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0. Abstract

We have at our disposal a wide variety of discrete transforms for the
discovery of "interesting" signals in discrete data sets in any number of
dimensions, which are of particular utility when the default assumption is that
the set is mundane. SETI, the Search for Extraterrestrial Intelligence, is the
archetypical case, although problems in drug discovery, malware detection,
financial arbitrage, geologic exploration, forensic analysis, and other diverse
fields are perpetual clients of such tools. Fundamentally, these include the
Fourier, wavelet, curvelet, wave atom, contourlet, brushlet, etc. transforms
which have churned out of math departments with increasing frequency since
the days of Joseph Fourier. A mountain of optimized applications has been
built on top of them, for example the Fastest Fourier Transform in the
West[1] and the Wave Atom Toolbox[2].

Such transforms excel at discovering particular classes of signals. So much so
that the return on investment in new math would appear to be approaching



zero. What's missing, however, is efficiency: the question must be asked as to
when such transforms are computationally justifiable.

Herein we investigate a preprocessing technique, abstractly known as an
"entropy transform", which, in a wide variety of practical applications, can
discern in essentially real time whether or not an "interesting" signal exists
within a particular data set. (Entropy transforms say nothing as to the nature
of the signal, but merely how interesting a particular subset of the data
appears to be.) Entropy transforms have the added advantage that they can
also be tuned to behave as crude classifiers — not as good as their deep
learning counterparts, but requiring orders of magnitude less processing
power. In applications where identifying many targets with moderate
accuracy is more important than identifying a few targets with excellent
accuracy, entropy transforms could bridge the gap to product viability.

It would be fair to say that in the realm of signal detection, discrete
transforms should be the tool of choice because they tend to produce the most
accurate and well characterized results. But processor power and execution
time are not free! Particularly when, as in the case of SETI, the bottleneck is
the rate at which newly acquired data can be processed, a more productive
approach would be use to cheap but reasonably accurate O(N) transforms to
filter out all but the most surprising subsets of the data. This would reserve
processing capacity for those rare weird cases more deserving of closer
inspection.

I published Agnentro[3], an open-source toolkit for signal search and
comparison. The reason, first and foremost, was to support these broad and
rather unintuitive assertions with numerical evidence. The goal of this paper
is to formalize the underlying math.

1. Prerequisite Knowledge

To begin with, the reader is presumed to be familiar with the terminology of
mask lists[4] and the math behind agnentropy[5]. A knowledge of logfreedom
and dyspoissonism[6] would also be helpful because it provides an intuitive
sense of how it's possible to generalize the notion of "interesting" signals



floating in a sea of noise.

In response to some criticisms that my papers are incomprehensible, I’11
define some key terms below:

1.1. Glossary

entropy: Not to be confused with randomness, this is a qualitative term
which is essentially the log of the number of states which a particular system
can assume, given some fixed frequency list. The highest entropy mask lists
involve as few repeated masks as possible. There many ways of defining
entropy, depending on one’s expectation. Several are presented in this paper.
Note that maximum entropy differs from maximum randomness.

frequency: The number of times that a mask occurs within a mask list. For
example, the frequency of 5 in the mask list {3, 7, 5, 0, 8, 1, 5, 4, 3, 5, 6} is 3.

frequency list: A nonempty list of frequencies of corresponding masks. If
each mask can assume a value on [0, Z-1], then there will be Z items in the
frequency list. The sum of all such items equals the mask count, Q, of the
corresponding mask list. For example the mask list {0, 2,1, 1, 2,3, 1,0, 2, 0,
0, 1} has a corresponding frequency list of {4, 4, 3, 1}, with
(Q=(4+4+3+1)=12) and (Z=4).

haystack: A mask list which is to be searched for a something resembling a
“needle”.

logfreedom: The natural log of a way count.

mask: A whole number M having some value on (the inclusive interval) [0,
Z-1], where Z is the mask span.

mask count: The number of masks in a mask list, denoted Q.

mask list: A nonempty set of masks.



mask span: One more than the maximum value which a mask can attain,
denoted Z. We only consider nontrivial cases, i.e. (Z>1).

needle: A mask list, typically smaller than a haystack, for which said
haystack is to be searched. The search itself could take many forms, for
example exact matching or statistical matching. In the latter case, only mask
distributions matter, so there is no implied size relationship between the
needle and the haystack.

population: The frequency of frequency. (The term “population” is used so
as to avoid confusion with frequency, even though both are item counts.)

