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Abstract. The birth of modern continuum mechanics was the Cauchy’s idea for
traction vectors and his achievements of the existence of stress tensor and derivation
of the general equation of motion. He gave a proof for the existence of stress tensor that
is called Cauchy tetrahedron argument. But there are some challenges on the different
versions of tetrahedron argument and the proofs for the existence of stress tensor. We
give a new proof for the existence of stress tensor and derivation of the general equation
of motion. The exact tetrahedron argument for the first time gives us a clear and deep
insight into the origins and the nature of these fundamental concepts and equations
in continuum mechanics. This new approach leads to the exact point-base definition
and derivation of these fundamental parameters and relations in continuum mechanics.
By the exact tetrahedron argument we derived the relation for the existence of stress
tensor and the general equation of motion, simultaneously. In this new proof, there
is no approximating or limiting process and all of the effective parameters are exact
values not average values. Also, we show that in this proof, all the challenges on the
previous tetrahedron arguments and the proofs for the existence of stress tensor are
removed.

1. Introduction

The existence of stress tensor and the general equation of motion form the main part
of the foundation of continuum mechanics. During 1822 to 1828, Cauchy for the first
time, introduced the basic idea of traction vector and presented a proof for the existence
of stress tensor that is called Cauchy tetrahedron argument and by another process
obtained the general equation of motion that is called Cauchy equation of motion. He
also gave some important properties for the state of stress, e.g. the symmetry of stress
tensor [3], [4], [7], [8]. The basic idea of Cauchy was that the internal forces on the
surface in continuum media in addition to the normal component can have the tangential
components. From Truesdell in (1968, [8]), on pages 336 and 338:

Thus it might seem that CAUCHY’s achievement in formulating and
developing the general theory of stress was an easy one. It was not.
CAUCHY’s concept has the simplicity of genius. Its deep and thorough
originality is fully outlined only against the background of the century
of achievement by the brilliant geometers who preceded, treating special
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kinds and cases of deformable bodies by complicated and sometimes in-
correct ways without ever hitting upon this basic idea, which immediately
became and has remained the foundation of the mechanics of gross bodies.

We already gave a comprehensive review of the different versions of tetrahedron argu-
ment and the proofs for the existence of stress tensor presented in the published books
during nearly two centuries from the birth to this time, and considered the important
challenges and the improvements of each one (2017, [1]).

In this article for the first time, we give the exact tetrahedron argument that removes all
the stated challenges and opens a new and deep vision into the foundation of continuum
mechanics and the nature of the traction vector, the stress tensor, and the general
equation of motion.

For presenting the exact tetrahedron argument we first give the general forms of the
conservation of linear momentum for a mass element and prove the important relation
that is called Cauchy lemma for the traction vectors that act on the opposite sides of
the same surface. Then, the exact tetrahedron argument will be presented. We also,
discuss some aspects of this new proof and consider the challenges that hold for the
previous tetrahedron arguments and the proofs for the existence of stress tensor, on
this new proof.

The integral equation of conservation of linear momentum on a mass element in con-
tinuum media is:

d

dt

ż

M
ρv dV “

ż

BM
t dS `

ż

M
ρb dV (1.1)

where ρ “ ρpr, tq is the density, v “ vpr, tq is the velocity vector, and ρv is the
linear momentum per unit volume of the mass element M. On the right hand side,
t “ tpr, t,nq is the surface force per unit area that is called traction vector and acts
on the surface of the mass element i.e. BM, and b “ bpr, tq is the body force per unit
mass. Here r is the position vector, t is time, and n is the outward unit normal vector
on the surface of mass element. By using the transport theorem and the conservation
of mass [9], [5], the left hand side of the equation converts to:

d

dt

ż

M
ρv dV “

ż

M

!

Bpρvq

Bt
`∇.pρvq

)

dV “

ż

M

!

ρ
Bv

Bt
` ρpv.∇qv

)

dV “

ż

M
ρa dV

(1.2)
where a “ Bv{Bt`pv.∇qv is the acceleration vector. By rearranging the equation (1.1):

ż

M
pρa´ ρbq dV “

ż

BM
t dS (1.3)

for simplicity, we use B “ pρa´ ρbq that is called body term within the proof. So, the
equation (1.3) rewrites as:

ż

M
B dV “

ż

BM
t dS (1.4)

In general, B “ Bpr, tq and t “ tpr, t,nq are continuous functions in their scope in
continuum media.
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Figure 1. The mass ele-
ments M1 and M2, where
BM1 “ S1 Y Sm and
BM2 “ S2 Y Sm, and the
mass element M such that
VM “ VM1 Y VM2 and
BM “ S1 Y S2.

2. Cauchy Lemma

Cauchy lemma discusses about the traction vectors that act on the opposite sides of the
same surface at a given point and time. There are some approaches to prove this lemma
in the literature. Here we present a proof for the Cauchy lemma that is nearly similar
to the proofs in [6] and [2]. Suppose the mass element M splits into M1 and M2 by
the surface Sm in the way that VM “ VM1 Y VM2 , BM1 “ S1 Y Sm, BM2 “ S2 Y Sm,
and BM “ S1YS2, see Figure 1. If the equation (1.4) applies to M1 and M2, then the
sum of these equations is:

ż

M1

B1 dV `

ż

M2

B2 dV “

ż

BM1

t1 dS `

ż

BM2

t2 dS

By VM “ VM1 Y VM2 , the sum of the body term integrals is equal to the integral of the
body term on M. In addition, by BM1 “ S1 Y Sm and BM2 “ S2 Y Sm, the surface
integrals split as:

ż

M
B dV “

ż

S1

t1 dS `

ż

Sm

t1 dS `

ż

S2

t2 dS `

ż

Sm

t2 dS

By BM “ S1 Y S2, the sum of surface integrals on S1 and S2 is equal to the surface
integral of t on BM, so:

ż

M
B dV “

ż

BM
t dS `

ż

Sm

t1 dS `

ż

Sm

t2 dS

Comparing this integral equation with the integral equation (1.4), implies that:
ż

Sm

t1 dS `

ż

Sm

t2 dS “ 0

But t1 on Sm is tpr, t,nq, and t2 on Sm is tpr, t,´nq, so:
ż

Sm

 

tpr, t,nq ` tpr, t,´nq
(

dS “ 0

therefore, we have
tpr, t,nq “ ´tpr, t,´nq (2.1)

This is the Cauchy lemma that is derived by using the integral equation of conservation
of linear momentum (1.4). It states “the traction vectors acting on opposite sides of the
same surface at a given point and time are equal in magnitude but opposite in direction”.
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Figure 2. Tetrahedron geometry
and the exact traction vectors on the
faces.

