Smarandache Isotopy Of Second Smarandache Bol Loops *†

Tèmítópè Gbóláhàn Jaíyeọlá‡
Department of Mathematics,
Obafemi Awolowo University, Ile Ife 220005, Nigeria.
jaiyeolatemitope@yahoo.com, tjayeola@oauife.edu.ng

Abstract

The pair \((G_H, \cdot)\) is called a special loop if \((G, \cdot)\) is a loop with an arbitrary subloop \((H, \cdot)\) called its special subloop. A special loop \((G_H, \cdot)\) is called a second Smarandache Bol loop \((S_2nd BL)\) if and only if it obeys the second Smarandache Bol identity \((xs \cdot z)s = x(sz \cdot s)\) for all \(x, z\) in \(G\) and \(s\) in \(H\). The popularly known and well studied class of loops called Bol loops fall into this class and so \(S_2nd BLs\) generalize Bol loops. The Smarandache isotopy of \(S_2nd BLs\) is introduced and studied for the first time. It is shown that every Smarandache isotope \((S-isotope)\) of a special loop is Smarandache isomorphic \((S-isomorphic)\) to a S-principal isotope of the special loop. It is established that every special loop that is S-isotopic to a \(S_2nd BL\) is itself a \(S_2nd BL\). A special loop is called a Smarandache G-special loop \((SGS-loop)\) if and only if every special loop that is S-isotopic to it is S-isomorphic to it. A \(S_2nd BL\) is shown to be a SGS-loop if and only if each element of its special subloop is a \(S_1st\) companion for a \(S_1st\) pseudo-automorphism of the \(S_2nd BL\). The results in this work generalize the results on the isotopy of Bol loops as can be found in the Ph.D. thesis of D. A. Robinson.

1 Introduction

The study of the Smarandache concept in groupoids was initiated by W. B. Vasantha Kandasamy in [24]. In her book [22] and first paper [23] on Smarandache concept in loops, she defined a Smarandache loop \((S-loop)\) as a loop with at least a subloop which forms a subgroup under the binary operation of the loop. The present author has contributed to the study of S-quasigroups and S-loops in [5, 6, 7, 8, 9, 10, 11, 12] by introducing some new concepts immediately after the works of Muktiibodh [15, 16]. His recent monograph [14] gives

*2000 Mathematics Subject Classification. Primary 20N05 ; Secondary 08A05.
†Keywords and Phrases : special loop, second Smarandache Bol loop, Smarandache principal isotope, Smarandache isotopy
‡All correspondence to be addressed to this author
inter-relationships and connections between and among the various Smarandache concepts and notions that have been developed in the aforementioned papers.

But in the quest of developing the concept of Smarandache quasigroups and loops into a theory of its own just as in quasigroups and loop theory (see [1, 2, 3, 4, 17, 22]), there is the need to introduce identities for types and varieties of Smarandache quasigroups and loops. This led Jaı’yıeol’á [13] to the introduction of second Smarandache Bol loop $S_{2nd BL}$ described by the second Smarandache Bol identity $(xs \cdot z)s = x(sz \cdot s)$ for all x, z in G and s in H where the pair (G_H, \cdot) is called a special loop if (G, \cdot) is a loop with an arbitrary subloop (H, \cdot). For now, a Smarandache loop or Smarandache quasigroup will be called a first Smarandache loop (S_{1st}-loop) or first Smarandache quasigroup (S_{1st}-quasigroup).

Let L be a non-empty set. Define a binary operation (\cdot) on L : if $x \cdot y \in L$ for all $x, y \in L$, (L, \cdot) is called a groupoid. If the system of equations ; $a \cdot x = b$ and $y \cdot a = b$ have unique solutions for x and y respectively, then (L, \cdot) is called a quasigroup. For each $x \in L$, the elements $x^\rho = xJ_\rho, x^\lambda = xJ_\lambda \in L$ such that $xx^\rho = e^\rho$ and $x^\lambda x = e^\lambda$ are called the right, left inverses of x respectively. Furthermore, if there exists a unique element $e = e_\rho = e_\lambda$ in L called the identity element such that for all $x \in L, x \cdot e = e \cdot x = x$, (L, \cdot) is called a loop. We write xy instead of $x \cdot y$, and stipulate that \cdot has lower priority than juxtaposition among factors to be multiplied. For instance, $x \cdot yz$ stands for $x(yz)$. A loop is called a right Bol loop (Bol loop in short) if and only if it obeys the identity

$$(xy \cdot z)y = x(yz \cdot y).$$

This class of loops was the first to catch the attention of loop theorists and the first comprehensive study of this class of loops was carried out by Robinson [19].

The popularly known and well studied class of loops called Bol loops fall into the class of $S_{2nd BLs}$ and so $S_{2nd BLs}$ generalize Bol loops. The aim of this work is to introduce and study for the first time, the Smarandache isotopy of $S_{2nd BLs}$. It is shown that every Smarandache isotope (S-isotope) of a special loop is Smarandache isomorphic (S-isomorphic) to a S-principal isotope of the special loop. It is established that every special loop that is S-isotopic to a $S_{2nd BL}$ is itself a $S_{2nd BL}$. A $S_{2nd BL}$ is shown to be a Smarandache G-special loop if and only if each element of its special subloop is a S_{1st} companion for a S_{1st} pseudo-automorphism of the $S_{2nd BL}$. The results in this work generalize the results on the isotopy of Bol loops as can be found in the Ph.D. thesis of D. A. Robinson.