population list: A list of frequencies of frequencies. Given a mask list with
mask count Q, the population list shall have (Q+1) items because the
minimum possible frequency of a mask is zero and the maximum is Q.
Usually, most of these populations will be zero because their sum must equal
Z.. For example the frequency list {4, 5, 0, 1, 3, 3}, which corresponds to
(2=6), implies that (Q=(4+5+0+1+3+3)=16). The corresponding population
list would then be {1,1,0,2,1,1,0,0, 0,0, 0,0, 0, 0, 0, 0, 0}, which
consists of ((Q+1)=17) populations. As expected, note that
((1*0+1*1+0*2+2*3+1*4+1*5)=16=Q).

randomness: A qualitative term which is essentially the log of the number of
states which a particular system can assume, given some fixed population
list. Logfreedom, for example, measures randomness. The highest
randomness mask lists correspond to population lists which are approximated
by Poisson distributions. (They are not literally Poisson distributions in the
general case.) Note that maximum randomness differs from maximum
entropy.

sweep: The number of masks in a sweep window, denoted S.
sweep window: A contiguous subset of a mask list, denoted by its zero-based

minimum index, (usually denoted J, K, or L), and its nonzero number of
constituent masks, denoted S.



way count: The number of unique mask lists corresponding to a particular
population list. (In other words, this is the multiplicity of said population list
in the space of all mask lists.) Frequency lists also imply way counts, but the
term is exclusively used with reference to population lists in this document.

2. The Semantics of Entropy

For our purposes here, "entropy" is simply a measure of information content.
It can have units of bits, although for the sake of computational accuracy it's
preferable to work in nats (bits times (In 2)). We'll follow that convention
here.

"Entrometry", then, is the use of entropy metrics to study various phenomena,
whether physical or purely mathematical in nature.

By the way, as I mentioned in [5], "metric" is used in the qualitative sense of
something that measuring something — entropy, in this case. Mathematical
purists will rightly point out that the formulae discussed herein are generally
"divergences" because they violate the triangle inequality and thus do not fit
the formal definition of a metric. But the more mathematical jargon one uses,
the less likely one is to find an audience for one's ideas among engineers.

Some physicists will no doubt be offended by this etymology, as "entropy"
has a specific thermodynamic definition which resolves only indirectly to a
vague notion of information content. Sorry, but it just wastes too much time
to repetitively refer to "information content" when we could just as easily
refer to "entropy" and expect to be understood.

The most important thing to understand about entropy is that it only has
meaning from the perspective of a probability model for the distribution of
data sets which could possibly occur in the wild, to we which we refer as the
"generator" in the agnentropy context. To be clear, there is no absolute level
of entropy. Rather, the entropy of a set is just the negative of the log to some
base (2 or e in the case of bits or nats, respectively) of the probability of the
set in question actually occurring, as implied by said model. For example, if
we expect ones and zeroes to occur with equal probability, and have no



further assumptions, then the entropy in bits of any bitstring is ostensibly the
just number of bits it contains — but merely ostensibly because there is
information in the number of bits itself, which must be conveyed in a so-
called "universal code". And furthermore there's entropy in the assumption
that said code precedes the bitstring, as opposed to being located elsewhere.
We could continue indefinitely, but the bottom line is unavoidable: the
definition of entropy depends on the expectations, whether implicit or
explicit, of the machine seeking to measure it. In other words, entropy is in
the eye of the beholder!

3. Sweep Transforms and the Windowing Problem

The aforementioned discrete transforms are all biased in the sense that they're
optimized for perfectly aligned principal components of specific
wavelengths, be they sine waves, Haar wavelets, curvelets, or whatever. Their
tremendous success derives from the fact that, if properly applied to an
amenable class of data sets, said components are nevertheless likely to
resonate with similar counterparts in the sets. This is why, for instance, the
JPEG compression algo seems to be able to compress just about any photo
using the discrete cosine transform, despite the fact that the physical world is
not composed of cosine wavelets.

But therein lies the problem: all discrete transforms suffer from so-called
"windowing" or "filtering" problems. This refers to the inaccuracy induced in
the transition from the analog world of calculus to the discrete world of
integers. In particular, the continuum of amplitudes and wavelengths
representable in the former yield to quantized approximations of themselves
in the latter.

