,     

which is equation (4.14). 

2. For even numbers that are not powers of 2 we combine equation (4.2) with equations (4.12), (4.13) 

and (4.14) and we obtain equations (4.16), (4.17) and (4.18), respectively. 

3. We prove inequality 

2

1 2 3     

and similarly the rest of equations (4.19) are proved. For 0 1   , 1 1    and

1 2,3,........, 1i i      in equation (4.1) we obtain 

  1 1 2 1, 2 2 2 ........ 2 2 1i

               

and equivalently 

  1 1 2 1 1

1, (2 2 2 ........ 2 1) 2 2 1i

                  

from where we get that for 0 1    it is 

1 1 2

1,max 2 2 2 ........ 2 1            

and equivalently 

2 1 2 3 1

1,max

2

1,max

2 (2 2 2 ........ 2 1) 1

2 (2 1) 1
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2

1,max

0

2 3

1





  

 
.                                                                                                   (4.31) 

      For 0 1   , 1 1    and 1 2,3,........, 1i i      in equation (4.1) we obtain 

  1 1 2 1, 2 2 2 ........ 2 2 1i

               

and equivalently 

  1 1 2 1 1

1, (2 2 2 ........ 2 1) 2 2 1i

                  

from where we get  

1 1 2

1,max 2 2 2 ........ 2 1           

and equivalently 

2 1 2 3 1

1,max

2

1,max

2 (2 2 2 ........ 2 1) 1

2 (2 1) 1

  



         

   
 

2

1,max

0

2 5

1





  

 
.                                                                                               (4.32) 

From equations (4.31) and (4.32) we obtain 

2

1,max 2 3     

and equivalently 

2

1 2 3    .  

Example 4.3. For the odd number 293  we take 7  from inequality (4.4) and by conducting the 

7  steps it is written in the form of 

293 256 128 64 32 16 8 4 2 1           

thus, 0 1   . By including the 0 1    in the positive sum of the powers of 2 we get 

2

293 (256 128 16 2 1) (64 32 8 4)

293 401 2 27

        

  
.                                 (4.33)  

By including the 0 1    in the negative sum of  the powers of 2 we take 

1

293 (256 128 16 2) (64 32 8 4 1)

293 2 201 109

        

  
.                                (4.34) 

Thus, we have 
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2 1293 401 2 27 2 201 109      . 

Example 4.4. For the odd number 72899   we take 15   from inequality (4.4) and by conducting 

the 15   steps it is written in the form of 

72899 65536 32768 16384 8192 4096 2048

1024 512 256 128 64 32 16 8 4 2 1

     

          
 

thus, 0 1   . By including the 0 1    in the positive sum of the powers of 2 we get 

72899 (65536 32768 2048 1024 512 64 32 1)

(16384 8192 4096 256 128 16 8 4 2)

       

        
.            (4.35) 

172899 101985 2 14543   . 

By including the 0 1    in the negative sum of the powers of 2 we get 

2899 (65536 32768 2048 1024 512 64 32)

(16384 8192 4096 256 128 16 8 4 2 1)

      

         
                     (4.36) 

572899 2 3187 29085   .  

Thus, we have 

1 572899 101985 2 14543 2 3187 29085      . 

      Mersenne numbers are of the form (4.14). Thus, they cannot be written in the form of equation 

(4.12). 

Example 4.5. The odd number 17131071 2 1     is derived from equation (4.14) for 15  . Thus, it 

cannot be written in the form of equation (4.12). From equation (4.13) it is also derived that the odd 

number 17131069 2 3     cannot be written in the form of equation (4.12). 

      We now prove the following corollary: 

Corollary 4.2. ‘’1. The number of possible ways with which an odd number  ,  

2

2

1

3

5

2 3,

2 1,













 

 

 

   

   

 

can be written either in the form of equation  

1 22                                                                                                      (4.37) 

or in the form of equation 
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1 22x D D                                                                                                         (4.38) 

is given from the number  ( )t t  , 

1

( )
T

k

T
t t

k

 
    

 
                                                                                                   (4.39) 

where ( )T T  is the number of  1, 1,2,3,........, 1i i      of the odd number ( , )i   . 