2 Preliminaries

Definition 2.1 Let (G, \cdot) be a quasigroup with an arbitrary non-trivial subquasigroup (H, \cdot). Then, (G_H, \cdot) is called a special quasigroup with special subquasigroup (H, \cdot). If (G, \cdot) is a loop with an arbitrary non-trivial subloop (H, \cdot), then (G_H, \cdot) is called a special loop with special subloop (H, \cdot). If (H, \cdot) is of exponent 2, then (G_H, \cdot) is called a special loop of Smarandache exponent 2.

A special quasigroup (G_H, \cdot) is called a second Smarandache right Bol quasigroup $(S_{2nd-right Bol quasigroup})$ or simply a second Smarandache Bol quasigroup $(S_{2nd-Bol quasigroup})$.

2
and abbreviated S_{2nd}RBQ or S_{2nd}BQ if and only if it obeys the second Smarandache Bol identity (S_{2nd}-Bol identity) i.e S_{2nd}BI

$$(xs \cdot z)s = x(sz \cdot s) \text{ for all } x, z \in G \text{ and } s \in H. \quad (1)$$

Hence, if (G, \cdot) is a special loop, and it obeys the S_{2nd}BI, it is called a second Smarandache Bol loop (S_{2nd}-Bol loop) and abbreviated S_{2nd}BL.

Remark 2.1 A Smarandache Bol loop (i.e a loop with at least a non-trivial subloop that is a Bol loop) will now be called a first Smarandache Bol loop (S_{1st}-Bol loop). It is easy to see that a S_{2nd}BL is a S_{1st}BL. But the converse is not generally true. So S_{2nd}BLs are particular types of S_{1st}BL. Their study can be used to generalise existing results in the theory of Bol loops by simply forcing H to be equal to G.

Definition 2.2 Let (G, \cdot) be a quasigroup(loop). It is called a right inverse property quasigroup(loop) [RIPQ(RIPL)] if and only if it obeys the right inverse property (RIP) $yx \cdot x^\rho = y$ for all $x, y \in G$. Similarly, it is called a left inverse property quasigroup(loop) [LIPQ(LIPL)] if and only if it obeys the left inverse property (LIP) $x^\lambda \cdot xy = y$ for all $x, y \in G$. Hence, it is called an inverse property quasigroup(loop) [IPQ(IPL)] if and only if it obeys both the RIP and LIP.

(G, \cdot) is called a right alternative property quasigroup(loop) [RAPQ(RAPL)] if and only if it obeys the right alternative property (RAP) $y \cdot xx = xy \cdot x$ for all $x, y \in G$. Similarly, it is called a left alternative property quasigroup(loop) [LAPQ(LAPL)] if and only if it obeys the left alternative property (LAP) $xx \cdot y = x \cdot xy$ for all $x, y \in G$. Hence, it is called an alternative property quasigroup(loop) [APQ(APL)] if and only if it obeys both the RAP and LAP.

The bijection $L_x : G \rightarrow G$ defined as $y_{L_x} = x \cdot y$ for all $x, y \in G$ is called a left translation(multiplication) of G while the bijection $R_x : G \rightarrow G$ defined as $y_{R_x} = y \cdot x$ for all $x, y \in G$ is called a right translation(multiplication) of G. Let

$$x \backslash y = y_{L_x}^{-1} = yL_x \quad \text{ and } \quad x / y = x_{R_y}^{-1} = xR_y$$

and note that

$$x \backslash y = z \iff x \cdot z = y \quad \text{ and } \quad x / y = z \iff z \cdot y = x.$$

The operations \backslash and $/$ are called the left and right divisions respectively. We stipulate that $/$ and \backslash have higher priority than \cdot among factors to be multiplied. For instance, $x \cdot y/z$ and $x \cdot y \backslash z$ stand for $x(y/z)$ and $x \cdot (y/z)$ respectively.

(G, \cdot) is said to be a right power alternative property loop (RPAPL) if and only if it obeys the right power alternative property (RPAP)

$$xy^n = (((xy)xy)\cdots y) \quad \text{i.e. } R_y^n = R_y \text{ for all } x, y \in G \text{ and } n \in Z.$$

The right nucleus of G denoted by $N_p(G, \cdot) = N_p(G) = \{ a \in G : y : xa = yx \cdot a \ \forall \ x, y \in G \}.$

3
Let \((G_H, \cdot)\) be a special quasigroup(loop). It is called a second Smarandache right inverse property quasigroup(loop) if and only if it obeys the second Smarandache right inverse property(yes \(s^y = y\) for all \(y \in G\) and \(s \in H\). Similarly, it is called a second Smarandache left inverse property quasigroup(loop) if and only if it obeys the second Smarandache left inverse property(yes \(s^y = y\) for all \(y \in G\) and \(s \in H\). Hence, it is called a second Smarandache inverse property quasigroup(loop) if and only if it obeys both the second Smarandache right inverse property and second Smarandache left inverse property.

\((G_H, \cdot)\) is called a third Smarandache right inverse property quasigroup(loop) if and only if it obeys the third Smarandache right inverse property(yes \(s^y = y\) for all \(y \in G\) and \(s \in H\).

The Smarandache right nucleus of \(G_H\) denoted by \(SN_p(G_H, \cdot) = SN_p(G_H) = N_p(G) \cap H\). \(G_H\) is called a Smarandache right nuclear square special loop if and only if \(s^2 \in SN_p(G_H)\) for all \(s \in H\).

Remark 2.2 A Smarandache; RIPQ or LIPQ or IPQ(i.e a loop with at least a non-trivial subquasigroup that is a RIPQ or LIPQ or IPQ) will now be called a first Smarandache; RIPQ or LIPQ or IPQ. It is easy to see that a \(S_{2nd}\)RIPQ or \(S_{2nd}\)LIPQ or \(S_{2nd}\)IPQ is a \(S_{1st}\)RIPQ or \(S_{1st}\)LIPQ or \(S_{1st}\)IPQ respectively. But the converse is not generally true.