"Sweep transforms" seek to eliminate the alignment windowing problem to
the maximum extent possible, in particular by sliding a window of some
particular width across the data, one mask (sample) at a time. The
wavelength windowing problem remains. However, entropy in all its
manifestations explored herein has no sense of wavelength; the mask is the
fundamental unit of analysis, and all that matters is their relative rates of
occurrence ("frequency", which is an unfortunate term of art having nothing



at all to do with the reciprocal of wavelength).

All entropy transforms are sweep transforms. Let's first define the latter.

3.1. Haystack, Needle, and Sweep

The "haystack" is the name we give to the data set itself (which must consist
of at least one mask) in the sense of "something to be searched for something
else". That "something else" is the "needle" — a second data set, the size of
which is also nonzero but otherwise unrestricted. It might seem
counterintuitive to have a needle larger than the haystack which is to be
searched for it, but the concepts are qualitative in the sense, for instance, that
we might search a school photo for a face which happens to have been
scanned a much higher resolution and therefore consists of more masks
(pixels, in this case) than the former.

The "sweep" is simply the nonzero number of masks in the "sweep window"
which moves from start to end of the haystack one mask at a time, such that
the window always covers a contiguous and uniformally sized subset of
haystack. Inside this window, some particular function is evaluated. In this
case, but not in the general case, that function is an entropy metric.

There are 3 basic "sweep modes": haystack, fixed, and needle. In haystcak
mode, the sweep equals the number of masks in the haystack; the window
doesn't slide because it has no space to do so. In fixed mode, the sweep is a
natural number (positive integer), which again cannot exceed the number of
masks in the haystack. This is probably best conveyed graphically:
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Notice that the output consists of at most as many masks as the haystack
because (sweep minus one) masks are missing on account of the requirement
that the sweep window be of uniform width. (This is why the output is visibly
shorter than the haystack in the graphic.)

In needle mode, finally, which is only valid with "bivalent" sweep transforms
such as the diventropy transform discussed later, the sweep is equal to the
number of masks in the needle; this mode is only valid if the needle size
doesn't exceed the haystack size.

3.2. The Sweep Transform Formula

Formally, then, if we have a haystack mask list H={H,, Hj,... Hq1} consisting
of Q whole numbers less than Z, then the "output list" Y of a sweep transform
wherein a "sweep function" X is applied to the sweep window of width S
starting at each zero-based "sweep base index" J, where (J<=(Q-S)), then

YE{YQYL“YQd}

where



YJEX<{HJ: HJ+1: ---HJ+S—1})

Furthermore, to the extent that X is commutative, the quantity (Y;«-Y)), to
which we refer as what we refer to as AYj, is then purely a function of H; and
H;.s — in other words, the mask next to leave and next to enter the sweep
window, respectively. All of the entropy metrics presented herein adhere to
this criterion, which is the fundamental reason why their complexity is
asymptotically O(Q). But in the general case, there's no requirement that Y
be scalar or that the sweep function be linear, so one could for example
imagine a "high accuracy" Fourier transform which consisted of a sweep
transform of fast Fourier transforms.

3.3. Higher Dimensional Sweep Transforms

Sweep transforms are trivially extensible to higher dimensions. In D
dimensions, Z remains a natural number; while J, Q and S generalize to D-
tuples of naturals such that the components of J and S are subject to the same
constraint with respect to the corresponding components of Q. Furthermore,
the D-sweep-window moves in each dimension by toggling a (D-1)-
hyperprism of constant geometry on each side, rather than a single mask.

In all respects but one, this generalization is so trivial as to discourage further
discussion. That one respect is the path of traversal of the D-haystack.
Notionally, the path is left to right, then down by one, then left to right, etc.
through all D dimensions. But in practice, this is likely to be inefficient due
to cache thrashing. For better performance, consider walking the sweep base
index vectors in the order of their equivalent Hilbert curve[7] coordinates,
assuming a curve of infinite length. This practice will reduce cache misses.

4. Entropy Transforms

Again, an entropy transform is a sweep transform in which the sweep
function is an entropy metric. Those discussed here are defined for use in one
dimension, but they generalize to D dimensions in the aforementioned
manner.



The output list of an entropy transform consists of a set of real numbers
representing the entropy of the corresponding sweep window at each step.
For its part, the Agnentro toolkit uses interval math to calculate entropy
values, so the output is a list of "fractervals", which are rational fraction
subintervals of [0, 1]. It also supports the computation of all entropy metrics
presented herein. The use of interval arithmetic of one form or another is
strongly encouraged, as entropy transforms involve repetitive feedback of
previously generated results, which taxes numerical precision.