3. Exact Tetrahedron Argument

There is a belief today that the foundation of mechanics is a dead subject, but this is
not correct.

Here for the first time, we present the exact proof of tetrahedron argument. Imagine a
tetrahedron element in the continuum media that its vortex is at point o and its three
orthogonal faces are parallel to the three orthogonal planes of the Cartesian coordinate
system. The fourth surface of the tetrahedron, i.e. its base, has the outward unit normal
vector n4. For simplicity, the vortex point is at the origin of the coordinate system.
The geometry parameters are shown in Figure 2. The vector r “ xex` yey` zez is the
position vector from the origin of the coordinate system. Now the integral equation of
conservation of linear momentum (1.4) applies to this tetrahedron mass element:

ż

∆s4

t4 dS `

ż

∆s1

t1 dS `

ż

∆s2

t2 dS `

ż

∆s3

t3 dS “

ż

M
B dV (3.1)

The key idea of this proof is to write the variables of this equation in terms of the exact
Taylor series about a point in the domain. Here, we derive these series about the vortex
point of tetrahedron (point o), where the three orthogonal planes pass through it. Note
that time (t) is the same in all terms, so it does not exist in the Taylor series. For
Bpr, tq at any point in the domain of the mass element, we have:

B “ Bo `
BBo

Bx
x`

BBo

By
y `

BBo

Bz
z

`
1

2!

´

B2Bo

Bx2
x2
`
B2Bo

By2
y2
`
B2Bo

Bz2
z2
` 2

B2Bo

BxBy
xy ` 2

B2Bo

BxBz
xz ` 2

B2Bo

ByBz
yz
¯

` . . . “
8
ÿ

m“0

8
ÿ

n“0

8
ÿ

k“0

1

m!n!k!

Bpm`n`kqB

BxmBynBzk

ˇ

ˇ

ˇ

o
xmynzk

(3.2)

Here Bo and BBo{Bx are the exact values of B and BB{Bx at point o, respectively.
Similarly, the other derivatives are the exact values of the related derivatives of B at
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Figure 3. Inclined plane that is parallel
to ∆s4 and passes through point o.

point o. On the surface ∆s1, x “ 0 and n1 does not change, so:

t1 “ t1o `
Bt1o

By
y `

Bt1o

Bz
z `

1

2!

´

B2t1o

By2
y2
`
B2t1o

Bz2
z2
` 2

B2t1o

ByBz
yz
¯

` . . . “
8
ÿ

m“0

8
ÿ

k“0

1

m!k!

Bpm`kqt1

BymBzk

ˇ

ˇ

ˇ

o
ymzk

(3.3)

where t1o is the exact value of the traction vector t1 on ∆s1 at point o. On the surface
∆s2, y “ 0 and n2 does not change, and on the surface ∆s3, z “ 0 and n3 does not
change, so:

t2 “ t2o `
Bt2o

Bx
x`

Bt2o

Bz
z `

1

2!

´

B2t2o

Bx2
x2
`
B2t2o

Bz2
z2
` 2

B2t2o

BxBz
xz

¯

` . . . “
8
ÿ

m“0

8
ÿ

k“0

1

m!k!

Bpm`kqt2

BxmBzk

ˇ

ˇ

ˇ

o
xmzk

(3.4)

t3 “ t3o `
Bt3o

Bx
x`

Bt3o

By
y `

1

2!

´

B2t3o

Bx2
x2
`
B2t3o

By2
y2
` 2

B2t3o

BxBy
xy

¯

` . . . “
8
ÿ

m“0

8
ÿ

k“0

1

m!k!

Bpm`kqt3

BxmByk

ˇ

ˇ

ˇ

o
xmyk

(3.5)

Similarly, t2o and t3o are the exact values of t2 and t3 at point o on ∆s2 and ∆s3,
respectively. For the traction vector on surface ∆s4 a more explanation is needed. The
traction vector on ∆s4 expands based on the traction vector on the plane that is parallel
to ∆s4 and passes through the vortex point of tetrahedron (point o). Because the unit
normal vectors of these two planes are the same, see Figure 3. Therefore:
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t4 “ t4o `
Bt4o

Bx
x`

Bt4o

By
y `

Bt4o

Bz
z

`
1

2!

´

B2t4o

Bx2
x2
`
B2t4o

By2
y2
`
B2t4o

Bz2
z2
` 2

B2t4o

BxBy
xy ` 2

B2t4o

BxBz
xz ` 2

B2t4o

ByBz
yz
¯

` . . . “
8
ÿ

m“0

8
ÿ

n“0

8
ÿ

k“0

1

m!n!k!

Bpm`n`kqt4

BxmBynBzk

ˇ

ˇ

ˇ

o
xmynzk

(3.6)

Here t4o is the exact traction vector at point o on the plane with unit normal vector n4,
that this plane passes exactly through point o, the vertex point of tetrahedron element.
x, y, and z are the components of the position vector r on the surface ∆s4.

Note that t1o , t2o , t3o , and t4o are the exact traction vectors at point o but on the
different planes with unit normal vectors n1, n2, n3, and n4, respectively. The body
term Bo is exactly defined at point o. So, all the traction vectors and the body term
vector with subscript o and their all derivatives, such as B2t4o{BxBy, are defined exactly
at point o and are bounded. As a result, for the convergence of the above Taylor series
it is enough that we have |r| ď 1 in the domain of the mass element M. But the
scale of the coordinate system is arbitrary and we can define this scale such that the
greatest distance in the domain of the mass element from the origin, is equal to one,
i.e. |r|max “ 1. By this scale, in the entire of the tetrahedron mass element we have
|r| ď 1, that leads to the convergence condition for the above Taylor series.

Now all of the variables are prepared for integration in the integral equation (3.1). The
integration of B on the volume of M:

ż

M
B dV “

ż c

0

ż bp1´ z
c
q

0

ż ap1´ y
b
´ z

c
q

0

"

Bo `
BBo

Bx
x`

BBo

By
y `

BBo

Bz
z ` . . .