Definition 2.3 Let \((G, \cdot)\) be a quasigroup(loop). The set \(SYM(G, \cdot) = SYM(G)\) of all bijections in \(G\) forms a group called the permutation(symmetric) group of \(G\). The triple \((U,V,W)\) such that \(U,V,W \in SYM(G, \cdot)\) is called an autotopism of \(G\) if and only if \(xU \cdot yV = (x \cdot y)W \forall x,y \in G\).

The group of autotopisms of \(G\) is denoted by \(AUT(G, \cdot) = AUT(G)\).

Let \((G_H, \cdot)\) be a special quasigroup(loop). The set \(SSYM(G_H, \cdot) = SSYM(G_H)\) of all Smarandache bijections(S-bijections) in \(G_H\) i.e \(A \in SYM(G_H)\) such that \(A : H \rightarrow H\) forms a group called the Smarandache permutation(symmetric) group[S-permutation group].
of G_H. The triple (U, V, W) such that $U, V, W \in SSYM(G_H, \cdot)$ is called a first Smarandache autotopism(S_{1st} autotopism) of G_H if and only if

$$xU \cdot yV = (x \cdot y)W \ \forall \ x, y \in G_H.$$

If their set forms a group under componentwise multiplication, it is called the first Smarandache autotopism group(S_{1st} autotopism group) of G_H and is denoted by $S_{1st}AUT(G_H, \cdot) = S_{1st}AUT(G_H)$.

The triple (U, V, W) such that $U, W \in SYM(G, \cdot)$ and $V \in SSYM(G_H, \cdot)$ is called a second right Smarandache autotopism(S_{2nd} right autotopism) of G_H if and only if

$$xU \cdot sV = (x \cdot s)W \ \forall \ x \in G \text{ and } s \in H.$$

If their set forms a group under componentwise multiplication, it is called the second right Smarandache autotopism group(S_{2nd} right autotopism group) of G_H and is denoted by $S_{2nd}RAUT(G_H, \cdot) = S_{2nd}RAUT(G_H)$.

The triple (U, V, W) such that $V, W \in SYM(G, \cdot)$ and $U \in SSYM(G_H, \cdot)$ is called a second left Smarandache autotopism(S_{2nd} left autotopism) of G_H if and only if

$$sU \cdot yV = (s \cdot y)W \ \forall \ y \in G \text{ and } s \in H.$$

If their set forms a group under componentwise multiplication, it is called the second left Smarandache autotopism group(S_{2nd} left autotopism group) of G_H and is denoted by $S_{2nd}LAUT(G_H, \cdot) = S_{2nd}LAUT(G_H)$.

Let (G_H, \cdot) be a special quasigroup(loop) with identity element e. A mapping $T \in SSYM(G_H)$ is called a first Smarandache semi-automorphism(S_{1st} semi-automorphism) if and only if $eT = e$ and

$$(xy \cdot x)T = (xT \cdot yT)xT \text{ for all } x, y \in G.$$

A mapping $T \in SSYM(G_H)$ is called a second Smarandache semi-automorphism(S_{2nd} semi-automorphism) if and only if $eT = e$ and

$$(sy \cdot s)T = (sT \cdot yT)sT \text{ for all } y \in G \text{ and } s \in H.$$

A special loop (G_H, \cdot) is called a first Smarandache semi-automorphic inverse property loop(S_{1st}SAIPL) if and only if J_{ρ} is a S_{1st} semi-automorphism.

A special loop (G_H, \cdot) is called a second Smarandache semi-automorphic inverse property loop(S_{2nd}SAIPL) if and only if J_{ρ} is a S_{2nd} semi-automorphism.

Let (G_H, \cdot) be a special quasigroup(loop). A mapping $A \in SSYM(G_H)$ is a

1. first Smarandache pseudo-automorphism(S_{1st} pseudo-automorphism) of G_H if and only if there exists a $c \in H$ such that $(A, AR_c, AR_c) \in S_{1st}AUT(G_H)$. c is referred to as the first Smarandache companion(S_{1st} companion) of A. The set of such A’s is denoted by $S_{1st}PAUT(G_H, \cdot) = S_{1st}PAUT(G_H).$
2. second right Smarandache pseudo-automorphism \(\text{S}_{2\text{nd right pseudo-automorphism}} \) of \(G_H \) if and only if there exists a \(c \in H \) such that \((A, AR_c, AR_c) \in S_{2\text{nd RPAUT}}(G_H) \). \(c \) is referred to as the second right Smarandache companion \(\text{S}_{2\text{nd right companion}} \) of \(A \). The set of such \(A \)'s is denoted by \(S_{2\text{nd RPAUT}}(G_H, \cdot) = S_{2\text{nd RPAUT}}(G_H) \).

3. second left Smarandache pseudo-automorphism \(\text{S}_{2\text{nd left pseudo-automorphism}} \) of \(G_H \) if and only if there exists a \(c \in H \) such that \((A, AR_c, AR_c) \in S_{2\text{nd LPAUT}}(G_H) \). \(c \) is referred to as the second left Smarandache companion \(\text{S}_{2\text{nd left companion}} \) of \(A \). The set of such \(A \)'s is denoted by \(S_{2\text{nd LPAUT}}(G_H, \cdot) = S_{2\text{nd LPAUT}}(G_H) \).

