Upper bound of Prime gap - Legendre’s conjecture was verified (I)

Nguyen Van Quang
Hue - Vietnam - 2017

Abstract

We have found the possible max- difference between two successive prime numbers, and by them, Legendre’s conjecture is verified

A prime gap is the difference between two successive prime numbers. The n-th prime gap, denoted G_n is the difference between the (n+1)-th and the n-th prime numbers, i.e. [?]

$$G_n = P_{n+1} - P_n$$

1 The way for establishing Upper bound of G_n

1.1 The approach

A difference between two successive prime numbers is the length of sequence of composite numbers between them. To determine Upper bounds of G_n, we will determine the possible max-length of sequence of composite numbers next to P_n.

First, we consider a sequence of composite numbers below:

For a given natural number $a!$, there are two sequences of composite numbers before and after $a!$ such as:

$a! - 2, a! - 3, a! - 4, a! - 5, ..., a! - a$ and $a! + 2, a! + 3, a! + 4, a! + 5, ... a! + a$.

We have not determine the numbers: $a! \pm 1, a! \pm (a + 1)$, are composite or not. If they are composite numbers, they must a product of prime factors which are larger than a.

To connect two sequences above in such away that they become one sequence of composite numbers, $a! \pm 1$ must be a composite numbers. And we obtain a new sequence of composite numbers:

$a! - a, ..., a! - 5, a! - 4, a! - 3, a! - 2, a! - 1, a! + 1, a! + 2, a! + 3, a! + 4, a! + 5, ..., a! + a$ (1).

In the sequence(1), if the numbers $a! \pm 1$, one is divisible by p_n, other one is divisible by p_{n+1}. (p_n and p_{n+1} are successive prime number), $p_n - 1 = a$, then the bounded numbers $:a! \pm (a + 1) = a! \pm p_n$ are not divisible by any numbers smaller than or equal to p_{n+1}.

So, we suppose that, the sequence (1) is the max-length of sequence of composite numbers, which have a divisor smaller than or equal to p_{n+1}.

1.2 The possible max -length of sequence of composite numbers between two successive prime numbers -prime gaps

If N is a composite with $P_n < N < P_{n+1}$, then N must have a divisor smaller than $\sqrt{P_{n+1}}$

Since the even number is composite number, so we consider only odd numbers, and its sequence, if the odd numbers of sequence are composite, they must have an odd divisor smaller than $\sqrt{P_{n+1}}$.

Assume p_{n+1} is the largest prime smaller than $\sqrt{P_{n+1}}$, p_n is the successive prime to p_{n+1}. We
arrange every odd divisors smaller and equal to \(p_{n+1} \) next to \(P_n \) as follows (2):

<table>
<thead>
<tr>
<th>(P_n)</th>
<th>(N_1)</th>
<th>(N_2)</th>
<th>(\ldots)</th>
<th>(\ldots)</th>
<th>(N_{(p_n-1)/2})</th>
<th>(N_{(p_n+1)/2})</th>
<th>(\ldots)</th>
<th>(\ldots)</th>
<th>(N_{(p_n-2)})</th>
<th>(N_{(p_n-1)})</th>
<th>(N_{p_n})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_n - 2)</td>
<td>(p_n - 4)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(p_n)</td>
<td>(p_{n+1})</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(p_n - 4)</td>
<td>(p_n - 2)</td>
<td>(1)</td>
</tr>
</tbody>
</table>

Above (2) is the possible max-length of sequence of composite numbers next to \(P_n \).

For example: \(p_{n+1} = 17 \), then \(p_n = 13 \)

<table>
<thead>
<tr>
<th>(P_n)</th>
<th>(N_1)</th>
<th>(N_2)</th>
<th>(N_4)</th>
<th>(N_5)</th>
<th>(N_6)</th>
<th>(N_7)</th>
<th>(N_8)</th>
<th>(N_{10})</th>
<th>(N_{11})</th>
<th>(N_{12})</th>
<th>(N_{13})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Dv)</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>13(17)</td>
<td>17(13)</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

and the possible max-length = 26.

By the arrangement(2), \(N_p \) must be a prime, if \(N_p \) is a composite number, then it must have a odd divisor smaller or equal to \(p_{n+1} \), this is impossible.

Difference between \(P_n \) and \(P_{n+1} \) is equal to \(2p_n \). And this is such a possible max-Difference between \(P_n \) and \(P_{n+1} \).

