On a plausible triple electro-gravitino-informational significance of the fine structure constant and its implications in the four fields unification and the existence of life forms in our universe

DOI: 10.13140/RG.2.2.13114.39365

Version 3.2
Andrei-Lucian Drăgoi

MD Pediatric specialist and independent researcher in theoretical physics and fundamental biology
(Bucharest, Romania); E-mail: dr.dragoi@yahoo.com

Abstract

In the last century, a small minority of physicists considered a hypothetical binary logarithmic connection between the large and the small constants of physics, which also implies a base-2 power law (Fürth, 1929; Eddington, 1938; Teller, 1948; Salam, 1970; Bastin, 1971; Sirag, 1980, 1983; Sanchez, Kotov and Bizouard, 2009, 2011, 2012; Kritov, 2013). This paper brings to attention a plausible triple electro-gravitino-informational significance of the fine structure constant, with its implications in the four fields unification and the existence of life forms in our universe: this triple significance is based on the existence of a unifying global scaling factor of nature which appears in a hypothetical fine tuning of all the non-zero rest masses of the all the elementary particles in the Standard Model. Furthermore, this paper also proposes dimensional relativity hypothesis (DRH) stating that the 3D appearance of space (or the 4D nature of spacetime) may be actually explained by the relative magnitude of the photon momentum quanta (and the hypothetical graviton momentum quanta respectively) and this global scaling factor (GSF); DRH also includes a generalized electrograviton model (EGM) for any hypothetical graviton. This paper also proposes a set of strong (and very strong) gravity constants and a gravitational field varying with the energy (and length) scale, all with potential importance in the unification of the four fundamental fields.

Keywords: fine structure constant with triple electro-gravitino-informational significance; unifying global scaling factor of nature; the four fields unification; the Standard Model of particle physics; dimensional relativity hypothesis; electrograviton model; life forms

I. Introduction [1]

In 1929, the German physicist R. Fürth proposed the adimensional constant $16^{32} = 2^{128}$ as a possible “connector” between gravitational and quantum mechanics constants [2].

Arthur Eddington (1937) and Dirac (1937) have remarked the coincidence of the large adimensional numbers in physics which can be reformulated as:

$$\alpha / \alpha_{Gv} \approx R_H / r_e \approx N^{1/2} \approx 10^{40}$$

(a = l/a ≈ 137 is the inverse of the fine structure constant [FSC] at rest $\alpha = k_e q_e^2 / (hc) \approx 1/137$; $\alpha_{Gr} = l / \alpha_{Gv} \approx 3.1 \times 10^{-41}$ is the inverse of a variant of the gravitational coupling constant [GCC]

$$\alpha_{Gv} = \left(G m_p m_e / c \right) / h \approx 1 / (3.1 \times 10^{41})$$

$R_H = c / H_0 \approx 14.5 \times 10^9 \text{ light-years}$ is the Hubble radius of the observable universe, which is a function of the Hubble constant $H_0 \approx 71.9 \left[\text{km} / \text{s} / \text{Mpc} \right]$

$r_e = k_e q_e^2 / (m_e c^2) \approx 2.8 \times 10^{-15} \text{ m}$ is the classical radius of the electron at rest; $N \approx 10^{80}$ is the approximate number of nucleons in our observable universe, a number which can be estimated by astrophysical methods).

In 1938, Arthur Eddington proposed that the number of protons in the entire Universe should be exactly equal to: $N = 136 \times 2^{256} \approx 1.57 \times 10^{79}$ (N was later called the Eddington’s number N_{Edd}) and Eddington hypothesized that square root of N_{Edd} should be close to Dirac’s big number (which he invoked in his large number hypothesis) such as $\sqrt{N_{Edd}} = \sqrt{136 \times 2^{256} = \sqrt{136 \times 2^{128}}}$

$\approx 3.97 \times 10^{39}$. Later on, Eddington changed 136 to 137 (using the new experimental values of α [re]determined in his life time) and re-insisted that α had to be precisely $1/137$, a fact which attracted irony at that time [3]. However, Eddington’s statement also implied the adimensional constant 2^{128}, which wasn’t given proper attention for the next 10 years (Kritov, 2013) [4].

In 1948, Edward Teller proposed a possible logarithmic connection between α and $G m_p^2 / (hc) \approx 10^{39}$ of the form $\alpha^{-1} \approx \left(\frac{G m_p^2}{(hc)} \right)$, with m_p being the standard rest mass of a nucleon (proton or neutron) [5].

In 1970, Abdul Salam also brought in attention a possible logarithmic connection between α_{Gv} and α [6].

In 1971, Edward Bastin invoked the observation $a_{Gv} = h / \left(G m_p^2 / c \right) \approx 1.7 \times 10^{38} \approx 2^{127}$ and proposed the derivation of $a = 1 / \alpha \approx 137$ from the exponent 127 by summing 127 with its series of digits, such as $127 + (1+2+7) = 137$ [7].

In 1980, Saul-Paul Sirag also proposed an alternative interpretation of the binary logarithmic relation between $a = 1 / \alpha$ and $a_{Gv} = 1 / \alpha_{Gv}$, such as

$$\log_2 \left(a_{Gv}\right) = 137.84 \approx a.$$ (Sirag, 1980, 1983) [8].
II. The existence of unifying gravitational scaling factor based on a hypothetical electro-gravitational significance of the fine structure constant

Let us consider a function \(f(m_x, m_y) \) of any two identical or distinct non-zero rest masses \(m_x \) and \(m_y \) of any pair of elementary particles (EPs) in the standard model (SM):

\[
\begin{aligned}
\log_2 \left[\frac{\alpha \cdot \log_2 \left(\frac{Gm_{hc}^2}{(Gm, q_e^2)} \right)}{hc} \right]
\end{aligned}
\]

(II-1a)

Interestingly, the function \(f(m_x, m_y) \) has its values relatively close to 1, in the double closed interval \([0.817, 1.085]\) with an arithmetic average of \(\pm 0.93 \) which is also respected on the “diagonal” values (as detailed in the next table and figure): obviously, the values of \(f(m_x, m_y) \) tend to be super-unitary for the combinations of the lightest EPs and sub-unitary for the rest of EPs.