*

dx dy dz

“
1

6
abc

!

Bo `
1

4

´

BBo

Bx
a`

BBo

By
b`

BBo

Bz
c
¯

` . . .
)

(3.7)

The integration of t4 on ∆s4:
ż

∆s4

t4 dS “

ż b

0

ż ap1´ y
b
q

0

"
c

`

´
c

a

˘2
`
`

´
c

b

˘2
` 1

ˆ

t4o `
Bt4o

Bx
x`

Bt4o

By
y

`
Bt4o

Bz

`

cp1´
x

a
´
y

b
q
˘

`
1

2!

´

B2t4o

Bx2
x2
`
B2t4o

By2
y2
`
B2t4o

Bz2

`

cp1´
x

a
´
y

b
q
˘2

` 2
B2t4o

BxBy
xy ` 2

B2t4o

BxBz
x
`

cp1´
x

a
´
y

b
q
˘

` 2
B2t4o

ByBz
y
`

cp1´
x

a
´
y

b
q
˘

¯

` . . .

˙*

dx dy

“
1

2

?
a2b2 ` a2c2 ` b2c2

!

t4o `
1

3

´

Bt4o

Bx
a`

Bt4o

By
b`

Bt4o

Bz
c
¯

`
1

12

´

B2t4o

Bx2
a2
`
B2t4o

By2
b2
`
B2t4o

Bz2
c2
`
B2t4o

BxBy
ab`

B2t4o

BxBz
ac`

B2t4o

ByBz
bc
¯

` . . .
)

(3.8)
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The integration of t1 on ∆s1:

ż

∆s1

t1 dS “

ż c

0

ż bp1´ z
c
q

0

"

t1o `
Bt1o

By
y `

Bt1o

Bz
z

`
1

2!

´

B2t1o

By2
y2
`
B2t1o

Bz2
z2
` 2

B2t1o

ByBz
yz
¯

` . . .

*

dy dz

“
1

2
bc
!

t1o `
1

3

´

Bt1o

By
b`

Bt1o

Bz
c
¯

`
1

12

´

B2t1o

By2
b2
`
B2t1o

Bz2
c2
`
B2t1o

ByBz
bc
¯

` . . .
)

(3.9)

The integration of t2 on ∆s2:

ż

∆s2

t2 dS “

ż c

0

ż ap1´ z
c
q

0

"

t2o `
Bt2o

Bx
x`

Bt2o

Bz
z

`
1

2!

´

B2t2o

Bx2
x2
`
B2t2o

Bz2
z2
` 2

B2t2o

BxBz
xz

¯

` . . .

*

dx dz

“
1

2
ac
!

t2o `
1

3

´

Bt2o

Bx
a`

Bt2o

Bz
c
¯

`
1

12

´

B2t2o

Bx2
a2
`
B2t2o

Bz2
c2
`
B2t2o

BxBz
ac
¯

` . . .
)

(3.10)

The integration of t3 on ∆s3:

ż

∆s3

t3 dS “

ż b

0

ż ap1´ y
b
q

0

"

t3o `
Bt3o

Bx
x`

Bt3o

By
y

`
1

2!

´

B2t3o

Bx2
x2
`
B2t3o

By2
y2
` 2

B2t3o

BxBy
xy

¯

` . . .

*

dx dy

“
1

2
ab
!

t3o `
1

3

´

Bt3o

Bx
a`

Bt3o

By
b
¯

`
1

12

´

B2t3o

Bx2
a2
`
B2t3o

By2
b2
`
B2t3o

BxBy
ab
¯

` . . .
)

(3.11)

The geometrical relations for area of the faces and the volume of the tetrahedron are:

∆s1 “
1

2
bc, ∆s2 “

1

2
ac, ∆s3 “

1

2
ab

∆s4 “
1

2

?
a2b2 ` a2c2 ` b2c2, ∆V “

1

6
abc

(3.12)
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By substituting the obtained relations for the integrals of the traction vectors and the
body term into the equation (3.1) and using the above geometrical relations:

∆s4

!

t4o `
1

3

´

Bt4o

Bx
a`

Bt4o

By
b`

Bt4o

Bz
c
¯

`
1

12

´

B2t4o

Bx2
a2
`
B2t4o

By2
b2
`
B2t4o

Bz2
c2
`
B2t4o

BxBy
ab`

B2t4o

BxBz
ac`

B2t4o

ByBz
bc
¯

` . . .
)

`∆s1

!

t1o `
1

3

´

Bt1o

By
b`

Bt1o

Bz
c
¯

`
1

12

´

B2t1o

By2
b2
`
B2t1o

Bz2
c2
`
B2t1o

ByBz
bc
¯

` . . .
)

`∆s2

!

t2o `
1

3

´

Bt2o

Bx
a`

Bt2o

Bz
c
¯

`
1

12

´

B2t2o

Bx2
a2
`
B2t2o

Bz2
c2
`
B2t2o

BxBz
ac
¯

` . . .
)

`∆s3

!

t3o `
1

3

´

Bt3o

Bx
a`

Bt3o

By
b
¯

`
1

12

´

B2t3o

Bx2
a2
`
B2t3o

By2
b2
`
B2t3o

BxBy
ab
¯

` . . .
)

´∆V
!

Bo `
1

4

´

BBo

Bx
a`

BBo

By
b`

BBo

Bz
c
¯

` . . .
)

“ 0

(3.13)

In the geometry of tetrahedron, h is the height of the vertex o from the base face,
i.e. ∆s4. So, we have the following geometrical relations for a tetrahedron with n4 “

nxex ` nyey ` nzez, where a, b, and c are greater than zero, see Figure 2.

h “ nxa, h “ nyb, h “ nzc

1

h2
“

1

a2
`

1

b2
`

1

c2
, ∆s4 “

abc

2h
∆s1 “ nx∆s4, ∆s2 “ ny∆s4, ∆s3 “ nz∆s4

∆V “
1

6
abc “

1

3
h∆s4

(3.14)

If we first divide the equation (3.13) by ∆s4 and use the relations in (3.14) for the areas
and volume of the tetrahedron, then substitute the relations a “ h{nx, b “ h{ny, and
c “ h{nz into the equation:

!

t4o `
1

3

´

Bt4o

Bx

1

nx

`
Bt4o

By

1

ny

`
Bt4o

Bz

1

nz

¯

h

`
1

12

´

B2t4o

Bx2

1

n2
x

`
B2t4o

By2

1

n2
y

`
B2t4o

Bz2

1

n2
z

`
B2t4o

BxBy

1

nxny

`
B2t4o

BxBz

1

nxnz

`
B2t4o

ByBz

1

nynz

¯

h2
` . . .