Let \((G_H, \cdot) \) be a special loop. A mapping \(A \in \text{SSYM}(G_H) \) is a

1. first Smarandache automorphism \(\text{S}_{1\text{st automorphism}} \) of \(G_H \) if and only if \(A \in S_{1\text{st PAUT}}(G_H) \) such that \(c = e \). Their set is denoted by \(S_{1\text{st AUM}}(G_H, \cdot) = S_{1\text{st AUM}}(G_H) \).

2. second right Smarandache automorphism \(\text{S}_{2\text{nd right automorphism}} \) of \(G_H \) if and only if \(A \in S_{2\text{nd RPAUT}}(G_H) \) such that \(c = e \). Their set is denoted by \(S_{2\text{nd RAUM}}(G_H, \cdot) = S_{2\text{nd RAUM}}(G_H) \).

3. second left Smarandache automorphism \(\text{S}_{2\text{nd left automorphism}} \) of \(G_H \) if and only if \(A \in S_{2\text{nd LPAUT}}(G_H) \) such that \(c = e \). Their set is denoted by \(S_{2\text{nd LAUM}}(G_H, \cdot) = S_{2\text{nd LAUM}}(G_H) \).

A special loop \((G_H, \cdot) \) is called a first Smarandache automorphism inverse property loop \(\text{S}_{1\text{st AIPL}} \) if and only if \((J_p, J_p, J_p) \in \text{AUT}(H, \cdot) \).

A special loop \((G_H, \cdot) \) is called a second Smarandache right automorphic inverse property loop \(\text{S}_{2\text{nd RAIP}} \) if and only if \(J_p \) is a \(S_{2\text{nd right automorphism}} \).

A special loop \((G_H, \cdot) \) is called a second Smarandache left automorphic inverse property loop \(\text{S}_{2\text{nd LAIPL}} \) if and only if \(J_p \) is a \(S_{2\text{nd left automorphism}} \).

Definition 2.4 Let \((G, \cdot) \) and \((L, \circ) \) be quasigroups(loops). The triple \((U, V, W) \) such that \(U, V, W : G \rightarrow L \) are bijections is called an isotopism of \(G \) onto \(L \) if and only if

\[
xU \circ yV = (x \cdot y)W \quad \forall \ x, y \in G. \tag{2}
\]

Let \((G_H, \cdot) \) and \((L_M, \circ) \) be special groupoids. \(G_H \) and \(L_M \) are Smarandache isotopic(S-isotopic) and we say \((L_M, \circ) \) is a Smarandache isotope of \((G_H, \cdot) \) if and only if there exist bijections \(U, V, W : H \rightarrow M \) such that the triple \((U, V, W) : (G_H, \cdot) \rightarrow (L_M, \circ) \) is an isotopism. In addition, if \(U = V = W \), then \((G_H, \cdot) \) and \((L_M, \circ) \) are said to be Smarandache isomorphic(S-isomorphic) and we say \((L_M, \circ) \) is a Smarandache isomorph of \((G_H, \cdot) \) and thus write \((G_H, \cdot) \cong (L_M, \circ) \).

\((G_H, \cdot) \) is called a Smarandache \(G \)-special loop \(\text{SGS-loop} \) if and only if every special loop that is S-isotopic to \((G_H, \cdot) \) is S-isomorphic to \((G_H, \cdot) \).

Theorem 2.1 (Jaïgolá [13])

Let the special loop \((G_H, \cdot) \) be a \(S_{2\text{nd BL}} \). Then it is both a \(S_{2\text{nd RIPL}} \) and a \(S_{2\text{nd Rapl}} \).
Theorem 2.2 (Jaígéolá [13])

Let \((G_H, \cdot)\) be a special loop. \((G_H, \cdot)\) is a \(S_{2nd}BL\) if and only if \((R_s^{-1}, L_s R_s, R_s) \in S_{1stAUT}(G_H, \cdot)\).

3 Main Results

Lemma 3.1 Let \((G_H, \cdot)\) be a special quasigroup and let \(s, t \in H\). For all \(x, y \in G\), let

\[x \circ y = xR_t^{-1} \cdot yL_s^{-1}.
\]

Then, \((G_H, \circ)\) is a special loop and so \((G_H, \cdot)\) and \((G_H, \circ)\) are \(S\)-isotopic.

Proof

It is easy to show that \((G_H, \circ)\) is a quasigroup with a subquasigroup \((H, \circ)\) since \((G_H, \cdot)\) is a special quasigroup. So, \((G_H, \circ)\) is a special quasigroup. It is also easy to see that \(s \cdot t \in H\) is the identity element of \((G_H, \circ)\). Thus, \((G_H, \circ)\) is a special loop. With \(U = R_t, V = L_s\) and \(W = I\), the triple \((U, V, W) : (G_H, \cdot) \rightarrow (G_H, \circ)\) is an \(S\)-isotopism.

Remark 3.1 \((G_H, \circ)\) will be called a Smarandache principal isotopism (S-principal isotopism) of \((G_H, \cdot)\).

Theorem 3.1 If the special quasigroup \((G_H, \cdot)\) and special loop \((L_M, \circ)\) are \(S\)-isotopic, then \((L_M, \circ)\) is \(S\)-isomorphic to a S-principal isotope of \((G_H, \cdot)\).