Table II-1. The values of the function \(f(m_x, m_y) = \alpha \cdot \log_2 \left(\frac{Gm_{hc}^2}{(Gm, q_e^2)} \right) \) in the double closed interval \([0.817, 1.085]\)

<table>
<thead>
<tr>
<th>Elementary particles</th>
<th>Quarks*</th>
<th>Leptons**</th>
<th>Bosons***</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u^{+2/3})</td>
<td>1.053</td>
<td>1.069</td>
<td>0.943</td>
</tr>
<tr>
<td>(d^{-1/3})</td>
<td>1.046</td>
<td>1.061</td>
<td>0.959</td>
</tr>
<tr>
<td>(c^{+2/3})</td>
<td>0.979</td>
<td>0.972</td>
<td>0.959</td>
</tr>
<tr>
<td>(s^{-1/3})</td>
<td>1.014</td>
<td>1.006</td>
<td>0.959</td>
</tr>
<tr>
<td>(t^{+2/3})</td>
<td>0.935</td>
<td>0.927</td>
<td>0.959</td>
</tr>
<tr>
<td>(b^{-1/3})</td>
<td>0.974</td>
<td>0.966</td>
<td>0.959</td>
</tr>
<tr>
<td>(e^-)</td>
<td>1.069</td>
<td>1.002</td>
<td>0.959</td>
</tr>
<tr>
<td>(\mu^-)</td>
<td>1.013</td>
<td>0.946</td>
<td>0.959</td>
</tr>
<tr>
<td>(\tau^-)</td>
<td>0.983</td>
<td>0.976</td>
<td>0.959</td>
</tr>
<tr>
<td>(W^{+/—})</td>
<td>0.943</td>
<td>0.973</td>
<td>0.959</td>
</tr>
<tr>
<td>(Z^0)</td>
<td>0.942</td>
<td>0.934</td>
<td>0.959</td>
</tr>
<tr>
<td>(H^0)</td>
<td>0.938</td>
<td>0.931</td>
<td>0.959</td>
</tr>
</tbody>
</table>

Note: the super-unitary values (corresponding to the combinations between the lightest elementary particles) were marked in italics.

*only the average estimated rest mass of quarks was considered (without their individual rest mass determination uncertainties);
** only the leptons with known rest masses were tabulated (such as the three leptonic flavors of neutrinos were excluded for the moment);
*** only the bosons with non-zero rest masses were tabulated;
As seen from the previous table and figure, the sub-unitary values seem to predominate, as the three leptonic flavors of neutrino (which are probably lighter than the electron) weren’t yet graphed, given the difficulty in determining their exact non-zero rest masses.

The denominator \(\frac{\hbar c}{(k_e q_e)^2} \approx 137 \) is actually the inverse of the fine structure constant (FSC) at rest and can be noted with \(a = 1/\alpha = \frac{\hbar c}{(k_e q_e)^2} \approx 137 \), so that

\[
\begin{align*}
\alpha(m_x, m_y) &= \log_2 \left[\frac{\hbar c}{(G m_x m_y)} / a \right] \\
(II-1b)
\end{align*}
\]

The values of the function \(\alpha \) are also plotted in a graph, sorted in ascending order: see the next figure.

The electron neutrino \((\nu_e^0) \) rest mass is estimated to be in the interval \([0.2, 2]\)eV / \(c^2\) [11]. For \(m_{\nu_e}^{hyp} \approx 1.85\text{eV} / c^2 \) (which is the last experimental estimation) and \(m_{\nu} \in \{m_w, m_d, m_c, m_s, m_t, m_b, m_e, m_\mu, m_\tau, m_W, m_Z, m_H\} \),

\[
\begin{align*}
\alpha(m_{\nu_e}, m_{\nu}) &\in \{1.201, 1.193, 1.134, 1.161, 1.083, 1.122, 1.217, 1.161, 1.131, 1.091, 1.09, 1.086\}, \\
\text{which extends to} &\quad [0.817, 1.217] \text{by adding more super-unitary values to it and equilibrating the previous “mix” which was dominated by sub-unitary values): this last interval is approximately centered in value 1 and is relatively symmetrical and “equilibrated” around this value with two sub-unitary and super-unitary “wings” \((1 \pm 0.2)\); the arithmetic average of this extended interval of \(\alpha \) values increased to \(\approx 0.97 \). See the next figure.
\]

Figure II-2a. The values of the function \(\alpha \) (without considering neutrino rest mass combinations) sorted in ascending order.

\[
\begin{align*}
f(m_{\nu_e}, m_{\nu})^{hyp} &\approx 1.349 \text{ also adds to this interval} (1 \pm 0.2) \text{ as an apparently “isolated” value, but which pushes the arithmetic average of } \alpha \text{ values to } \approx 0.98 \text{ and } \approx 1.01 \text{(for the diagonal values only) (values even closer to 1 and which may suggest the existence of EPs (with non-zero rest masses and probably zero-charged) even lighter than the neutrinos to fill the gap between 1.2 and 1.349 and even to extend this interval. The most plausible candidates are the } \text{lightest supersymmetric particles} \text{ (hypothetical particles proposed by supersymmetric models), probably } \text{neutralino} \text{ (which is the most plausible candidate for the main constituent of the hypothetical dark matter), the } \text{gravitino} \text{ and the } \text{lightest sneutrino}.
\]

Furthermore, even if the proton and the neutron aren’t elementary particles, \(f(m_p, m_y) \) and \(f(m_n, m_y) \) also have values that “fit” in the same approximate interval \(1 \pm 0.2 \), as those nucleons have rest masses relatively close (with the same order of magnitude) to the tauon rest mass, for which \(f(m_\tau, m_y) \approx 0.999 \): \(f(m_N, m_y) \approx 1.006 \).

This paper considers that it is very unlikely for the relatively large diversity of EPs non-zero rest masses to be strongly centered logarithmically around \(a = 1/\alpha \approx 137 \)
only due to a “simple” coincidence; by contrast, it is very plausible that the existence of this “unity in diversity” to be the consequence of a more profound law of nature, as \(\alpha \) is also the expression of a charge-anticharge symmetry (which was verified to be exact with very high accuracy) without any clear and definitive explanation yet.

In conclusion, \(f(m_x, m_y) \) appears to help in predicting the products of any pair of elementary non-zero rest masses \(m_x \cdot m_y \) as a function of Planck mass \(m_{pl} = \sqrt{\hbar c / G} \), so that:

\[
m_x m_y \approx \frac{m_{pl}^2}{n_a^{\pm 0.2}} \Rightarrow \sqrt{m_x m_y} \approx \frac{m_{pl}}{\sqrt{n_a^{0.5\pm 0.1}}} \tag{II-2a}
\]

The factor \(n_a = 2^a = 2^{1/\alpha} \approx 1.8 \times 10^{41} \) which emerges in the previous equation can be proposed as a unifying gravitational/mass scaling factor of the Standard model, so that:

\[
m_x m_y \approx \frac{m_{pl}^2}{n_a^{\pm 0.2}} \Rightarrow \sqrt{m_x m_y} \approx \frac{m_{pl}}{\sqrt{n_a^{0.5\pm 0.1}}} \tag{II-2b}
\]