2. For every odd number   the following inequality holds 

 0 1T     .’’                                                                                                  (4.40) 

Proof.1. We will present the proof for the odd numbers ( , )i   for which 0 1    and, similarly, 

the proof for the odd numbers ( , )i    for which 0 1    can be derived. From equations (4.22) 

and (4.25) we obtain 

1

1 2

1 1

2 (2 2 2 1) 2 ( 2 )
j k

j k

j k

    

 

  

 

            .            (4.41)  

Equation (4.41) remains in the form 
1 22    if and only if we move the powers of 2 from the 

sum  

1 1

2 ( 2 ) 2
k k

k k

k k

 

 

 

 

      

to the sum 

1

1

2 2 2 1
j

j

j

 







    

with all possible ways, except from moving them all; if we move all of the powers of 2  then the 0 1    

is moved to the right sum of the equation (4.37) which takes the form of 

1
1

1

(2 2 2 ) 1i

i

i


  






      

which is not in the form of 

1 22    . 

Exactly this number of powers of 2 in the sum 

1 1

2 ( 2 ) 2
k k

k k

k k
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is the number  T T  . Considering the original form in which the equation (4.37) is written, in total 

we can derive  t t  , 

  1 ........
1 2 3 1

T T T T
t t

T

        
               

        
 

and equivalently 

  ........
1 2 3 1

T T T T T
t t

T T

          
                 

          
 

and equivalently 

 
1

........
1 2 3

T

k

T T T T T
t t

T k

         
                

         
  

ways in which the odd number  , i   can be written in the form of equation (4.37). The proof 

for equation (4.38) is similarly derived through equations (4.26) and (4.29). 

2. For the odd numbers of equation (4.13) we get 

2 1 1 12 3 2 2 2 ........2 1              

and thus,   0T T   . For the odd numbers of equation (4.14) we obtain 

2 1 1 12 1 2 2 2 ........2 1              

and thus,   0T T   . For the odd numbers of equation (4.12) it is  1 1T     . Thus, 

inequality (4.40) holds.  

Example 4.6. In Example 4.3 it is  273 4T  and  
4

1

4
4 9

k

t
k

 
  

 
 . The same conclusion follows from 

the equations (4.33) and (4.34) taking into account the initial equation
2 1293 401 2 27 2 201 109      . In equation (4.33) the powers of 2 which are exchanged  are 

included in the initial 
22 (64 32 8 4)     . In equation (4.34) are included in the initial 

 2 64 32 8 4 1D      . This holds for all odd numbers  , i   for which 0 1   . 

Example 4.7. In example 4.4 it is  72899 9T  and   
9

1

9
9 349

k

t
k

 
  

 
 . The same conclusion follows 

from the equations (4.35) and (4.36) taking into account the initial equation 
1 572899 101985 2 14543 2 3187 29085      . In equation (4.35) the powers of 2 which are 

exchanged are included in the initial  22 16384 8192 4096 256 128 16 8 4 2x D          . In 
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equation  (4.36) are included in the initial  1 16384 8192 4096 256 128 16 8 4 2 1D           . 

 2 64 32 8 4 1D      . This holds for all odd numbers  , i    for which 0 1   . 

      Corollary 4.2 provides the way in which we can change the pairs  1 2,  and  1 2,D D , 

independently of one another, for the odd number . In addition, it is derived that for different odd 

numbers 1 2    we have    1 2t t    if and only if    1 2T T   . 

      In order to write an odd number in the form of equation (4.12) it must first be written in the form of 

equation (4.1). In the following paragraph, we will directly write the odd numbers either in the form of 

equation (4.1) or in the form of equation (4.12). 