)

` nx

!

t1o `
1

3

´

Bt1o

By

1

ny

`
Bt1o

Bz

1

nz

¯

h`
1

12

´

B2t1o

By2

1

n2
y

`
B2t1o

Bz2

1

n2
z

`
B2t1o

ByBz

1

nynz

¯

h2
` . . .

)

` ny

!

t2o `
1

3

´

Bt2o

Bx

1

nx

`
Bt2o

Bz

1

nz

¯

h`
1

12

´

B2t2o

Bx2

1

n2
x

`
B2t2o

Bz2

1

n2
z

`
B2t2o

BxBz

1

nxnz

¯

h2
` . . .

)

` nz

!

t3o `
1

3

´

Bt3o

Bx

1

nx

`
Bt3o

By

1

ny

¯

h`
1

12

´

B2t3o

Bx2

1

n2
x

`
B2t3o

By2

1

n2
y

`
B2t3o

BxBy

1

nxny

¯

h2
` . . .

)

´
1

3
h
!

Bo `
1

4

´

BBo

Bx

1

nx

`
BBo

By

1

ny

`
BBo

Bz

1

nz

¯

h` . . .
)

“ 0

(3.15)
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Now by rearranging the equation based on the powers of h, we have:
!

t4o ` nxt1o ` nyt2o ` nzt3o

)

`

"

´

Bt4o

Bx

1

nx

`
Bt4o

By

1

ny

`
Bt4o

Bz

1

nz

¯

` nx

´

Bt1o

By

1

ny

`
Bt1o

Bz

1

nz

¯

` ny

´

Bt2o

Bx

1

nx

`
Bt2o

Bz

1

nz

¯

` nz

´

Bt3o

Bx

1

nx

`
Bt3o

By

1

ny

¯

´Bo

*

1

3
h

`

"

´

B2t4o

Bx2

1

n2
x

`
B2t4o

By2

1

n2
y

`
B2t4o

Bz2

1

n2
z

`
B2t4o

BxBy

1

nxny

`
B2t4o

BxBz

1

nxnz

`
B2t4o

ByBz

1

nynz

¯

` nx

´

B2t1o

By2

1

n2
y

`
B2t1o

Bz2

1

n2
z

`
B2t1o

ByBz

1

nynz

¯

` ny

´

B2t2o

Bx2

1

n2
x

`
B2t2o

Bz2

1

n2
z

`
B2t2o

BxBz

1

nxnz

¯

` nz

´

B2t3o

Bx2

1

n2
x

`
B2t3o

By2

1

n2
y

`
B2t3o

BxBy

1

nxny

¯

´

´

BBo

Bx

1

nx

`
BBo

By

1

ny

`
BBo

Bz

1

nz

¯

*

1

12
h2

` . . . “ 0
(3.16)

Note that by the coordinate system here and by ∆V ‰ 0, no one of nx, ny, and nz is
zero exactly. So, all of the expressions in the braces tu of the equation (3.16) exist. We
can rename the expressions in the braces and rewrite the equation as:

E0 `E1
1

3
h`E2

1

12
h2
` . . . “ 0 (3.17)

If we continue to integrate the higher order derivatives of Taylor series of all terms, that
is a long time and complicated process and we do not present it here, we have:

E0 `E1
1

3
h`E2

1

12
h2
`E3

1

60
h3
` . . .`Em

2

pm` 2q!
hm ` . . . “ 0 (3.18)

or
8
ÿ

m“0

Em
2

pm` 2q!
hm “ 0 (3.19)

This is a great equation in the foundation of continuum mechanics. E0, E1, and E2 are
shown in the braces of the equation (3.16) and E3 and other Em’s will be presented.
We now discuss some aspects of the equation (3.18):

‚ Em’s are formed by the expressions of traction vectors, body term and their
derivatives, and the components of unit normal vector of the oriented plane.

‚ Each one of Em’s exists, because the surface terms, body term and their deriva-
tives are defined as continuous functions in continuum media and by the coor-
dinate system here and by ∆V ‰ 0, no one of nx, ny, and nz is zero exactly.

‚ Each one of Em’s depends on the variables at point o and the components of
unit normal vector of the oriented surface that is parallel to ∆s4 and passes
through point o. Because the surface terms, body term and their derivatives are
defined at point o.
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‚ Em’s do not depend on the volume of tetrahedron.

‚ h is a geometrical variable and by the scale of the coordinate system on the
tetrahedron mass element such that |r|max ď 1, the altitude of the tetrahedron,
h is not greater than one.

‚ Note that h “ 0 is not valid, because the integral equation of conservation of
linear momentum (1.4) is defined for the mass elements with nonzero volume.

By these properties, we return to the equation (3.18).

E0 `E1
1

3
h`E2

1

12
h2
`E3

1

60
h3
` . . .`Em

2

pm` 2q!
hm ` . . . “ 0

We must find Em’s. We know Em’s are independent of h, so the only solution is that
Em’s must be exactly equal to zero, i.e.:

Em “ 0, m “ 0, 1, 2, . . . ,8 (3.20)

Proof:
If we rewrite the equation (3.18) as:

E0 “ ´E1
1

3
h´E2

1

12
h2
´E3

1

60
h3
´ . . .´Em

2

pm` 2q!
hm ´ . . .

We know that Em’s are independent of h. So, the left hand side of the equation i.e.
E0 is independent of h. This implies, the right hand side of the equation must be
independent of h. Thus, the coefficients of the powers of h must be exactly equal to
zero. So:

Em “ 0, m “ 1, 2, . . . ,8

As a result, the right hand side of the equation is zero. Therefore, the left hand side of
the equation, i.e. E0, is equal to zero, as well. So:

Em “ 0, m “ 0, 1, 2, . . . ,8

and the proof is completed.