The existence of \(n_a = 2^a = 2^{1/\alpha} \) in the function \(f(m_x, m_y) \equiv 1 \) justifies the hypothesis that the fine structure constant may have a dual/hybrid electromagnetic and gravitational (electro-gravitational) significance, so that \(n_a \) may be regarded as a unifying electro-gravitational scaling factor with the propriety that

\[
m_{pl} / \sqrt{m_x m_y} \approx \left(n_a = 2^{a} \right) \approx 1.8 \times 10^{41} \quad \text{and} \quad \log_2(n_a) = a .
\]

A similar base-2 logarithmic function \(f \left(r_x, r_y \right) \) can be conceived to compare the most important length scales of our universe in pairs \(\left(r_x, r_y \right) \) such as:

\[
\begin{align*}
f \left(r_x, r_y \right) &= \log_2 \left(r_x / r_y \right) / a \quad \Rightarrow \quad \log_2(n_a) = \left(r_x / r_y \right) \\
f \left(r_x, r_y \right) &= \log \left(r_x / r_y \right)
\end{align*}
\]

Given the estimated radius of our observable universe (ou) \(R_{ou} \approx 4.4 \times 10^{26} \text{ m} \), the classical electron radius \(r_{ec} = ke e^2 / (m_e c^2) \approx 2.8 \times 10^{-15} \text{ m} \), the radius of the proton (as determined by scattering using electrons) \(r_p \approx 0.87 \times 10^{-15} \text{ m} \) and the Planck length \(l_{pl} = \sqrt{\hbar G / c^3} \approx 1.62 \times 10^{-35} \text{ m} \), for \(r_x, r_y \in \left\{ R_{ou}, r_{ec}, r_p, l_{pl} \right\} \), \(f \left(r_x, r_y \right) \) has the following values:

\[
\begin{align*}
\left(r_{ou}, r_{pl} \right) &\approx 1.49, \quad \left(R_{ou}, r_{ec} \right) \approx 0.99, \quad \left(R_{ou}, r_{p} \right) \approx 1.01, \\
\left(r_{p}, r_{pl} \right) &\approx 0.48, \quad \left(r_{ec}, r_{pl} \right) \approx 0.49.
\end{align*}
\]

Interestingly, all these values tend to concentrate around values 1/2, 1 and 3/2 which are multiple integers of 1/2. The length \(n_a \cdot r_{ec} \approx 5 \times 10^{26} \text{ m} \) is relatively close to \(R_{ou} \approx 4.4 \times 10^{26} \text{ m} \), so that \(n_a \cdot r_{ec} \approx 1.14 \cdot R_{ou} \) and

\[
\log_2 \left(R_{ou} / r_{ec} \right) \approx 136.85 \approx a .
\]

The length \(n_a \cdot r_p \approx 1.6 \times 10^{26} \text{ m} \) is also relatively close to \(R_{ou} \) so that

\[
\log_2 \left(R_{ou} / r_p \right) \approx 138.54 \approx a .
\]

In other words, when expressed in \(r_p \) and \(r_e \) units, the observable universe has ~137 length “octaves” which also suggests the gravitational significance of FSC. The next “natural” ff-value in the series \(n/2 \) (with \(n \in \mathbb{N} \)) is

\[
f \left(R_{ou}, l_{pl} \right) \approx 2, \quad \text{which predicts a radius} \quad R_s = l_{pl} n_a^2 \approx 10^{21} \text{ Mpc} \quad \text{which is a potential candidate for the real radius of our present universe (which is already predicted by superstring theory to be with at least 3 orders of magnitude larger than} \quad R_{ou} \quad \text{and}
\]

\[
n_a^2 \approx 3.2 \times 10^{82} \quad \text{is also close to the gravity-related ratios between the rest-mass of our observable universe (ou) \(M_{ou} \approx 3.1 \times 10^{54} \text{ kg} \) and the non-zero rest masses of the proton \(m_p \) and electron \(m_e \), such as:}
\]

\[
M_{ou} / m_p \approx (1.8 \times 10^8) = N_{Edd}, \quad M_{ou} / m_e \approx 3.4 \times 10^{84}
\]

and

\[
M_{ou} / \sqrt{m_p m_e} \approx 7.9 \times 10^{82} .
\]

Additionally, \(\sqrt{\left(\pi / 4 \right) a n_a} \approx 5 \times 10^{-2} \) is very close to the numerical value of the Avogadro constant \(N_A \approx 6.023 \times 10^{23} \) (mole / mole), so that

\[
\sqrt{\left(\pi / 4 \right) a n_a} \approx 99.8% \quad \text{is very close to} \quad N_A .
\]

III. The hypothetical electrograviton as based on the electro-gravitational significance the fine structure constant

\[f \left(m_x, m_y \right) \equiv 1 \text{ can be also written as:}
\]
Based on previous equations, this paper proposes a model for the hypothetical spin-2 graviton analogous to the spin-1 photon (with wavelength λ and energy $E_{\text{ph}}(\lambda) = h\lambda / c$), with zero-rest mass and moving with maximum speed c (or close to c, as the speed of gravitational waves [14]). As it is modeled analogous to the electromagnetic field quanta (the photon), this hypothetical graviton may be called "electrograviton" (eg), as it is also based on a (reduced) gravitational Planck-like constant $h_{\text{eg}} \equiv h / n_a \approx 5.1 \times 10^{-76} J s$, so that an eg with wavelength λ is predicted to have an energy defined by:

$$E_{\text{eg}}(\lambda) = h_{\text{eg}} \lambda / c$$ \hspace{1cm} (III-2)

Measuring the value of FSC at rest (with very high accuracy attained by using experiments based on the quantum Hall effect) may be considered an indirect method to essentially determine the electro-gravitational scaling factor $n_a = 2^{1/a} = 2^a$, which can further be used to redefine FSC at rest, such as:

$$a = \log_2 (n_a)$$ \hspace{1cm} (III-3a)

$$a_{\text{redif.}} = 1 / a = 1 / \log_2 (n_a)$$ \hspace{1cm} (III-3b)

The existence of the hypothetical graviton (modeled in this paper as an electrograviton) may also imply the existence of subtle (at least theoretically distinguishable) subquantum states for any physical system (PS) (composed of one or more EPs) generated by the absorption of one or more eggs [15, 16, 17]. The total number of possible (at least theoretically) distinguishable states of a PS (N_S) can be calculated as the product between the total number of quantum states (N_{qS}) and the total number of gravitonic (subquantum) states (N_{gS}), such as [18]:

$$N_S = N_{qS} \times N_{gS} \quad \Rightarrow \quad \log_2 (N_S) = \log_2 (N_{qS}) + \log_2 (N_{gS})$$ \hspace{1cm} (III-4a)

The absorption of one photon by a PS increases N_S with one unit (one additional possible quantum state). Analogously, if hypothesized that the absorption of each individual eg adds a distinct supplementary possible subquantum state to a receiver PS then (so that N_{gS} increases with one unit, one additional possible gravitonic/subquantum state), the absorption of (a number of) n_a eggs means receiving $\log_2 (n_a) \approx 137 \text{bits}$ ([subquantum] gravitonic bits): on the other hand, the energy-absorption of n_a eggs with $E_{\text{eg}}(\lambda) = h_{\text{eg}} \lambda / c$ is equivalent to the absorption of one photon with the same wavelength λ and energy $E_{\text{ph}}(\lambda) = h\lambda / c = n_a E_{\text{eg}}(\lambda)$; if the absorption of each individual photon adds a distinct supplementary possible quantum state to a receiver PS then, the absorption of a photon means receiving $\lceil \log_2 (n_a) \rceil \approx 137 \text{bits}$. Each gbit represents a group of gravitonic states similar to the "octave" interval used in music to define any (double closed) interval of frequencies (f) $[f, 2f]$ Hz.

