If \(p \) is any odd prime number and \(c \) is any odd number less than \(p \), then there must exist a positive number \(c' \) less than \(p \), such that \(cc' = -2 \mod p \)

Prashanth R. Rao

Proof:

Let \(p \) be an odd prime. Let \(c \) be any odd number less than \(p \). Therefore there must exist an even number \(2b \) such that \(c + 2b = p \). Please note than \(2b \) is less than \(p \) and therefore \(b \) is less than \(p \).

Special case if \(2b = 2 \)

If \(2b = 2 \), then \(c + 2 = p \) or \(c(1) + 2 = p \) and therefore \(c(1) = -2 \mod p \) and therefore \(c' = 1 \).

All other values of \(2b \), where \(2 < 2b < p \):

\[c + 2b = p \quad \text{..........................(I)} \]

Let \(c' \) be a number less than \(p \) such that \(bc' = 1 \mod p \)

(Since \(p \) is prime, there must exist unique pair of numbers \(b \) and \(c' \) both greater than 1 and both less than \(p \), such that their product \(bc' = 1 \mod p \)).

Multiplying (I) by \(c' \) gives

\[cc' + 2bc' = pc' \]

Therefore

\[cc' + 2(1) = 0 \mod p \]

or

\[cc' = -2 \mod p \]