Note that this proof is valid not only for hÑ 0, but also for all values of h in the domain.
This means that the results (3.20) are valid not only for an infinitesimal tetrahedron,
but also for any tetrahedron in the scaled coordinate system in continuum media. In
addition, we have not done any approximation process during derivation of the equation
(3.18) and within this proof. So, the results (3.20) hold exactly not approximately.

Furthermore, the subscript o in the expressions of Em’s in the equation (3.16) indicates
the vortex point of the tetrahedron. But any point in the domain in continuum media
can be regarded as the vertex point of a tetrahedron and we could consider that tetra-
hedron. So, the point o can be any point in the continuum domain. Thus, we conclude
that Em’s are equal to zero at any point in continuum media. This implies that all of
their derivatives are equal to zero, as well. For example, we have for E0:

BE0

Bx
“
BE0

By
“
BE0

Bz
“ 0 (3.21)
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and the other higher derivatives of E0 are equal to zero. This trend holds for other
Em’s.

But what are Em’s? In the following we will consider them and see that they lead to
the important results.

For E0 “ 0, from the equation (3.16):

E0 “ t4o ` nxt1o ` nyt2o ` nzt3o “ 0 (3.22)

This relation is similar to the relation of Cauchy tetrahedron argument. The Cauchy
relation was:

t4 ` nxt1 ` nyt2 ` nzt3 “ 0 (3.23)

But there are some important conceptual differences between them:

‚ In the Cauchy relation (3.23), the traction vectors are not exactly defined at the
point o and they are the sequence of the limit hÑ 0 on the tetrahedron volume.
But here in the equation (3.22) the traction vectors are exactly defined at point o.

‚ In the Cauchy relation (3.23), the traction vectors are average values on the
tetrahedron faces. But here in (3.22) the traction vectors are defined at point o
on the surfaces that pass exactly through point o.

‚ In the Cauchy relation (3.23), the traction vector t4 is defined on the surface
∆s4 of the tetrahedron. This surface does not pass through point o even in the
limit h Ñ 0 for an infinitesimal tetrahedron. But here in (3.22), t4o is defined
on the surface that passes through point o and is parallel to ∆s4, see Figure 3.

These differences are very important because by them the relation (3.22) is exactly point
base but the relation (3.23) is average value base.

Let us return to the relation (3.22) for E0 “ 0, we have:

t4o ` nxt1o ` nyt2o ` nzt3o “ 0

The traction vector t1o is defied on the negative side of the coordinate plane yz i.e.,
n1 “ ´1ex at point o. If txo is the traction vector on the positive side of the coordinate
plane yz at point o, then by the equation (2.1) i.e., tpr, t,nq “ ´tpr, t,´nq we have:

t1o “ ´txo (3.24)

Similarly for t2o and t3o :
t2o “ ´tyo , t3o “ ´tzo (3.25)

By substituting these relations into (3.22)

t4o ` nxp´txoq ` nyp´tyoq ` nzp´tzoq “ 0

so
t4o “ nx4txo ` ny4tyo ` nz4tzo (3.26)

where nx4 “ nx, ny4 “ ny, and nz4 “ nz. So, the traction vector t4o can be obtained by
a linear relation between the traction vectors on the three orthogonal planes and the
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components of its unit normal vector. But can we use the equation (3.26) for any unit
normal vector rather than n4o?

By considering the equations (3.13) and (3.16) we find that the equation (3.26) is really
below equation:

t4o “
∆s1

∆s4

txo `
∆s2

∆s4

tyo `
∆s3

∆s4

tzo (3.27)

and this equation is

t4o “ |nx4|txo ` |ny4|tyo ` |nz4|tzo (3.28)

In Figure 2, by a ą 0, b ą 0, and c ą 0, the components of unit normal vector on the
oriented surface are greater than zero. So, the equation (3.26) is valid for these cases.

For the surfaces with negative components of the unit normal vector but not equal
to zero, imagine a tetrahedron mass element by the unit normal vector of its oriented
surface (base face), n´4, that all the components are negative. So, we have n´4o “

nx´4ex`ny´4ey`nz´4ez “ ´nxex´nyey´nzez, where n´4o is the outward unit normal
vector of the parallel plane to the oriented surface that passes through the vortex point
of the tetrahedron (point o), and nx, ny, and nz are positive values. Applying the
process of exact tetrahedron argument to this new tetrahedron, leads to the following
relation similar to the equation (3.22):

E0 “ t´4o ` |nx´4|txo ` |ny´4|tyo ` |nz´4|tzo “ 0 (3.29)

As compared with the equation (3.22), in this equation we have txo , tyo , and tzo rather
than t1o , t2o , and t3o , respectively. Because the outward sides of orthogonal faces of this
new tetrahedron are at positive directions of the coordinate system. By (3.29) and the
components of n´4o , we have:

t´4o “ ´|nx´4|txo ´ |ny´4|tyo ´ |nz´4|tzo

“ ´| ´ nx|txo ´ | ´ ny|tyo ´ | ´ nz|tzo
“ ´nxtxo ´ nytyo ´ nztzo
“ nx´4txo ` ny´4tyo ` nz´4tzo

(3.30)

So, the traction vector t´4o can be obtained from a linear relation between the traction
vectors on the three orthogonal planes and the components of its unit normal vector.
For the surfaces that one or two components of their unit normal vectors are negative,
the same process can be done.

For the other surfaces that one or two components of their unit normal vectors are equal
to zero, the tetrahedron does not form, but due to the continuous property of the traction
vectors on n and the arbitrary choosing for any orthogonal basis for the coordinate
system, the traction vectors on these surfaces can be described by the equation (3.26),
as well. So, in general, the normal unit vector n4 can be related to any surface that
passes through point o in three-dimensional continuum media. Thus, the subscript 4
removes from the equation (3.26) and we have for every n “ nxex ` nyey ` nzez:

to “ nxtxo ` nytyo ` nztzo (3.31)
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The subscript o in this equation indicates the vortex point of the tetrahedron. But any
point in the domain in continuum media can be the vertex point of a tetrahedron and
we could consider this tetrahedron. So, the point o can be any point in continuum
media and the subscript o removes from the equation:

t “ nxtx ` nyty ` nztz (3.32)

or
tpr, t,nq “ nxtpr, t, exq ` nytpr, t, eyq ` nztpr, t, ezq (3.33)

It means that if we have the traction vectors on the three orthogonal surfaces at a given
point and time, then we can get the traction vector on any surface that passes through
that point at that time by using the unit normal vector of the surface and the linear
relation (3.33).