Generally, the sweep windows found to have the greatest, or the least,
entropy are the most interesting in practice. However, particularly insofar as
classification tasks are concerned, it often seems to be the case that similar
objects will exhibit similar entropy when analyzed at the same scale. This
facilitates "bandgap entrometry", which is the classification of phenomena
depending upon the region into which their entropy falls. There are
normalization methods which allow phenomena manifesting on various
scales to be compared as though they manifest on the same scale, which we'll
discuss later.

4.1. Monovalent Entropy Transforms
These transforms have only a haystack and a sweep as inputs, as the point is
to compute some particular entropy parameter of all possible sweeps, then

sort them in order to find the most surprising information. ("Monovalent"
means "one face", which refers to the haystack.)

4.1.1. The Shannon Entropy Transform

The Shannon entropy E of a haystack H consisting of Q masks on the interval
[0, Z-1] is given by

E=(QInQ)- ZF M)InF, (M)

where Fy(M) is the frequency of mask M in the haystack:
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where (Hx=M) is one if Hx equals M, else zero. (Recall that Hk is the mask at
zero-based index K of the haystack, H.)

Now, technically, E is the "compromised" Shannon entropy discussed in [5] —
not the true (analog) Shannon entropy. Regardless of this, it fails to account
for the cost of conveying the frequency information itself (because it's an
asymptotic metric which is less accurate for "small" sets).

We can then define Y}, which is the Shannon entropy of a sweep window of
width S based at zero-based index J, (J<=(Q-S)):

J+S—-1
Y,=(SInS)— > InF(J,H,)

K=J

where we've broken out the log product terms into individual subtrahends and
Fs(J, Hk) is the frequency of Hk inside the sweep window:

FIM)= Y (Ho=M)

K=J

We could compute all (QQ-S) values of Y in order to fully populate Y.
However, there is a faster, if more serialized and thus numerically taxing
way: after computing Y, as above, additively accumulate each successive
"entropy delta" AY, defined as (Y:1-Y)), at each step starting with (J=0) and
lastly with (J=(Q-S-1)). We can break this sum into a pair of sums
corresponding to the old and new sweep window, respectively:

J+S—1 J+S

AY =Y, —Y,= Z InFy(J,H,)- Z InF (J+1,H,)

K=J K=J+1

If (H,=H,.s), then, as with all entropy transforms, AY} is zero because the
frequencies are unaffected, so we can just set Y;.; to Y}, then move on to the
next step. (Moreover we shouldn’t compute this zero, which occurs often in
practice and would only tax numerical precision in this cumulative sum.)



Otherwise things get complicated because a change in the frequency of a
single mask may affect the log terms corresponding to many other copies of
that mask within the sweep window. Fortunately, after accounting for those
changes, the resulting expression for AYj is relatively inexpensive to
compute:

AY ,=F¢(J,H,)InFs(J,H,)
+Fg(J,Hys)InFg(J,Hy,s)
—(F4(J,H,)=1)In(F(J,H,)-1)
—(F4(J,H,,,)+1)In(F,(J,H,, )+1)

which can be rapidly computed, given a lazily populated table of logs (and,
for enhanced efficiency, the differences between logs of successive whole
numbers). (If it occurs, (0 In 0) must be treated as zero.) Note that all sweep
windows are now based at index J, even though the above expression pertains
to the entropy change due shifting from J to (J+1).

What this formula is saying, essentially, is that the entropy is changing by an
amount which reflects the decrementation of the frequency of H; and the
incrementation of the frequency of H;.s in the frequency list of the sweep
window. In the rare case that Fs(J, H)) is initially equal to (Fs(J, Hj:s)+1), AY;
will vanish to zero; this fact can be exploited to reduce the unnecessary loss
of numerical precision.

4.1.2. The Agnentropy Transform

Similarly to Shannon entropy, the agnentropy E of a haystack given by
EElogF(Q+Z)—logF(Z)—ZZ:_1 logl' (F,,(M)+1)

gives rise to the following in a sweep context:

Z-1

Y,=In((Q+Z—1)1)~In((Z—1))= D In(F4(J,M))

M=0

where Fs(J, M) is the frequency of mask M within the sweep window, and



we've recast the loggamma terms as sums of logs. So long as (H;ZH;.s),
because otherwise AY; would be zero, this in turn implies that

AY ,=InF¢(J,H,)—In(Fs(J,H,,s)+1)

which is, of all the entropy transforms herein, by far the fastest to compute
and least numerically taxing. (A simple lookup table would suffice for the
logs.) Moreover, because it implicitly accounts for the cost of encoding the
frequency list, agnentropy is also more accurate than Shannon entropy, in the
sense of predicting arithmetically encoded size, to the extent that all Z masks
are actually possible.