FSC expresses an informational equivalence between electromagnetism and gravity and $a \approx 137$ may be used as an interconversion factor between qbits and gbits, so that FSC ($a = 1 / a$) can be regarded as the probability of targeting a specific subquantum (gravitonic) octave of states (defined by each gbit) of any PS. In this view, a photon can be defined as an EP containing $1 \text{gbit} \approx 137 \text{bits}$ so that the probability of a real electron/positron (at rest) to emit a real photon (Feynman’s interpretation of FSC) may measure in fact the base-2 logarithmic probability of an electron/positron to emit a photon in a specific subquantum (gravitonic) state.

The author of this paper had also demonstrated that n_a and the redefined $a = \log_2 (n_a)$ can both help predicting a quantum gravitational coupling constant a_{Gq} for an electron/positron pair which approximates the empirical $a = Gm_e^2 / (hc) \approx 1.75 \times 10^{-45}$ with very high accuracy [11], such as:

$$a_{Gq} = \frac{1}{2a^{3/2}n_a} \approx 1.74 \times 10^{-45} 99.6% \approx a_G$$ \hspace{1cm} (III-5a)

This quantum a_{Gq} can also be used to predict a quantum big G scalar G_q with the same high accuracy, such as:

$$G_q = a_{Gq} \cdot \frac{hc}{m_e^2}$$ \hspace{1cm} (III-5b)

$$G_q \approx 6.648 \times 10^{-11} \text{m}^3 \text{kg}^{-1} \text{s}^{-2} 99.6% \approx G$$

In conclusion, FSC may actually have a triple electro-gravitono-informational significance, so that n_a can be

[1] Discovered in 2014 and included in a document registered at the Romanian Copyright Office (ORDA) with the registration number 2546 / 26.03.2015. URL
considered a unifying (quantum/subquantum) electrogravito-informational scaling factor, such as

\[1/n_a = 1/10^{31} \]

can be interpreted as the probability to target a specific subquantum (gravitonic) octave of states of any EP and \(\alpha = 1/\log_2(n_a) \approx 1/137 \) can be interpreted as the base-2 logarithmic variant of that (same) probability.

IV. The dimensional relativity hypothesis (DRH) based on the unifying scaling factor \(n_a \) [1]

An interesting (probably just apparent) coincidence emerges when comparing \(h \) and \(h_{eg} (\equiv h/n_a) \) with a (global (angular) momentum parameter of the observable universe (ou) at rest \(L_{ou} = E_{ou} \cdot t_{ou} \approx 1.37 \times 10^{89} \text{J} \) giving

\[E_{ou} \approx 3.14 \times 10^{71} \text{J} \]

is the approximate resting energy of ou determined from the experimental measurements of the average energy density of ou (\(\rho_{ou} \)) which is estimated to be very close to the critical energy density established by the Friedmann model as

\[\rho_c = 3H_0^2 / (8\pi G c^2) \]

so that

\[\rho_{ou} \approx \rho_c \approx 8.73 \times 10^{-10} J/m^3 \] and the volume of ou

\[V_{ou} = (4\pi / 3) R_{ou}^3 \approx 3.6 \times 10^{80} m^3 \]

(derived from the radius of ou \(R_{ou} \approx 4.4 \times 10^{26} m \); \(t_{ou} \approx 13.8 \times 10^9 \text{years} \) is the age of the present ou (as determined by specific astrophysical methods).

\[d_{ph} = \log_{n_a} (L_{ou} / h) \approx 2.98 \leftrightarrow L_{ou} \approx h n_a^3 \] \hspace{1cm} (IV-1a)

\[d_{eg} = \log_{n_a} (L_{ou} / h_{eg}) \approx 3.98 \leftrightarrow L_{ou} \approx h_{eg} n_a^4 \] \hspace{1cm} (IV-1b)

The closeness of the positive reals \(d_{ph} \) and \(d_{eg} \) to the positive integers 3 and 4 respectively (denoting the number of apparent/ perceptual dimensions of the 3D space alone and the 4D spacetime respectively, as gravity is modeled by General Relativity in a 4D Minkowski space) may suggest that the number of dimensions of ou may not be absolute, so that it may not be correct to (a priori) predefine the number of dimensions of space/spacetime without also considering the type of gauge boson (photon, electrogaviton, etc. and its specific momentum quanta \(h, h_{eg}, \) etc.) used to observe/measure that space/spacetime and its number of dimensions \(d_x \). An arbitrary \(d_x \) may be extracted from an arbitrary triad \((L_x, n_x, h_x) \) as \(d_x = \log_{n_x} (L_x / h_x) \); this fact suggests that it may not be correct to define \(d_x \) a priori, based only on empirical/experimental observation, without also defining the triad \((L_x, n_x, h_x) \) from which this \(d_x \) was extracted: this is because a fixed \(d_x \) (as we associate space with a 3D reference frame) also implies a fixed ratio \(d_x = \log_{n_x} (L_x / h_x) = \log_2 (L_x / h_x) / \log_2 (n_x) \), which also implies a strict correlation in the variation of all the elements of the triad \((L_x, n_x, h_x) \).

Given the relativity of \(d_x = \log_{n_x} (L_x / h_x) \) from the triad \((L_x, N_x, h_x) \), this paper launches the dimensional relativity hypothesis (DRH) which states that: “the dimensions \(D \) of the observable universe (ou) may not be Euclidean but fractal and the number of dimensions \(d \) of ou may not be absolute (a priori defined) and integer but relative and fractionary, depending on the electro-gravitino-informational unifying scaling factor \(n_a \) and the (angular) momentum “key”-quanta we use to study the global angular momentum \(L_{ou} \) (using our mind, senses and their extensions as observational/measuring tools)”. As we generally use light (photons) to perceive and study space (together with virtual photons which were demonstrated to permeate all space, as proved by the Casimir effect), the fact that \(L_{ou} \approx h_{eg} n_a^4 \) may generate the “3D space” appearance: there are studies which also show that time may not exist as a “4th dimension” in the relativistic microcosm (the quantum level of reality). The fact that we perceive time at the macroscopically level (as part of an apparent “4D spacetime”, with a 4th dimension modeled and measured using a classical linear time function) may be also an appearance generated by gravity (mediated by [electro]gravitons with the very small \(h_{eg} \) momentum-quanta) and to the relation \(L_{ou} \approx h_{eg} n_a^4 \).