So, we must define the traction vectors on the three orthogonal surfaces at any point
and any time. The traction vector on the surface with unit normal vector ex by its
components:

tpr, t, exq “ Txxpr, tq ex ` Txypr, tq ey ` Txzpr, tq ez (3.34)

here Txxpr, tq, Txypr, tq, and Txzpr, tq are scalars that depend only on r and t. In each
one the first subscript indicates the direction of normal unit vector of the surface that it
acts on it and the second subscript indicate the direction of this component of traction
vector. And similarly, we define the traction vectors on the surfaces with unit normal
vectors ey and ez, respectively, as:

tpr, t, eyq “ Tyxpr, tq ex ` Tyypr, tq ey ` Tyzpr, tq ez (3.35)

and
tpr, t, ezq “ Tzxpr, tq ex ` Tzypr, tq ey ` Tzzpr, tq ez (3.36)

By substituting these equations in (3.33)

tpr, t,nq “ nx

 

Txxpr, tq ex ` Txypr, tq ey ` Txzpr, tq ez

(

` ny

 

Tyxpr, tq ex ` Tyypr, tq ey ` Tyzpr, tq ez

(

` nz

 

Tzxpr, tq ex ` Tzypr, tq ey ` Tzzpr, tq ez

(

by rearranging the equation

tpr, t,nq “
 

nxTxxpr, tq ` nyTyxpr, tq ` nzTzxpr, tq
(

ex

`
 

nxTxypr, tq ` nyTyypr, tq ` nzTzypr, tq
(

ey

`
 

nxTxzpr, tq ` nyTyzpr, tq ` nzTzzpr, tq
(

ez

this can be shown as

tpr, t,nq “

»

–

txpr, t,nq
typr, t,nq
tzpr, t,nq

fi

fl “

»

–

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

fi

fl

T »

–

nx

ny

nz

fi

fl (3.37)

using the vector relations, we have

t “ T T .n (3.38)

where T “ T pr, tq is a second order tensor that is called stress tensor. This tensor
depends only on the position vector and time. This relation means that “for describing
the state of stress on any surface at a given point and time we need the 9 components
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of the stress tensor at that point and time”. So, E0 “ 0 leads to the existence of stress
tensor.

Note that here the stress tensor T is exactly defined as point-base but in the former
tetrahedron arguments it is not. Because they used the average values of traction vectors
on the surfaces that did not pass through the same point and by an approximating
process the stress tensor is derived.

Let us see what E1 “ 0 tells.
From the equation (3.16):

E1 “

´

Bt4o

Bx

1

nx

`
Bt4o

By

1

ny

`
Bt4o

Bz

1

nz

¯

` nx

´

Bt1o

By

1

ny

`
Bt1o

Bz

1

nz

¯

` ny

´

Bt2o

Bx

1

nx

`
Bt2o

Bz

1

nz

¯

` nz

´

Bt3o

Bx

1

nx

`
Bt3o

By

1

ny

¯

´Bo

(3.39)

As stated before, for the tetrahedron element with ∆V ‰ 0, no one of nx, ny, and nz

is zero exactly. So, E1 exists. Furthermore, the unit normal vector n4 is an arbitrary
geometrical parameter and we have:

Bn4

Bx
“
Bn4

By
“
Bn4

Bz
“ 0 (3.40)

By using these relations and the equation (3.22), i.e. t4o “ E0 ´ nxt1o ´ nyt2o ´ nzt3o ,
we have for (3.39):

E1 “
1

nx

BE0

Bx
`

1

ny

BE0

By
`

1

nz

BE0

Bz
´
Bt1o

Bx
´
Bt2o

By
´
Bt3o

Bz
´Bo

If we define E as:

E “ ´
Bt1o

Bx
´
Bt2o

By
´
Bt3o

Bz
´Bo (3.41)

so, we have

E1 “
1

nx

BE0

Bx
`

1

ny

BE0

By
`

1

nz

BE0

Bz
`E (3.42)

But we saw in (3.21) that the derivatives of E0 are equal to zero. So, from (3.42) and
E1 “ 0, we have:

E1 “ E “ 0 (3.43)

By (3.41), E is defined at the vertex point of tetrahedron. But we stated before that
the vertex point of the tetrahedron can be at any point in continuum media. Therefore,
by (3.43), E “ 0 at any point in continuum media. This leads to that all derivatives of
E are equal to zero at any point in continuum media. So:

BE

Bx
“
BE

By
“
BE

Bz
“ 0 (3.44)

By using the relations (3.24) and (3.25) i.e., t1o “ ´txo , t2o “ ´tyo , and t3o “ ´tzo , we
have for (3.41):

E “
Btxo

Bx
`
Btyo
By

`
Btzo
Bz

´Bo (3.45)
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but E “ 0, so

Bo “
Btxo

Bx
`
Btyo
By

`
Btzo
Bz

(3.46)

As stated before, we can remove the subscript o from the equation and tell that this
equation is valid at any point and any time in the continuum domain. Therefore:

B “
Btx
Bx

`
Bty
By
`
Btz
Bz

(3.47)

or

Bpr, tq “
Btpr, t, exq

Bx
`
Btpr, t, eyq

By
`
Btpr, t, ezq

Bz
(3.48)

This differential equation means that if we have the first derivatives of the traction
vectors on the three orthogonal surfaces at a given point and time, then we can get the
body term at that point and time by using the equation (3.48). By substituting the
definitions of tpr, t, exq, tpr, t, eyq, and tpr, t, ezq from the relations (3.34), (3.35), and
(3.36) into the equation (3.48):

Bpr, tq “
B

Bx

 

Txxpr, tq ex ` Txypr, tq ey ` Txzpr, tq ez

(

`
B

By

 

Txxpr, tq ex ` Txypr, tq ey ` Txzpr, tq ez

(

`
B

Bz

 

Txxpr, tq ex ` Txypr, tq ey ` Txzpr, tq ez

(

(3.49)

by rearranging the equation and using B “ ρa ´ ρb from the equation (1.3) we have
for any r and t:

ρa´ ρb “

"

BTxx
Bx

`
BTyx
By

`
BTzx
Bz

*

ex `

"

BTxy
Bx

`
BTyy
By

`
BTzy
Bz

*

ey

`

"

BTxz
Bx

`
BTyz
By

`
BTzz
Bz

*

ez

(3.50)

this can be shown as

ρa´ ρb “

»

—

—

—

—

—

–

BTxx

Bx
`
BTyx

By
` BTzx

Bz

BTxy

Bx
`
BTyy

By
`
BTzy

Bz

BTxz

Bx
`
BTyz

By
` BTzz

Bz

fi

ffi

ffi

ffi

ffi

ffi

fl

“
“

B

Bx
B

By
B

Bx

‰

»

–

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

fi

fl “ ∇.T

so, we have
ρa “ ∇.T ` ρb (3.51)

or

ρp
Bv

Bt
` pv.∇qvq “ ∇.T ` ρb (3.52)

So, E1 “ 0 leads to the general equation of motion that is called Cauchy equation of
motion. Cauchy obtained this important equation by applying the conservation of linear
momentum to a “cubic element” and did not obtain it from the tetrahedron argument.
The tetrahedron argument that is represented by most of the scientists and authors in
continuum mechanics leads only to the relation (3.23) i.e., t4 ` nxt1 ` nyt2 ` nzt3 “ 0
for the existence of stress tensor. But here in addition to the exactly derivation of the
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stress tensor, the other fundamental equation in continuum mechanics i.e., the Cauchy
equation of motion is exactly derived from the tetrahedron argument, simultaneously.

Let us see what E2 “ 0 tells.
From the equation (3.16):

E2 “

´

B2t4o

Bx2

1

n2
x

`
B2t4o

By2

1

n2
y

`
B2t4o

Bz2

1

n2
z

`
B2t4o

BxBy

1

nxny

`
B2t4o

BxBz

1

nxnz

`
B2t4o

ByBz

1

nynz

¯

` nx

´

B2t1o

By2

1

n2
y

`
B2t1o

Bz2

1

n2
z

`
B2t1o

ByBz

1

nynz

¯

` ny

´

B2t2o

Bx2

1

n2
x

`
B2t2o

Bz2

1

n2
z

`
B2t2o

BxBz

1

nxnz

¯

` nz

´

B2t3o

Bx2

1

n2
x

`
B2t3o

By2

1

n2
y

`
B2t3o

BxBy

1

nxny

¯

´

´

BBo

Bx

1

nx

`
BBo

By

1

ny

`
BBo

Bz

1

nz

¯

(3.53)

For E2, Similar to the process for E1 “ 0, we have:

E2 “
1

n2
x

B2E0

Bx2
`

1

n2
y

B2E0

By2
`

1

n2
z

B2E0

Bz2
`

1

nxny

B2E0

BxBy
`

1

nxnz

B2E0

BxBz
`

1

nynz

B2E0

ByBz

`
1

nx

BE

Bx
`

1

ny

BE

By
`

1

nz

BE

Bz

(3.54)

By the previous explanations, all derivatives of E0 and E are equal to zero so, the
equation (3.54) is a correct result of E2 “ 0.

For E3 “ 0 we have:

E3 “

´

B3t4o

Bx3

1

n3
x

`
B3t4o

By3

1

n3
y

`
B3t4o

Bz3

1

n3
z

`
B3t4o

Bx2By

1

n2
xny

`
B3t4o

Bx2Bz

1

n2
xnz

`
B3t4o

By2Bz

1

n2
ynz

`
B3t4o

BxBy2

1

nxn2
y

`
B3t4o

BxBz2

1

nxn2
z

`
B3t4o

ByBz2

1

nyn2
z

`
B3t4o

BxByBz

1

nxnynz

¯

` nx

´

B3t1o

By3

1

n3
y

`
B3t1o

Bz3

1

n3
z

`
B3t1o

By2Bz

1

n2
ynz

`
B3t1o

ByBz2

1

nyn2
z

¯

` ny

´

B3t2o

Bx3

1

n3
x

`
B3t2o

Bz3

1

n3
z

`
B3t2o

Bx2Bz

1

n2
xnz

`
B3t2o

BxBz2

1

nxn2
z

¯

` nz

´

B3t3o

Bx3

1

n3
x

`
B3t3o

By3

1

n3
y

`
B3t3o

Bx2By

1

n2
xny

`
B3t3o

BxBy2

1

nxn2
y

¯

´

´

B2Bo

Bx2

1

n2
x

`
B2Bo

By2

1

n2
y

`
B2Bo

Bz2

1

n2
z

`
B2Bo

BxBy

1

nxny

`
B2Bo

BxBz

1

nxnz

`
B2Bo

ByBz

1

nynz

¯

(3.55)
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Similar to the previous processes for E1 and E2, we have for E3:

E3 “
1

n3
x

B3E0

Bx3
`

1

n3
y

B3E0

By3
`

1

n3
z

B3E0

Bz3
`

1

n2
xny

B3E0

Bx2By
`

1

n2
xnz

B3E0

Bx2Bz
`

1

n2
ynz

B3E0

By2Bz

`
1

nxn2
y

B3E0

BxBy2
`

1

nxn2
z

B3E0

BxBz2
`

1

nyn2
z

B3E0

ByBz2
`

1

nxnynz

B3E0

BxByBz

`
1

n2
x

B2E

Bx2
`

1

n2
y

B2E

By2
`

1

n2
z

B2E

Bz2
`

1

nxny

B2E

BxBy
`

1

nxnz

B2E

BxBz
`

1

nynz

B2E

ByBz
(3.56)

We saw that all derivatives of E0 and E are equal to zero. So, the equation (3.56) is
a correct result of E3 “ 0. This process for other Em’s, leads to the expressions that
contain the higher derivatives of E0 and E and the higher powers of the components
of the unit normal vector.

4. Discussion

In this section, we discuss some aspects of this new proof and compare it with the
previous proofs for the existence of stress tensor and derivation of the Cauchy equation
of motion. We gave a comprehensive review on the Cauchy tetrahedron argument
and the proofs for the existence of stress tensor (2017, [1]). In that article, we stated
some important and fundamental challenges on those proofs. For considering the stated
challenges on this new proof, we start with the first challenge in [1].