Proof

Let \(e\) be the identity element of the special loop \((L_M, \circ)\). Let \(U, V\) and \(W\) be 1-1 S-mappings of \(G_H\) onto \(L_M\) such that

\[xU \circ yV = (x \cdot y)W \quad \forall \ x, y \in G_H.
\]

Let \(t = eV^{-1}\) and \(s = eU^{-1}\). Define \(x \ast y\) for all \(x, y \in G_H\) by

\[x \ast y = (xW \circ yW)W^{-1}.
\]

From (2), with \(x\) and \(y\) replaced by \(xWU^{-1}\) and \(yWV^{-1}\) respectively, we get

\[(xW \circ yW)W^{-1} = xWU^{-1} \cdot yWV^{-1} \forall \ x, y \in G_H.
\]

In (5), with \(x = eW^{-1}\), we get \(WV^{-1} = L_s^{-1}\) and with \(y = eW^{-1}\), we get \(WU^{-1} = R_t^{-1}\). Hence, from (4) and (5),

\[x \ast y = xR_t^{-1} \cdot yL_s^{-1} \quad \text{and} \quad (x \ast y)W = xW \circ yW \forall \ x, y \in G_H.
\]

That is, \((G_H, \ast)\) is a S-principal isotope of \((G_H, \cdot)\) and is \(S\)-isomorphic to \((L_M, \circ)\).
Theorem 3.2 Let \((G_H, \cdot)\) be a \(S_{2nd}RIPL\). Let \(f, g \in H\) and let \((G_H, \circ)\) be a \(S\)-principal isotope of \((G_H, \cdot)\). \((G_H, \circ)\) is a \(S_{2nd}RIPL\) if and only if \(\alpha(f, g) = (R_g, L_f R_g^{-1} L_{f,g}^{-1}, R_g^{-1}) \in S_{2nd}RAUT(G_H, \cdot)\) for all \(f, g \in H\).

Proof
Let \((G_H, \cdot)\) be a special loop that has the \(S_{2nd}RIP\) and let \(f, g \in H\). For all \(x, y \in G\), define \(x \circ y = xR_g^{-1} \cdot yL_f^{-1}\) as in (3). Recall that \(f \cdot g\) is the identity in \((G_H, \circ)\), so \(x \circ x' = f \cdot g\) where \(xJ_p = x'\) i.e the right identity element of \(x\) in \((G_H, \circ)\). Then, for all \(x \in G, x \circ x' = xR_g^{-1} \cdot xJ_p L_f^{-1} = f \cdot g\) and by the \(S_{2nd}RIP\) of \((G_H, \cdot)\), since \(sR_g^{-1} \cdot sJ_p L_f^{-1} = f \cdot g\) for all \(s \in H\), then \(sR_g^{-1} = (f \cdot g) \cdot (sJ_p L_f^{-1})J_p\) because \((H, \cdot)\) has the RIP. Thus,

\[
sR_g^{-1} = sJ_p L_f^{-1} J_p L_f \Rightarrow sJ_p = sR_g^{-1} L_{f,g}^{-1} J_{f}. \quad (6)
\]

\((G_H, \circ)\) has the \(S_{2nd}RIP\) iff \((x \circ s)J_p = s\) for all \(s \in H, x \in G_H\) iff \((xR_g^{-1} \cdot sJ_p L_f^{-1})R_g^{-1} \cdot sJ_p L_f^{-1} = x, \text{ for all } s \in H, x \in G_H.\) Replace \(x\) by \(x \cdot g\) and \(s \cdot f\), then \((x \cdot s)R_g^{-1} \cdot (f \cdot s)J_p L_f^{-1} = x \cdot g\) iff \((x \cdot s)R_g^{-1} = (x \cdot g) \cdot (f \cdot s)J_p L_f^{-1} J_p\) for all \(s \in H, x \in G_H\) since \((G_H, \cdot)\) has the \(S_{2nd}RIP\). Using (6),

\[
(x \cdot s)R_g^{-1} = xR_g \cdot (f \cdot s)R_g^{-1} L_{f,g}^{-1} \Leftrightarrow (x \cdot s)R_g^{-1} = xR_g \cdot sL_f R_g^{-1} L_{f,g}^{-1} \Leftrightarrow \\
\alpha(f, g) = (R_g, L_f R_g^{-1} L_{f,g}^{-1}, R_g^{-1}) \in S_{2nd}RAUT(G_H, \cdot) \text{ for all } f, g \in H.
\]

Theorem 3.3 If a special loop \((G_H, \cdot)\) is a \(S_{2nd}BL\), then any of its \(S\)-isotopes is a \(S_{2nd}RIPL\).

Proof
By virtue of Theorem 3.1, we need only to concern ourselves with the \(S\)-principal isotopes of \((G_H, \cdot)\). \((G_H, \cdot)\) is a \(S_{2nd}BL\) iff it obeys the \(S_{2nd}BI\) iff \((xs \cdot z) = x(sz \cdot s)\) for all \(x, z \in G\) and \(s \in H\) iff \(L_x R_s = L_z R_s L_x\) for all \(x \in G\) and \(s \in H\) iff \(R_s^{-1} L_x^{-1} L_{x,s}^{-1} = L_x^{-1} R_s^{-1} L_{s}^{-1}\) for all \(x \in G\) and \(s \in H\).

Assume that \((G_H, \cdot)\) is a \(S_{2nd}BL\). Then, by Theorem 2.2,

\[
(R_s^{-1}, L_s R_s, R_s) \in S_{1st}AUT(G_H, \cdot) \Rightarrow (R_s^{-1}, L_x R_s, R_s) \in S_{2nd}RAUT(G_H, \cdot) \Rightarrow \\
(R_s^{-1}, L_s R_s, R_s)^{-1} = (R_s, R_s^{-1} L_s^{-1}, R_s^{-1}) \in S_{2nd}RAUT(G_H, \cdot).
\]

By (7), \(\alpha(x, s) = (R_s, L_x R_s^{-1} L_{x,s}^{-1}, R_s^{-1}) \in S_{2nd}RAUT(G_H, \cdot)\) for all \(f, g \in H\). But \((G_H, \cdot)\) has the \(S_{2nd}RIP\) by Theorem 2.1. So, following Theorem 3.2, all special loops that are \(S\)-isotopic to \((G_H, \cdot)\) are \(S_{2nd}RIPLs\).