5.THE SYMMETRY OF PRIME ODD-COMPOSITE ODD NUMBERS AND A METHOD FOR DEFINING LARGE 

PRIME NUMBERS  

      Corollaries 4.1 and 4.2 of the previous paragraph provide a large set of information about the 

internal structure of natural numbers. One of these concerns the symmetry (SPCΠ) between the 

distribution of the odd prime numbers and the distribution of the composite odd numbers. This 

symmetry will be studied in this paragraph. 

      We consider the odd numbers   which are derived from the product of two odd prime numbers q

and Q , excluding 3 and 5 , and we write them in the form of equation (4.12), 

1 2 1 22 2

,

3,5

3,5

xqQ D D

q Q prime

q Q

q

Q

       









.                                                                    (5.1) 

Equation (5.1) expresses SPCΠ: Using corollary 4.2 we can write each of the equations 

1 22qQ                                                                                                (5.2) 

1 22xqQ D D                                                                                                 (5.3) 

in  ( )t t   mathematical expressions. In these equations, a high proportion of 1 2 1 2, , ,D D   is 

divided either by 3 or by 5  or it is 2 1  . This is the first property of SPCΠ. 

      The second property of the SPCΠ concerns the 1 of equation (5.2) and 2D  of equation (5.3): As the 

differenceQ q decreases, the proportion of 1 , 2D that are primes increases relatively to the 

proportion of 1 , 2D that are composite (with the 2 1, D being divided by 3 or5 , or 2 1  ). As the 

difference Q q  increases, the proportion of 1 , 2D π that are primes decreases relatively to the 

proportion of 1 , 2D that are composite. 
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      These two characteristic properties of SPCΠ provide a method for defining large prime numbers . 

This method is completely different from the methods developed in previous centuries [1-11] and it is 

not associated with the sieve of Eratosthenes and relevant methods: We chose a pair of  ,q Q  prime 

numbers, 3,5q  and 3,5Q  , with a small difference Q q ( we can choose two consecutive primes 

but this is not mandatory). We define the pairs  1 2,  of equation (5.2) in which 2 is divided by3 or 

by 5  or it is 2 1  . To a very high proportion the 1  in these pairs are primes. Moreover, the primes 

1  defined by this method are extremely larger than q and Q  due to the first of the inequalities (4.19). 

The efficiency of the method is given by the quotient of the pairs  1 2,  in which at least one of the 

1 , 2  is either divided by3 or by 5 or it is 2 1  , to the total number     ,t t q Q t q Q    of the 

pairs  1 2,  . 

Example 5.1. For 11q  and 13Q  in equation (5.2) we obtain 

11 13 143 (128 64 4 2 1) (32 16 8)                                                   (5.4) 

and using corollary 4.2 we get 

3

4

3

1

5

4

3

143 199 2 7

191 2 3

183 2 5

167 2 3

175 2 1

159 2 1

151 2 1

  

  

  

  

  

  

  

. 

From equation (5.4) we obtain   11 13 3T   and    
3

1

3
11,13 3 7

k

t t
k

 
   

 
 . The only pair 

 1 2,  in which none of the 1 , 2  is divided by 3 or by 5  and it does not hold that 2 1  is the 

pair of  199,7 . Thus, method’s efficiency in this example is 
6

7
  . The pairs of the SPCΠ are the 

following: 

             1 2, 191,3 , 183,5 , 167,3 , 175,1 , 159,1 , 151,1    

Among these pairs, in the pair    1 2, 183,5    1 183   is divided by 3 (since the sum of its digits 

is divided by 3 ), in the pair    1 2, 175,1   , 1 175   is divided by 5 (since its last digit is 5 ) and in 

the  pair    1 2, 159,1   , 1 159   is divided by 3 . Thus, 1 191,167,151   in the rest of the pairs 

of the SPCΠ have a great chance of being primes, since we have chosen q  and Q  with a small 
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difference Q q  . By conducting the necessary test (for relatively small odd numbers existing prime 

number tables can be used ,however for large odd numbers 1 a mathematical algorithm should be 

applied in order to determine if the a number is prime) we find that all 1 191,167,151   are primes. 