The challenge 1 told us that applying the conservation of linear momentum to any
volumes and shapes of a mass element must lead to the equation of motion. But in
the previous proofs this process on an infinitesimal tetrahedron mass element leads to
the equation t4 ` nxt1 ` nyt2 ` nzt3 “ 0 that differs from the equation of motion.
In that proofs, the equation of motion is obtained by using the stress tensor relation
and applying the conservation of linear momentum to a cubic element or by using the
divergence theorem in the integral equation of conservation of linear momentum. But in
this proof, both the relation for the existence of stress tensor and the equation of motion
are obtained, simultaneously. Therefore, the challenge 1 is removed in this proof.

The challenge 2 told us that the previous proofs for the existence of stress tensor are
based on infinitesimal volumes by the expressions like “∆V Ñ 0”, “hÑ 0”, “when the
tetrahedron shrinks to a point” or “when the tetrahedron shrinks to zero volume”, while
it must be proved that the existence of stress tensor at a point does not depend on the
size of the mass element. In other words, the stress tensor exists for any size of mass
element in continuum media, where the volume of mass element increases, decreases or
does not change. Therefore, in that proofs the result is only valid for the infinitesimal
volumes and does not show that the result can be applied to the mass elements with
any volume in continuum media. But here we proved that the existence of stress tensor
is independent of the volume of mass element and does not have any expression that
indicate the using of infinitesimal volume or a limit to zero volume in this proof. So,
this challenge is removed in this proof.
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The challenge 3 is related to the average values of the traction vectors, body forces,
and inertia terms on the surfaces and the volume of the mass element in the previous
proofs. The average values lead to the approximate process even for the infinitesimal
mass element. But in this proof the exact values are used and no approximate process
within the proof. So, this proof is exact and the challenge 3 is removed in it.

The challenge 4 is related to the order of the surface forces in the limit ∆V Ñ 0 or
h Ñ 0. In the previous proofs, it was told that in the limit the order of surface forces
is h2 and the order of body forces and inertia is h3. So, they told that in the limit
the body and inertia terms go to zero and the surface forces remain in the equation of
conservation of linear momentum. In that challenge, we showed that this is not correct.
And in this proof, since we did not any limiting or approximating process, this challenge
is removed.

In the challenges 5 and 6, it was told that to prove the existence of stress tensor as
a point-base function from the relation t4 ` nxt1 ` nyt2 ` nzt3 “ 0, the four surfaces
that the traction vectors are defined on them must pass through the same point. But
in this relation t4 is defined on ∆s4 and this surface, even for infinitesimal tetrahedron,
does not pass through the vertex point of the tetrahedron that other three faces pass
through it. But in this proof in the relation t4o ` nxt1o ` nyt2o ` nzt3o “ 0, we define
all of the traction vectors at the same point o, where the four surfaces pass through it
exactly. So, the stress tensor is obtained as a point-base function exactly. Thus, these
challenges are removed in this proof.

The challenges 7 and 8 are related to the equation t4`nxt1`nyt2`nzt3 “ 0, where the
traction vectors are the average values on the surfaces of an infinitesimal tetrahedron.
It was told that by multiplying this equation by ∆s4, we have t4∆s4` t1∆s1` t2∆s2`

t3∆s3 “ 0, this means that the sum of the surface forces on the infinitesimal tetrahedron
is zero. This is not correct, because from the conservation of linear momentum (1.4), the
surface forces on any mass element are equal to the body terms on that element. But in
this proof, we used the exact traction vectors, so the equation t4o`nxt1o`nyt2o`nzt3o “

0 is derived. In this equation, since all of the traction vectors are defined at point o,
so the equation t4o∆s4 ` t1o∆s1 ` t2o∆s2 ` t3o∆s3 “ 0 does not mean the sum of the
traction vectors on the surface of the mass element is equal to zero.

5. Conclusion

We considered the general integral equation of conservation of linear momentum as:
ż

M
ρa dV “

ż

BM
t dS `

ż

M
ρb dV

where t “ tpr, t,nq is the traction vector (surface force per unit area). We first derived
the Cauchy lemma for traction vectors from the above integral equation:

tpr, t,nq “ ´tpr, t,´nq
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Then we showed by a new exact tetrahedron argument that applying the general integral
equation of conservation of linear momentum to the tetrahedron mass element leads to
the following fundamental equation:

E0 `E1
1

3
h`E2

1

12
h2
`E3

1

60
h3
` . . .`Em

2

pm` 2q!
hm ` . . . “ 0

where h is the altitude of the tetrahedron. Em’s are expressions that contain the traction
vectors, inertia, body force, and their derivatives and the powers of the components of
unit normal vector of the tetrahedron’s base face. Then we showed that the only solution
of this equation is:

Em “ 0, m “ 0, 1, 2, . . . ,8

i.e. Em’s must be equal to zero. Then, we proved that E0 “ 0 leads to the existence
of stress tensor:

tpr, t,nq “

»

–

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

fi

fl

T »

–

nx

ny

nz

fi

fl “ T T .n

and E1 “ 0 leads to the derivation of the general equation of motion:

ρp
Bv

Bt
` pv.∇qvq “ ∇.T ` ρb

for other Em “ 0 these results are repeated. During this proof, there is no limiting or
approximating process and the parameters are exact point-base functions not average
values. This proof is not limited to hÑ 0 for an infinitesimal tetrahedron mass element.
Also, we showed that in this proof, all of the challenges on the previous tetrahedron
arguments and the proofs for existence of stress tensor are removed.

Historical note: The manuscript of the exact tetrahedron argument is prepared before writing the

review article [1].

References

[1] E. Azadi. Cauchy tetrahedron argument and the proofs for the existence of stress tensor, a com-
prehensive review, challenges, and improvements. arXiv preprint arXiv:1706.08518, 2017. 1, 4, 5

[2] S. Bechtel. Fundamentals of Continuum Mechanics: with Applications to Mechanical, Thermome-
chanical, and Smart Materials. Academic Press, Amsterdam Boston, 2014. 2

[3] A. L. Cauchy. Recherches sur l’équilibre et le mouvement intérieur des corps solides ou fluides,
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