The human brain uses photons (light) to observe an apparent “empty” space, so that it may be the “victim” of the illusion governed by \(d_{ph} \approx 3 \), which generates the appearance of a “3D spacetime”, in which time is not an additional 4th dimension, but only an abstract/artificial function which records a sequence of changes/events in that 3D space. The human brain also uses a combination of photons (light) and (quantized) gravity to observe the movements of objects in space, so that it may be also the “victim” of the illusion governed by \(d_{eg} \approx 4 \), which generates the appearance of a “4D spacetime”, with an additional spatial 4th dimension attached to a perceptual “3D space”.

This hypothesis can also offer an escape from a potential tautology, as when we measure different parameters of a quantum particle (QP), we use algorithms and equations based on a (one priori) assumption that space has three (Euclidean or non-Euclidean) dimensions \(d = 3 \), which may be essentially an illusion created by \(d_{ph} \approx 3 \); it is also the case in this paper, when \(V_{ou} \) was calculated using the same 3D space a priori assumption.

As \(L_{ou} = E_{ou} \cdot t_{ou} \) is a function of both the energy \(E_{ou} \) and age \(t_{ou} \) of ou, a generalized function \(d_x (E_x, t_x, h_x) \) can be defined next:

\[d_x (E_x, t_x, h_x) = \log_{n_x} (E_x \cdot t_x / h_x) \] \hspace{1cm} (IV-2a)

\(d_x (E_x, t_x, h_x) \) predicts that if we could (theoretically) existed and could have used the same photons with the same
$h_s = \hbar$ (as the present photons have) in a very early historical epoch of ou (defined by $t_s \ll t_{ou}$, the same $E_s = E_{ou}$ and the same n_a) our space would have looked more like a ~ 2.5D space (like in the first second after the hypothetical Big Bang) or even ~ 1.5D (like in the first Planck time interval $t_{Pl} = \sqrt{\hbar G/c^3} \approx 5.39 \times 10^{-44}$s after the hypothetical Big Bang):

$$d_s (E_{ou},1s,h) \approx 2.56$$ \hspace{1cm} \text{(IV-2b)}

$$d_s (E_{ou},t_{Pl},h) \approx 1.51$$ \hspace{1cm} \text{(IV-2c)}

$d_s (E_s,t_s,h_s)$ also predicts that if we would (at least theoretically) exist and use the same photons with the same $h_s = \hbar$ (as the present photons have) in a very distant future of ou (defined by $t_s \gg t_{ou}$, the same $E_s = E_{ou}$ and the same n_a) our space would have looked more like a ~ 4D space, for example in the future moment corresponding to the age of $t_s \approx 10^{50}$ years measured after the hypothetical Big Bang:

$$d_s (E_{ou},10^{50} \text{ years},h) \approx 3.95$$ \hspace{1cm} \text{(IV-2d)}

More interestingly, all known elementary particles (EPs) (including those EPs with extreme low/high non-zero rest masses like the neutrinos [nn] and the Higgs [H] boson, except the photon and gluon) have non-zero rest energies in the interval $\left[E_{mn} (\approx 1.85eV), E_H (\approx 125 GeV) \right]$ which is relatively “centered” in $\sqrt{E_{mn} \cdot E_H} \approx 0.5 MeV$ (more or less ~ 5-6 orders of magnitude):

$$d_{EP} = \log_{10a} \left(E_{ou} / E_{EP} \right)$$

has values in the interval $[1.9, 2.2] (D)$ which is relatively centered around 2(2D). This may explain why QPs (first treated as superstrings by the string theories [STS]) can also be generalized and modeled as 2D surfaces (supermembranes or 2-branes) that may exist in an 11D spacetime as proposed by M-Theory (MT) and supergravity theory (which combines the principles of supersymmetry and general relativity). A n_a - based 11D universe may have a total angular momentum $L_{tot} \approx h_s n_a$. In this view, bosons may be modeled as open 2-branes and fermions may be modeled as closed 2-branes [19,20]. The same QPs may be regarded as 2-branes in 4D spacetime or as 1-branes (strings) in a 2D (holographic) universe: this sustains the holographic principle (HP) proposed by Gerard’t Hooft’s but also the ADS/CFT correspondence (aka Maldacena duality or gauge/gravity duality).

The definition $d_s = \log_{10a} \left(L_{ou} / h_s \right)$, can be used to inversely define a specific momentum quanta associated to any d-frame of reference (with a number of d dimensions) such as:

$$hf (d) = L_{ou} / n_a^d$$ \hspace{1cm} \text{(IV-3a)}

$hf (3) \approx 2.4 \times 10^{-35} Js$ is relatively close (with approximately the same order of magnitude) to the reduced Planck constant (\hbar), so that $hf (3) \approx 0.23 \hbar$. The rest energies of W/Z bosons $E_W \approx 80.4 GeV$, $E_Z \approx 91 GeV$ and their mean (measured) lifetimes $t_W \approx t_Z \approx 3 \times 10^{-25}$s may help defining two reduced (angular) momentum-like quanta h_w and h_z (with 2π being associated with a full mean lifetime $t_{W/Z}$), such as:

$$h_w = \frac{E_w \cdot t_w}{2\pi} \approx 6h \approx 26 h f (3)$$ \hspace{1cm} \text{(IV-3b)}

$$h_z = \frac{E_z \cdot t_z}{2\pi} \approx 7h \approx 29 h f (3)$$ \hspace{1cm} \text{(IV-3b)}

h_w and h_z are relatively close but larger than $hf (3) \approx 0.23 \hbar$ (with ~ 1 order of magnitude), and that is why the W/Z bosons may be considered “heavy” photons, or high-momentum photons (unstable excited states of the photon with non-zero rest energies/masses and tendency to decay asymmetrically into pairs of distinct leptons) which is also the essential part in the successful unification of electromagnetic field (EMF) and the weak nuclear field (WNE) as the electroweak field (EWF). As $d_{W(Z)} = \log_{10a} \left(L_{ou} / h_{W(Z)} \right) \approx 2.97 \to 3$, observing our space by using W/Z bosons also generates the same 3D space appearance.