The largest prime 1 that the method gives in this example is the 1 191   (and not 1 199  ).  

      In case we want to identify only the largest 1 for a specific pair  ,q Q we follow a different 

approach. We start searching for prime numbers from the original 1 if 2 is divided by 3 or by 5  or it 

is 2 1  , and if the initial 1 is not a prime we proceed by applying corollary 4.2. 

Example 5.2. For 271q   and 277Q   in equation (5.2) we obtain 

271 277 75067 (65536 32768 4096 512 128 16 8 4 1)

(16384 8192 2048 1024 256 64 32 2)

          

       
 

from where we obtain 

175067 103069 2 14001   . 

The 2 14001   is divided by 3 and thus the  103069,14001 is a pair of the SPCΠ. By making the 

necessary test we find that the 1 103069   is prime.  

Example 5.3. For 263q   and 269Q   in equation (5.2) we get 

263 269 70747 (65536 32768 2048 512 32 8 4 1)

(16384 8192 4096 1024 256 128 64 16 2)

         

        
           (5.5) 

from where we obtain 

170747 100909 2 15081   . 

The 2 15081   is divide by3 and thus the  100909,15081  is a pair of the SPCΠ. By making the 

necessary test we find that 1 100909   is not a prime .Thus, we proceed in the application of 

corollary 4.2. In equation (5.5) we move the 12 2  from the second parenthesis to the first and we get 
470747 100907 2 1885   . 

The 2 1885   is divide by 5  and thus the  100907,1885  is a pair of the SPCΠ. By making the 

necessary test we find that 1 100907   is prime. 

      The density of prime numbers decreases in the set  as we move on to larger prime numbers. For 

this reason, we search for a second prime number at a larger distance from the 1 100907  : In 

equation (5.5) we move the sum  16384 8192 4096 1024 256     from the second parenthesis to 

the first and we get 170747 70957 2 105   . 
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The 2 105   is divided by 3 and thus the  70957,105  is a pair of the SPCΠ. By making the necessary 

test we find that 1 70957   is prime. 

 Example 5.4. We choose the primes 7q   and 1033Q  so that the difference Q q is great. We 

expect that the 1  of the SPCΠ which are primes will be extremely fewer compared to the 1  which 

are composite. For 7q   and 1033Q   in equation (5.2) we get 

7 1033 7231 (4096 2048 1024 512 16 8 4 2 1)

(256 128 64 32)

          

   
                (5.6) 

and using corollary 4.2 we obtain 

5

6

5

5

5

7

6

6

5

5

5

8

6

5

7

7231 7711 2 15

7679 2 7

7647 2 13

7583 2 11

7455 2 7

7615 2 3

7551 2 5

7423 2 3

7519 2 9

7391 2 5

7327 2 3

7487 2 1

7295 2 1

7263 2 1

7359 2 1

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
.                                                                                                   (5.7) 

From (5.6) we get   7 1033 4T    and    
4

1

4
7,1033 4 15

k

t t
k

 
   

 
 . In the pairs

     1 2, 7679,7 , 7455,7    of equation (5.7) we know that 1 7679,7455   are divided by 7  

since 7231 7 1033   and should not be taken into account in calculating the efficiency of the method. 

From the rest of the  13  pairs, the12  

             

           

1 2, 7711,15 , 7647,13 , 7615,3 , 7551,5 , 7423,3 , 7519,9 ,

7391,5 , 7327,3 , 7487,1 , 7595,1 , 7263,1 , 7359,1
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are pairs of the SPCΠ. Thus, the efficiency of the method in this example is 
12

13
  . By doing the 

necessary testing we find that only in the pair    1 2, 7487,1    the 1 7487   is prime. In the rest 

of the 11 pairs of the SPCΠ the 

1 7711,7647,7615,7551,7423,7519,7391,7327,7595,7263,7359   is composite. 