Theorem 3.4 Suppose that each special loop that is \(S\)-isotopic to \((G_H, \cdot)\) is a \(S_{2nd}RIPL\), then the identities:

1. \((fg)\backslash f = (xg)\backslash x;\)
2. \(g'(sg^{-1}) = (fg)\![((fs)g^{-1})] \)
are satisfied for all \(f, g, s \in H \) and \(x \in G \).

Proof

In particular, \((G_H, \cdot)\) has the \(S_{2nd}\) RIP. Then by Theorem 3.1, \(\alpha(f, g) = (R_g, L_f R_g^{-1} L_f^{-1}, R_g^{-1}) \in S_{2nd}RAUT(G_H, \cdot) \) for all \(f, g \in H \).

Let \(Y = L_f R_g^{-1} L_f^{-1}. \) Then,

\[
xg \cdot sY = (xs)R_g^{-1}.
\]

Put \(s = g \) in (9), then \(xg \cdot gY = (xg)R_g^{-1} = x \). But, \(gY = gL_f R_g^{-1} L_f^{-1} = (fg)\![((fg)g^{-1})] = (fg)\![f \rightarrow (fg)\![x \rightarrow (xg)\!] \].

Put \(x = e \) in (9), then \(sYL_g = sR_g^{-1} \Rightarrow sY = sR_g^{-1}L_g^{-1} \). So, combining this with (8),

\[
sR_g^{-1}L_g^{-1} = sL_f R_g^{-1} L_f^{-1} \Rightarrow g'(sg^{-1}) = (fg)\![((fg)g^{-1})].
\]

Theorem 3.5 Every special loop that is \(S \)-isotopic to a \(S_{2nd} \) BL is itself a \(S_{2nd} \) BL.

Proof

Let \((G_H, \circ)\) be a special loop that is \(S \)-isotopic to an \(S_{2nd} \) BL \((G_H, \cdot)\). Assume that \(x \cdot y = x\alpha \circ y\beta \) where \(\alpha, \beta : H \rightarrow H \). Then the \(S_{2nd} \) BI can be written in terms of \(\circ \) as follows.

\[
(xs \cdot z)s = x(sz \cdot s)
\]

for all \(x, z \in G \) and \(s \in H \).

We have

\[
[(x\alpha \circ s\beta)\alpha \circ z\beta] = x\circ [(s\alpha \circ z\beta)\alpha \circ s\beta]\beta. \tag{10}
\]

Replace \(x\alpha \) by \(\pi \), \(s\beta \) by \(\overline{s} \) and \(z\beta \) by \(\overline{z} \), then

\[
[(\pi \circ \overline{s})\alpha \circ \overline{z}] = \pi \circ [(\overline{s}\beta^{-1} \alpha \circ \overline{z})\alpha \circ \overline{s}]\beta. \tag{11}
\]

If \(\pi = e \), then

\[
(\overline{s}\alpha \circ \overline{z})\alpha \circ \overline{s} = [(\overline{s}\beta^{-1} \alpha \circ \overline{z})\alpha \circ \overline{s}]\beta. \tag{12}
\]

Substituting (12) into the RHS of (11) and replacing \(\pi, \overline{s} \) and \(\overline{z} \) by \(x, s \) and \(z \) respectively, we have

\[
[(x \circ s)\alpha \circ z] = x \circ [(s\alpha \circ z)\alpha \circ s]. \tag{13}
\]

With \(s = e \), \((x\alpha \circ z)\alpha = x \circ (e\alpha \circ z)\alpha \). Let \((e\alpha \circ z)\alpha = z\delta \), where \(\delta \in SYM(G_H) \). Then,

\[
(x\alpha \circ z)\alpha = x \circ z\delta. \tag{14}
\]

Applying (14), then (13) to the expression \([(x \circ s) \circ z\delta] \circ s \), that is

\[
[(x \circ s) \circ z\delta] \circ s = [(x \circ s)\alpha \circ z] \circ s = x \circ [(s\alpha \circ z)\alpha \circ s] = x \circ [(s \circ z\delta) \circ s].
\]

implies

\[
[(x \circ s) \circ z\delta] \circ s = x \circ [(s \circ z\delta) \circ s].
\]

Replace \(z\delta \) by \(z \), then

\[
[(x \circ s) \circ z] \circ s = x \circ [(s \circ z) \circ s].
\]
Theorem 3.6 Let \((G_H, \cdot)\) be a \(S_{2nd} BL\). Each special loop that is \(S\)-isotopic to \((G_H, \cdot)\) is \(S\)-isomorphic to a \(S\)-principal isotope \((G_H, \circ)\) where \(x \circ y = xR_f \cdot yL_f^{-1}\) for all \(x, y \in G\) and some \(f \in H\).