Analogous to h_w and h_z, one can also calculate a reduced (angular) momentum-like quanta for the Higgs boson (HB) h_H by using the HB non-zero rest energy $E_H \approx 125 GeV$ and its mean lifetime $t_H \approx 1.56 \times 10^{-22}$s (with 2π being associated with a full mean lifetime t_H), such as:

$$h_H = \frac{E_H \cdot t_H}{2\pi} \approx 4718 h \approx 20770 h f (3)$$ \hspace{1cm} \text{(IV-3c)}

L_H is with ~ 3-4 orders of magnitude larger than $hf (3) \approx 0.23 \hbar$ and that is why HB may be considered a “very heavy” photon, or very-high-momentum photon (a very high and unstable excited state of the photon with a non-zero rest energy/mass and tendency to decay symmetrically into pairs of identical/opposite-charge W/Z bosons, photons, leptons). As $d_H = \log_{10a} \left(L_{ou} / h_H \right) \approx 2.9 \to 3$, observing our space by (at least theoretically) using HBs may also generate the same 3D space appearance.

Based on $hf (d)$ function, DH also predicts and defines a quantum G function G_{eq} associated to any integer/fractional dimensional d-frame (with d dimensions), such as:
Based on the $G_f(q) (d)$ general definition, DRH predicts a hypothetical (very plausible) strong gravity constant (SGC) associated with a 3D frame and generated by a strong gravity field (SGF) measured by a momentum quanta close to $hf (3) \approx h$, such as:

\[
\Gamma \equiv G_f (3) \approx 10^{31} m^3 kg^{-1} s^{-2}
\]
(IV-5a)

and

\[
\Gamma \approx 1.5 \times 10^{41} G
\]
(IV-5b)

The majority of authors have calculated a value for this hypothetical SGC (Γ) from $\Gamma_{inf} \approx 10^{25} m^3 kg^{-1} s^{-2}$ (corresponding to $d_{inf} \approx 2.84$) up to $\Gamma_{sup} \approx 10^{37} m^3 kg^{-1} s^{-2}$ (corresponding to $d_{sup} \approx 3.14$), with most of estimations between $10^{28} m^3 kg^{-1} s^{-2}$ and $10^{32} m^3 kg^{-1} s^{-2}$, with an average $d_{avr} \approx 3$ (Seshavatharam and Lakshminarayana S., 2010, 2012, 2015 [21,22,23]; Perng, 1978 [24]; Fisenko et al. 2006, 2008, 2010 [25,26,27]; Recami et al., 1994, 1995, 1997-2001, 2005 [28,29,30]; Fedosin, 1999, 2009, 2012, 2014 [31,32,33]; Tennakone, 1974 [34]; Stone, 2010 [35]; Oldershaw, 2007, 2010 [36,37]; Mongan, 2007-2011[38]; Sivaram and Sinha, 1977 [39]; Dufour, 2007 [40]).

SGF may act as a confinement force between the 2-branes contained in the same 3-brane (like our 3D space) stabilizing that 3-brane.

Furthermore, DRH also predicts that there may exist a set of very strong gravity fields (VSGF) associated to the 2D (the frame of 2-branes) and 1D (the frame of strings/1-branes) which may manifest at scales progressively smaller and even smaller the Planck length scale, such as:

\[
G_f(q) (2) \approx 10^{72} m^3 kg^{-1} s^{-2} \approx 10^{82} G
\]
(IV-6a)

\[
G_f(q) (1) \approx 10^{113} m^3 kg^{-1} s^{-2} \approx 10^{123} G
\]
(IV-6b)

VSGF (2) is associated with $G_f(q) (2)$ and may act as a confinement force between the strings contained in the same 2-brane stabilizing that 2-brane. VSGF (1) is associated with $G_f(q) (1)$ and may act as a confinement force between the points contained in the same 1-brane (string), stabilizing that 1-brane.

$G_f(q) (1)$ is a potential candidate for the upper bound of a plausible finite G that limits the growth to infinity of the strength of gravity when approaching infinitesimal length scales possibly inferior to the Planck length scale (as possibly in the black holes): the predicted hypothetical asymptotical freedom of gravity.

DRH also proposes a generalized electrograviton model (EGM) in which there is a distinct electrograviton (0-spin, 1-spin or 2-spin) associated with each D-dimensional frame (with d being a positive integer number of dimensions) with its own specific angular momentum quanta, such as:

\[
G_f(q) (d) = \left(\alpha_{Gq} c / m_e^2\right) h_f (d)
\]
(IV-4a)

with $G_q \approx G_f(q) (4) \approx G$
(IV-4b)

\[
h_f(q) (d) = L_{ou} / n_u^d
\]
(IV-7a)

\[
G_f(q) (d) = \left(\alpha_{Gq} c / m_e^2\right) h_f(q) (d)
\]
(IV-7b)

In this view, the Newtonian relativistic gravity is mediated by the 4D-frame electrograviton (4-eg), with an angular momentum quanta measured by $h_f(q) (4)$ which generates a gravitational field with strength measured by $G \approx G_f(q) (4)$. In the same view, SGF is predicted to be mediated by a 3D-frame electrograviton (3-eg) with $h_f(q) (3) \approx h$, which has a strength also measured by $\Gamma \equiv G_f(q) (3) \approx 1.5 \times 10^{41} G$. The photon (which is its own antiparticle), the WZ bosons and HB may all be considered different types of 3-egs because $d_H \approx d_{W(Z)} \approx d_{ph} \approx 3$.

In this way, the DRH-based SGF may co-predict (retrodict) the existence of the Higgs field (HF), as the 3D-frame eg (3-eg) has some striking scalar similarities with HB, which is a scalar QP (the only known scalar QP in nature, first predicted to exist in 1960s) with 0-spin and even parity. HB is defined as the quantum excitation of one [of the four] components of HF: HB is a very plausible candidate for the 3-eg (predicted by DRH) and vice versa.

This DRH sub-hypothesis also implies that

\[
G_f(q) (d_H) \equiv G_f(q) (3) \equiv \Gamma
\]
However, the mainstream considers that more studies are needed to firmly confirm if the ~125GeV boson discovered in CERN’s Large Hadron Collider (LHC) has properties matching those predicted by Standard Model (SM) for HB, or whether, more than one type of HB exist (as predicted by some theories). The 100% confirmation of HF existence depends on the final confirmation of HB existence, as HF is detected through its excitations (the HBs, which are difficult to obtain and detect).

HF is predicted to be tachyonic (as the symmetry-breaking of HB [through condensation] only occurs under certain conditions), and has a "Mexican hat" shaped potential with non-zero strength at any distance (also manifesting in empty space and permeating the entire observable universe and possibly all our universe, similar to both electromagnetic field (EMF) and the predicted SGF).