      In such cases for a small difference the number of primes 1  in the pairs  1 2,  of the SPCΠ is not 

larger than the number of composites 1 . A criterion for such cases is given by inequality (4.40). For 

  1T                                                                                                         (5.8) 

the number of primes 1  in pairs  1 2,  of the SPCΠ is larger than the number of composites 1 , 

while for  

  1T                                                                                                              (5.9) 

this primes/composites proportion is reversed; the number of primes 1 is lower than the number of 

composites 1 . This criterion gives the third property of the SPCΠ.  

      When applying corollary 4.2 methods efficiency depends on the power of 2  or the pair of powers or 

the triad of powers etc. that we move from
22  to 1 . A criterion is required so that that the first 

pairs of the SPCP in which 1 is prime can be derived. The use of the aforementioned criterion would 

enhance the efficiency of the method in means of computational resources. 

      There are  T   pairs of the SPCΠ in which 2 1  . These pairs can be easily determined by leaving 

a power of 2  in 
22 . Thus, in the case that in the initial pair  1 2,  of SPCΠ  1 is not a prime (for 

a small Q q difference) we apply corollary 4.2, starting with the  T   pairs of the SPCΠ in which 

2 1  . 

Example 5.5. For 1667q   and 1669Q  in equation (5.2) we obtain 

31667 1669 2782223 3455495 673272 3455495 2 84159          and the first pair of the 

SPCΠ is     1 2, 3455495,84159    in which 
1 3455495   is divided by 5 . By choosing the  

 1667 1669 10T    pairs of the SPCΠ in which 2 1   we get 

           

         

3 4 5 6 7

1 2

8 10 14 17 19

, 2782215,2 1 , 2782207,2 1 , 2782191,2 1 , 2782159,2 , 2782095,2 1 ,

2781967,2 1 , 2781199,2 1 , 2765839,2 1 , 2651151,2 1 , 2257935,2 1

      

    
. 
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In pairs      3 7 192782215,2 1 , 2782095,2 1 , 2257935,2 1     1 is divided by 5. In pairs 

   5 172782191,2 1 , 2651151,2 1   1 is divided by 3. From the remaining pairs 

1 2782159,2781199,2765839   are primes and 
1 2782207,2781967   are composites. 

      In some cases 1 , 2  in equation (5.2) are both prims. Thus, form the (small) prime 2  we can 

determine the extremely large prime 1 . Firstly, however, we need a criterion that identifies these 

pairs in the equation (5.2). 

      The calculations in the previous examples were carried out with a calculator. To identify large prime 

numbers 1   from equation (5.1) an electronic system device and appropriate software development is 

required.  

6. THE 
0  SIGN SYMMETRY 

      We write the powers of an odd number  in the form of equation (4.1), 

 
1

1 *

0

, 2 2 2 ,

1, 0,1,2,........, 1

i

i i

i

i i


      

 








     

   





.                                               (6.1) 

Equation (6.1) separates odd numbers in two categories. In the first category the sign of 0 1    

alternates in the consecutive powers of the odd number  . In the second, it remains constant. 

Example 6.1. In the odd powers of 3 it holds that 0 1   , while in the even powers 0 1   . 

Example 6.2. In the powers of 5  it holds that 0 1   . 

Example 6.3. In the power of 15  it holds that 0 1   , while in the even powers 0 1   . 

Example 6.4. In the powers of 77 it holds that 0 1   . 

      Theorem 4.1 reveals other symmetries in the internal structure of natural numbers. An investigation 

is needed, similar to the one of the fundamental theorem of arithmetic of the previous centuries. 
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