If this is not the possible max-Difference, then the number \(N_p \) is composite number.

If \(N_p \) is composite number, then it must have an odd divisor smaller or equal to \(p_{n+1} \).

Hence, there will be other arrangement of divisors, and the length of sequence of composite numbers next to \(P_n \) will be shorter, so prime gap will be smaller than \(2p_n \).

In practice, there is only one case such that prime gap is equal \(2p_n \) below:

\(p_n = 113, P_{n+1} = 127, p_n = 7, p_{n+1} = 11 \)

And prime gap = \(127 - 113 = 14 = 2p_n = 2.7 \)

For all other cases, prime gap is always smaller than \(2p_n \), \(Gn = P_{n+1} - P_n \leq 2p_n - 2 \)

Because, in the all other cases, arrangement of divisors is different from (2) (\(N_{p_n} \) is composite or not).

Write above arrangement as:

<table>
<thead>
<tr>
<th>(P_n)</th>
<th>(N_1)</th>
<th>(\ldots)</th>
<th>(\ldots)</th>
<th>(N_{(p_n-1)/2})</th>
<th>(N_c)</th>
<th>(N_{(p_n+1)/2})</th>
<th>(\ldots)</th>
<th>(\ldots)</th>
<th>(N_{(p_n-2)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_n - 2)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(p_n - 3)</td>
<td>(p_n - 1)</td>
<td>(p_n)</td>
<td>(p_{n+1})</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(p_n - 2)</td>
</tr>
</tbody>
</table>

To obtain arrangement of divisor above, the below conditions must hold:

a. The middle even number \(N_c \) must be the form \(N_c = 2^{\alpha_1} \cdot 3^{\alpha_2} \cdot 5^{\alpha_3} \cdot 7^{\alpha_4} \cdots p_{n-1}^{\alpha_{n-1}} \).

b. \(N_c \pm 1 \), one is divisible by \(p_n \), other one is divisible by \(p_{n+1} \).

c. \(N_c < p_{n+2}^2 \)

It is not difficult to show that only \(N_c = 120 = 2^3 \cdot 3 \cdot 5 \) holds. For large enough numbers, both of \(a \) and \(c \) could not be satisfied together.

We return to determine \(Gn \):

Since \(p_n \leq p_{n+1} - 2 < \sqrt{P_{n+1}} - 2 \leq \sqrt{P_n + 2p_n - 2} - 2 \)

so \(p_n < \sqrt{P_n + 2p_n - 2} - 2 \)

\((p_n + 2)^2 < P_n + 2p_n - 2 \)
\[p_n^2 + 4p_n + 4 < P_n + 2p_n - 2 \]
\[p_n^2 + 2p_n + 4 < P_n - 2 \]
\[p_n^2 + 2p_n + 1 < P_n - 5 \]
\[(p_n + 1)^2 < P_n - 5 \]
\[p_n + 1 < \sqrt{P_n - 5} \]
\[p_n < \sqrt{P_n - 5} - 1 \]

Hence: \(G_n < 2(\sqrt{P_n - 5} - 1)^* \), a short form: \(G_n < 2\sqrt{P_n} \)

The formula * is true for all prime numbers \(P_n \geq 17 \).

2 Consequence

Legendre’s conjecture was verified by prime gap above.

Legendre’s conjecture, proposed by Adrien-Marie Legendre, states that there is a prime number between \(m^2 \) and \((m+1)^2\) for every positive integer \(m \). The is one of Landau’s problem (1912) on prime numbers; as of 2015, the conjecture has neither been proved nor disproved [?]. Difference between \(m^2 \) and \((m+1)^2\) is : \(D = (m+1)^2 - m^2 = 2m + 1 \)

Since \(m + 1 \geq p_{n+1} \), then \(m > p_n, 2m + 1 > 2p_n \), hence \(D > G_n \): There is a prime number between \(m^2 \) and \((m+1)^2\).

In fact, there are at least two prime numbers between \(m^2 \) and \((m+1)^2\) for every positive integer \(m \).

References

[3] Quang N V, Using formula for seaching a prime number in the interval \([p_m, p_{m+1}^2]\). Vixra:1512.0291(NT)

Email:
nguyenquang67@gmail.com
quangnhu67@yahoo.com.vn