In its vacuum state, HF breaks the weak isospin symmetry of the electroweak field (EWF) and generates the W and Z bosons of WNF, which have very large non-zero rest masses of about (80-90)GeV. HF may also explain the non-zero rest masses of other elementary QPs like quarks and leptons (that are predicted to be normally massless when considering the symmetries controlling their interactions), by using other HF-based mechanisms alternative to the Higgs mechanism.

\[
f(m_s, m_y) = \log_2 \left[\frac{h_s c l (G m_y)}{h_s c l (k_s q_e^2)} \right]
\]
(IV-8)
All fermionic EP non-zero rest masses can be considered the result of symmetry breaking of high-momentum bosons (like the W/Z and HB) but keeping \(f(m_0, m_f, h_f) \) close and centered on value 1. Not only “injecting” energy in a photon (by frequency increase of that photon) may generate fermionic particle-antiparticle pairs (with non-zero rest masses), but also injecting momentum in a photon may generate “(very) heavy photons” (like W/Z bosons and HB) which further decay in fermionic pairs.

DRH considers very plausible the possibility that the symmetry-breaking condensation of HB to also generate not-only the W/Z-bosons (also 3-egs), but also the 4-egs which mediate the gravitational field (GF): this implies GF to be a residual SGF (SGF may also be a residual VSG[2], as VSG[2] may be a residual VSG[1], and may contribute to the \(n_a \)-based explanation of the hierarchy problem, as \(G_f^a(d_H)/G_f^a(3) \approx n_a \) (with an approximate same order of magnitude)

DRH also predicts that VSGFs are probably mediated by the 1/2D-frame egs (1-egs and 2-egs) quantized by \(hf_{eg}(1) \) and \(hf_{eg}(2) \), which generates \(G_f^a(1) \) and \(G_f^a(2) \) and may also have 0-spin and even parity (like HB and the 3-eg).

In conclusion, DRH (as based on the universal scaling factor \(n_a \)) offers important explanations and predictions (mainly the generalization of the electrograviton model for any relative frame with d dimensions)

V. The prediction of a gravitational field varying with the energy scale

This paper also proposes a set of three simple \(n_a \)-based functions to describe three hypothetical variations of the gravitational field (GF) strength as measured by the quantum gravitational coupling constants \(a_{Gq1}, a_{Gq2} \) and \(a_{Gq3} \), with a variable energy scale \(E \in [E_e, E_{Pl}] \), with \(E_e = m_e c^2 \left(\approx 0.51 \text{MeV} \right) \) and \(E_{Pl} = \sqrt{hc^5/G} \left(\approx 1.22 \times 10^{19} \text{GeV} \right) \) (the Planck energy at which unification of all the four fundamental forces is predicted to occur), such as:

\[
\alpha_{Gq1}(E) = n_a \frac{E_{Pl}}{E_e} \left(\frac{1}{2a^{3/2}n_a} \right) \quad \text{(V-1a)}
\]

\[
G_q^1(E) = \alpha_{Gq1}(E) \cdot \frac{hc}{m_e^2} \quad \text{(V-1b)}
\]

\[
\alpha_{Gq2}(E) = n_a \frac{E_{Pl}}{E_e} \left(\frac{1}{2a^{3/2}n_a} \right) \quad \text{(V-1c)}
\]

\[
G_q^2(E) = \alpha_{Gq2}(E) \cdot \frac{hc}{m_e^2} \quad \text{(V-1d)}
\]

\[
\alpha_{Gq3}(E) = n_a \frac{E_{Pl}}{E_e} \left(\frac{1}{2a^{3/2}n_a} \right) \quad \text{(V-1e)}
\]

\[
G_q^3(E) = \alpha_{Gq3}(E) \cdot \frac{hc}{m_e^2} \quad \text{(V-1f)}
\]

\[
G_{q1}(E_{Pl}) \approx 1.2 \times 10^{31} m^3 kg^{-1} s^{-2} \text{ reaches } G_f^a(3),
\]

\[
G_{q2}(E_{Pl}) \approx 10^{72} m^3 kg^{-1} s^{-2} \text{ reaches } G_f^a(2) \text{ and}
\]

\[
G_{q3}(E_{Pl}) \approx 10^{113} m^3 kg^{-1} s^{-2} \text{ reaches } G_f^a(1) \text{. The base-10 logarithmic variation of the functions}
\]

\[
p_1(E) = \log_{10} \left[\alpha_{Gq1}(E) \right], \quad p_2(E) = \log_{10} \left[\alpha_{Gq2}(E) \right]
\]

\[
\text{and } \quad p_3(E) = \log_{10} \left[\alpha_{Gq3}(E) \right] \text{ for } E \in [E_e, E_{Pl}] \text{ are represented in the next graph:}
\]

![Figure V-1: The variation of the gravitational field strength described by the functions \(p_1(E), p_2(E) \) and \(p_3(E) \)](image)

This paper also proposes the replacement of \(G \) in Einstein’s Field Equation (EFE) with the quantum G function \(G_{q(1,2,3)}(E) \). In this way, the compact EFE based on the predefined (symmetric second-rank) Einstein tensor \(G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} \) (function of the metric tensor \(g_{\mu\nu} \))

\[
G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}
\]

becomes a unifying equation for both quantum mechanics and general relativity, describing a quantum GF mediated by gravitons (modeled as electrogravitons) with a \(n_a \)-based variable strength:

\[
G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G_{q(1,2,3)}(E)}{c^4} T_{\mu\nu}
\]

(V-2a)

This approach also has the potential to solve the cosmological constant problem by offering the possibility of a vacuum energy density \(\rho_{\text{vac}} \) that varies inversely-proportionally to the length scale \(\lambda \) (and direct-proportionally to the energy scale \(E \)), which may fill the huge “gap” (varying from 40 to more than 100 orders of magnitude) between the observed small \(\rho_{\text{vac}} \) used by general relativity and the very large \(\rho_{\text{vac}} \) predicted by the quantum field theory.

\[
\rho_{\text{vac}}(\lambda) = \frac{\Lambda c^2}{8\pi G_{q(1,2,3)}(\lambda)}
\]

(V-2b)
VI. The unification of all the four fundamental fields at Planck energy scale

The running coupling constant of the electromagnetic field (EMF) α determined in quantum electrodynamics (QED) using the beta function can be also written as the function of a variable energy scale $E \gg E_e \left(= m_e^2 \approx 0.51\text{MeV}\right)$, $E \leq E_{Pl}$ and $\alpha \approx 1/137$, such as [41, 42]:

$$\alpha_f (E) \equiv \frac{\alpha}{1 - \frac{\alpha}{3\pi} \ln \left[\left(E/E_e\right)^2\right]} \quad \text{(VI-1a)}$$