Proof

Let \(e\) be the identity element of \((G_H, \cdot)\). Let \((G_H, \ast)\) be any \(S\)-principal isotope of \((G_H, \cdot)\) say \(x \ast y = xR_u^{-1} \cdot yL_u^{-1}\) for all \(x, y \in G\) and some \(u, v \in H\). Let \(e'\) be the identity element of \((G_H, \ast)\). That is, \(e' = u \cdot v\). Now, define \(x \ast y\) by

\[x \circ y = [(xe') \ast (ye')]e'^{-1} \quad \text{for all } x, y \in G. \]

Then \(R_{e'}\) is an \(S\)-isomorphism of \((G_H, \circ)\) onto \((G_H, \ast)\). Observe that \(e\) is also the identity element for \((G_H, \circ)\) and since \((G_H, \cdot)\) is a \(S_{2nd} BL\),

\[(pe')(e'^{-1}q \cdot e'^{-1}) = pq \cdot e'^{-1} \quad \text{for all } p, q \in G. \]

(15)

So, using (15),

\[x \circ y = [(xe') \ast (ye')]e'^{-1} = [xR_{e'}R_u^{-1} \cdot yR_{e'}L_u^{-1}]e'^{-1} = xR_{e'}R_u^{-1}R_{e'} \cdot yR_{e'}L_u^{-1}L_{e'^{-1}}R_{e'^{-1}} \]

implies that

\[x \circ y = xA \cdot yB, \quad A = R_{e'}R_u^{-1}R_{e'} \quad \text{and } B = R_{e'}L_u^{-1}L_{e'^{-1}}R_{e'^{-1}}. \]

(16)

Let \(f = eA\). Then, \(y = e \circ y = eA \cdot yB = f \cdot yB\) for all \(y \in G\). So, \(B = L_f^{-1}\). In fact, \(eB = f^p = f^{-1}\). Then, \(x = x \circ e = xA \cdot eB = xA \cdot f^{-1}\) for all \(x \in G\) implies \(xf = (xA \cdot f^{-1})f\) implies \(xf = xA(S_{2nd} RIP)\) implies \(A = R_f\). Now, (16) becomes \(x \circ y = xR_f \cdot yL_f^{-1}\).

Theorem 3.7 Let \((G_H, \cdot)\) be a \(S_{2nd} BL\) with the \(S_{2nd} RAIP\) or \(S_{2nd} LAIP\), let \(f \in H\) and let \(x \circ y = xR_f \cdot yL_f^{-1}\) for all \(x, y \in G\). Then \((G_H, \circ)\) is a \(S_{1^{st}} AIPL\) if and only if \(f \in N_{\lambda}(H, \cdot)\).

Proof

Since \((G_H, \cdot)\) is a \(S_{2nd} BL\), \(J = J_{\lambda} = J_{\rho}\) in \((H, \cdot)\). Using (6) with \(g = f^{-1}\),

\[sJ_{\rho}^f = sR_fJJ_f. \]

(17)

\((G_H, \circ)\) is a \(S_{1^{st}} AIPL\) iff \((x \circ y)J_{\rho}^f = xJ_{\rho}^f \circ yJ_{\rho}^f\) for all \(x, y \in H\) iff

\[(xR_f \cdot yL_f^{-1})J_{\rho}^f = xJ_{\rho}^f, yJ_{\rho}^fL_f^{-1}. \]

(18)

Let \(x = uR_f^{-1}\) and \(y = vL_f\) and use (16), then (18) becomes \((uv)R_fJJ_f = uJ_fR_f \cdot vL_fR_fJ\) iff \(\alpha = (J_fR_fL_f, L_fR_fJ, R_fJJ_f) \in AUT(H, \cdot)\). Since \((G_H, \cdot)\) is a \(S_{1^{st}} AIPL\), so \((J, J, J) \in AUT(H, \cdot)\). So, \(\alpha \in AUT(H, \cdot) \iff \beta = (J, J, J)(R_fJ_{f^{-1}}, L_fJ_{f^{-1}}, R_fJ_{f^{-1}}) \in AUT(H, \cdot)\). Since \((G_H, \cdot)\) is a \(S_{2nd} BL\),

\[xL_fR_fL_f^{-1}J_f^{-1} = [f^{-1}(fx \cdot f)]R_f = [(f^{-1}f \cdot x)f]R_f = x \quad \text{for all } x \in G. \]

That is, \(L_fR_fL_f^{-1}J_f^{-1} = I\) in \((G_H, \cdot)\). Also, since \(J \in AUT(H, \cdot)\), then \(R_fJ = JR_{f^{-1}}\) and \(L_fJ = JL_{f^{-1}}\) in \((H, \cdot)\). So,
$\beta = (JL_f R_f J R_f^{-1}, L_f R_f J R_f^{-1}) = (JL_f J R_f^{-1}, L_f R_f L_f^{-1} R_f^{-1} R_f J R_f^{-1}) = (L_f^{-1}, I, R_f L_f^{-1} R_f^{-1})$.

Hence, (G_H, \circ) is a S_{1^u}-AIPL iff $\beta \in AUT(H, \cdot)$.

Now, assume that $\beta \in AUT(H, \cdot)$. Then, $x L_f^{-1} y = (x y) R_f L_f^{-1} R_f^{-1}$ for all $x, y \in H$. For $y = e$, $L_f^{-1} = R_f L_f^{-1} R_f^{-1}$ in (H, \cdot), so $\beta = (L_f^{-1}, I, L_f^{-1}) \in AUT(H, \cdot) \Rightarrow f^{-1} \in N_\lambda(H, \cdot)$.

On the other hand, if $f \in N_\lambda(H, \cdot)$, then $\gamma = (L_f, I, L_f) \in AUT(H, \cdot)$. But $f \in N_\lambda(H, \cdot) \Rightarrow L_f^{-1} = R_f L_f^{-1} R_f^{-1}$ in (H, \cdot). Hence, $\beta = \gamma^{-1}$ and $\beta \in AUT(H, \cdot)$.

Corollary 3.1 Let (G_H, \cdot) be a $S_{2^u} BL$ and a S_{1^u}-AIPL. Then, for any special loop (G_H, \circ) that is S-isotopic to (G_H, \cdot), (G_H, \circ) is a S_{1^u}-AIPL iff (G_H, \cdot) is a S_{1^u}-loop and a S_{1^u} commutative loop.