$\alpha_f (E)$ may be interpreted/explained and redefined as the consequence of the variation of n_d with a variable energy scale E, as described by the function:

$$n_f (E) = n_d f\left(E/E_e\right)^{\ln(4)/3\pi}, \quad \text{(VI-1b)}$$

with

$$\alpha f (E) \equiv 1/\log_2 \left[n_f (E)\right] \quad \text{(VI-1c)}$$

The running coupling constant of the weak nuclear field (WNF) α_W includes the rest energies of the W/Z bosons (which are the propagators of the WNF) and is also based on the Fermi coupling constant G_F:

$$G_F \left(\frac{\hbar c}{\text{MeV}}\right)^3 \approx 1.1663787 \times 10^{-5} \text{GeV}^{-2} \quad \text{(with} \quad G_F \approx 1.43585 \times 10^{-6} \text{Jm}^{-3})$$

which can be indirectly determined by measuring the muon lifetime experimentally. α_W can also be written as a function of a variable energy scale $E \in [E_e, E_{Pl}]$, the rest mass/energy of the W^{\pm} boson m_W and $E_W = m_W c^2$ such as [43, 44, 44, 46]:

$$\alpha f_W (E) \equiv \frac{E_W^2 G_F \left(\frac{\hbar c}{\text{MeV}}\right)}{c^{E_w/E}} \quad \text{(VI-2)}$$

The running coupling constant of the strong nuclear field (SNF) α_S determined in quantum chromodynamics (QCD) (also) using the beta function can also be written as a function of a variable energy scale $E \gg E_{SNF}$, $E \leq E_{Pl}$ and $E_{SNF} \approx 210(\pm 40)\text{MeV}$ (the QCD energy scale of quark confinement as determined experimentally), such as [47]:

$$\alpha f_S (E) \equiv \frac{2\pi}{7 \ln \left(E/E_{SNF}\right)} \quad \text{(VI-3)}$$

The approximated running coupling constants of GF, EMF, SNF and WNF can all be represented on the same graph using the base-10 logarithmic functions $p_{GF1}(E) = \log_{10} \left[\alpha_{GF1} (E)\right], \quad p_{GF2}(E) = \log_{10} \left[\alpha_{GF2} (E)\right], \quad p_{EMF}(E) = \log_{10} \left[\alpha_{EMF} (E)\right], \quad p_{SNF}(E) = \log_{10} \left[\alpha_{SNF} (E)\right]$.

The unification of GF(1,2,3), EMF, SNF and WNF at the Planck energy scale

$$p_{GF3}(E) = \log_{10} \left[\alpha_{GF3} (E)\right], \quad p_{EMF}(E) = \log_{10} \left[\alpha_{EMF} (E)\right], \quad p_{SNF}(E) = \log_{10} \left[\alpha_{SNF} (E)\right]:$$

see the next figure.

![Figure VI-1. The unification of GF(1,2,3), EMF, SNF and WNF at the Planck energy scale](image)

VII. Life phenomenon as engraved in the laws of our universe

There are some strong arguments that creationism and evolutionism can be unified in a more profound monad, as also described by the Fine-tuned universe theories, including the Anthropic (Cosmological) Principle. [48].

It is generally considered that the non-zero probability of life existence strongly depends on: boson-fermion dichotomy (BFD) (associated with Pauli’s exclusion principle [PEP] which apply to all fermions), some narrow intervals of allowed variations (±4%) for the fine structure constant (FSC) α value (at rest) and for the beta constants values at rest $\beta_p = m_p/m_e$ and $\beta_n = m_n/m_e$ (which influence the formation and the life cycles of the stars, which are the main sources of energy for life forms (LFs) and the only source of atoms heavier that the iron, which are vital microelements for LFs); it is also generally admitted (and partially proved by some experiments) that α and β_p values have probably been “decided” (by so-called natural (pre)selection) in the first moments after the (hypothetical) Big-Bang. It was also demonstrated that the stability of all chemical structures that compose any LF mainly depend on BFD-PEP association, α and β_p values. In order for the first LFs to appear by the 3rd step of “biological natural selection”, proper chemical structures (atoms and molecules) must have been produced long before these first LFs, by a 2nd step of “chemical natural (pre)selection”: but this 2nd step strongly and decisively depends on $\alpha = 1/\log_2 \left(n_d\right)$ and β_p (at rest) that were also “naturally (preselected)” at a relative short moment after the (hypothetical) Big-Bang and this “selection” may be consider the 1st step of the “natural selection” process, that can be named the “alpha-beta...
natural (pre)selection”. In this way, this hypothesis proposes a “natural selection” in three “abc” steps:

a. the selection of the main physical principles and adimensional constants compatible with LFs existence (very close to the Big-Bang moment);
b. the selection of the atoms and molecules compatible with LFs existence;
c. the appearance of the first LFs that evolved by a so-called “natural selection” process.

With these previously listed arguments, this paper proposes the unification of evolutionism and creationism in a monad (a seed-like model of the pre-Big-Bang in which this singularity unpacks and repacks itself periodically, generating a universe populated with LFs), as it pushes the three abc-steps of “natural selection” very close to the moment “0” of the Big-Bang when \(n_\alpha \cong 10^{41} \), \(\alpha = 1/\log_2 (n_\alpha) \) and \(\beta_{p(n)} \) values were probably “naturally” (but not necessarily randomly!) selected. In this view, \(n_\alpha \cong 10^{41} \) may be regarded as predesigned for life forms to exist.

An important remark on the importance of FSC value in the structures and functions of LFs. A change in the energy level of an electron in a molecule of a LF may produce a change in configuration of that molecule, a change that may also generate and transmit potential vital (bio)information for that LF. FSC can be interpreted as the probability of a real electron to emit a real photon (Feynman’s interpretation): in biology, FSC can be “translated” as the main probabilistic measure of the relative stability of a molecular electronic cloud configuration that a LF can rely on as a generator and transmitter of (bio)information.

In conclusion, it is very plausible that life may be essentially a predesigned phenomenon probably “engraved” in the laws of nature (including the still unknown laws of our universe), and just secondarily shaped by different so-called “natural accidents”.

VIII. Endnote reference
(in the order of apparition in this paper)

[15] Drăgoi Andrei-Lucian (2016), “(IDUM - Short essay - 11 pages - 19.05.2016) An Info-Digital Universe (Toy) Model (IDUM) (in brief) using the hypothetical gravitonic qubit as the basic unit of the physical information”. DOI 10.13140/RG.2.2.12680.62722. URL1(ResearchGate), URL2a(Academia.edu), URL2b(Academia.edu), URL2c(Academia.edu)

[22] Seshavatharam U.V.S., Lakshminarayana S. (2012). "To unify the string theory and the strong gravity". URL1, URL2

[25] Fisenko S., Fisenko I. (2006). "To the question of identification of linear spectrum of gravitational emission as of an emission of the same level with electromagnetic". URL1

[40] Botje Michiel (2 December 2013). " Lecture notes Particle Physics II. Quantum Chromo Dynamics. 6. Asymptotic Freedom” (lecture notes), page 6-14. URL1