Proof
Suppose every special loop that is S-isotopic to (G_H, \cdot) is a S_{1^u}-AIPL. Then, $f \in N_\lambda(H, \cdot)$ for all $f \in H$ by Theorem 3.7. So, (G_H, \cdot) is a S_{1^u}-loop. Then, $y^{-1} x^{-1} = (x y)^{-1} = x^{-1} y^{-1}$ for all $x, y \in H$. So, (G_H, \cdot) is a S_{1^u} commutative loop.

The proof of the converse is as follows. If (G_H, \cdot) is a S_{1^u}-loop and a S_{1^u} commutative loop, then for all $x, y \in H$ such that $x \circ y = x R_f \cdot y L_f^{-1}$,

$$(x \circ y) \circ z = (x R_f \cdot y L_f^{-1}) \cdot R_f \cdot z L_f^{-1} = (x f \cdot f^{-1} y) f \cdot f^{-1} z.$$

$$x \circ (y \circ z) = x R_f \cdot (y R_f \cdot z L_f^{-1}) L_f^{-1} = x f \cdot f^{-1} (y f \cdot f^{-1} z).$$

So, $(x \circ y) \circ z = x \circ (y \circ z)$. Thus, (H, \circ) is a group. Furthermore,

$$x \circ y = x R_f \cdot y L_f^{-1} = x f \cdot f^{-1} y = x \cdot y = x = y \circ x.$$

So, (H, \circ) is commutative and so has the AIP. Therefore, (G_H, \circ) is a S_{1^u}-AIPL.

Lemma 3.2 Let (G_H, \cdot) be a $S_{2^u} BL$. Then, every special loop that is S-isotopic to (G_H, \cdot) is S-isomorphic to (G_H, \cdot) if and only if (G_H, \cdot) obeys the identity $(x \cdot f g) g^{-1} \cdot f \backslash (y \cdot f g) = (x y) \cdot (f g)$ for all $x, y \in G_H$ and $f, g \in H$.

Proof
Let (G_H, \circ) be an arbitrary S-principal isotope of (G_H, \cdot). It is claimed that $(G_H, \circ) \cong (G_H, \circ)$ if $x R_f g \circ y R_f g = (x \cdot y) R_f g$ if $(x \cdot f g) g^{-1} \cdot (y \cdot f g) L_f^{-1} = (x \cdot y) R_f g$ if $(x \cdot f g) g^{-1} \cdot f \backslash (y \cdot f g) = (x y) \cdot (f g)$ for all $x, y \in G_H$ and $f, g \in H$.

Theorem 3.8 Let (G_H, \cdot) be a $S_{2^u} BL$, let $f \in H$, and let $x \circ y = x R_f \cdot y L_f^{-1}$ for all $x, y \in G$. Then, $(G_H, \cdot) \cong (G_H, \circ)$ if and only if there exists a S_{1^u} pseudo-automorphism of (G_H, \cdot) with S_{1^u} companion f.

11
Proof

\((G_H, \cdot) \succ (G_H, \circ)\) if and only if there exists \(T \in SSYM(G_H, \cdot)\) such that \(xT \circ yT = (x \cdot y)T\) for all \(x, y \in G\) iff \(xTR_f \cdot yTL_f^{-1} = (x \cdot y)T\) for all \(x, y \in G\) iff \(\alpha = (TR_f, TL_f^{-1}, T) \in S_{1st}AUT(G_H)\).

Recall that by Theorem 2.2, \((G_H, \cdot)\) is a \(S_{2nd}BL\) iff \((R_f^{-1}, L_f R_f, R_f) \in S_{1st}AUT(G_H, \cdot)\) for each \(f \in H\). So,

\[
\alpha \in S_{1st}AUT(G_H) \iff \beta = \alpha(R_f^{-1}, L_f R_f, R_f) = (T, TR_f, TR_f) \in S_{1st}AUT(G_H, \cdot) \iff T \in S_{1st}PAUT(G_H)
\]

with \(S_{1st}\) companion \(f\).

Corollary 3.2 Let \((G_H, \cdot)\) be a \(S_{2nd}BL\), let \(f \in H\) and let \(x \circ y = xR_f \cdot yL_f^{-1}\) for all \(x, y \in G_H\). If \(f \in N_\rho(H, \cdot)\), then, \((G_H, \cdot) \succ (G_H, \circ)\).

Proof

Following Theorem 3.8, \(f \in N_\rho(H, \cdot) \Rightarrow TS_{1st}PAUT(G_H)\) with \(S_{1st}\) companion \(f\).

Corollary 3.3 Let \((G_H, \cdot)\) be a \(S_{2nd}BL\). Then, every special loop that is \(S\)-isotopic to \((G_H, \cdot)\) is \(S\)-isomorphic to \((G_H, \cdot)\) if and only if each element of \(H\) is a \(S_{1st}\) companion for a \(S_{1st}\) pseudo-automorphism of \((G_H, \cdot)\).

Proof

This follows from Theorem 3.6 and Theorem 3.8.

Corollary 3.4 Let \((G_H, \cdot)\) be a \(S_{2nd}BL\). Then, \((G_H, \cdot)\) is a SGS-loop if and only if each element of \(H\) is a \(S_{1st}\) companion for a \(S_{1st}\) pseudo-automorphism of \((G_H, \cdot)\).

Proof

This is an immediate consequence of Corollary 3.4.

Remark 3.2 Every Bol loop is a \(S_{2nd}BL\). Most of the results on isotopy of Bol loops in chapter 3 of [19] can easily be deduced from the results in this paper by simply forcing \(H\) to be equal to \(G\).

References