4.1.3. The Obtuse Variance Transform

To be sure, variance isn't considered an entropy metric, but we can use it that
way, as it turns out to be quite sensitive to faint sinusoidal signals shrouded in
Gaussian noise. The variance E of a haystack is given by:

where U is the mean (average) of the haystack H. Which in a sweep context
gives rise to

provided that we make the "obtuse mean approximation" that U is the same
in all sweep windows. (If we don't, then complexity explodes to O(QS) due
to the fact that a change in the mean affects all addends of the above sum in a
nonlinear manner.) This assumption facilitates rapid computation of the
entropy delta:

(H,,s—U)'=(H,-U)’
S

AY =

wherein the division by S can be deferred until and unless necessary (because



in practice most results rank too low to be deemed interesting, and are thus
discarded), leaving us with a simple difference-of-squares in most cases, the
minuend and subtrahend of which could be cached in a lazily populated table
of size O(Z).

For comparative analysis purposes, and to the extent that our assumption
about the mean is accurate, the obtuse variance transform is equivalent to a
standard deviation sweep transform because variance is monotonic with the
latter. This assumption starts to fall apart under high noise regimes, however,
in which agnentropy is an empirically superior metric.

4.1.4. The Obtuse Kurtosis Transform

We can similarly define an entropy metric E as the kurtosis of H:

QQz_:l(HJ_U)A
E=—>-
(;(HJ—U)Z)Z

~

which in a sweep context, and under the same obtuse mean approximation,
gives rise to

J+S-1

S Z (HK_U)4
Y,= J+Is<—:1j
( Z (HK_U)2>2

K=J

which implies that

J+S J+S—-1

Z (HK_U)4 Z (HK_U)4

AYJES K=J+1 K=J

J+S T J+s-1

> (H-UP? X (H-U)PY

K=J+1 K=J

which demonstrates exactly why the obtuse kurtosis transform is so
expensive: it's cheaper just to evaluate Y; from scratch on every step, at best



deferring the multiplication by S until and unless necessary. And in practice,
more precision is required with kurtosis than other metrics, simply due to
numerical instability. At least, the addends in each numerator and
denominator only change by a pair of addends per step.

Insofar as the detection of sinusoidal waves is concerned, obtuse kurtosis
appears to be "obtuse" indeed, in the sense that it's empirically much less
sensitive than other entropy metrics. Nevertheless it's included here because
in theory it might excel in other regimes known to exhibit nongaussian
kurtosis, such as asset price streams.

4.1.5. The Logfreedom Transform

The logfreedom formula[8] in "eubits" (the word I invented for nats, before I
knew the latter) is:

L=InQ!+InZ!~In H[0]'= Y, InH[F]!=Y_ H[F]InF!

F=1

where K is the maximum value of frequency F having nonzero population.
We can recast this formula in the style of the foregoing entropy metrics:

Q
E=InQ+InZ!- Y. (InP,(F)+P,(F)lnF!)

F=0

where Py(F) is H[F] in the former, simply because we've already assigned H
to be the haystack. (We also change brackets to parentheses and subsume the
(H[O]!) term into the sum, bearing in mind that zero factorial is one). For the
sake of simplicity, we're summing over all possible values of F, the
populations of most of which being zero. This formula applies
straightforwardly to a sweep window:

S

Y,=nQ+InZ!- ). (InP,(J,F)+Py(J,F)InF!)

F=0

where



Py(1,F)= Y (Fy(J,M)=F)

M=0

meaning that Ps(J, F) is the population of frequency F within the sweep
window with base index J. This yields

AY ,=InPg(J,F¢(J,H,))+In(Fs(J,H,)!)—1In(Ps(J,Fg¢(J,H,)—1)+1)—In(F(J,H,)—1)!
+In Pg(J ,Fs(J,H,,s))+InFs(J,H,,s)'—In(Pg(J,Fg(J,H . s)+1)+1)—In(Fs(J,H,,s)+1)!

which must be computed in the following order:

1. Compute all terms involving H;.

2. Decrement Ps(J, Fs(J, Hy)).

3. Increment Ps(J, Fs(J, Hy)-1).

4. Decrement Fs(J, H;).

5. Compute all terms involving Hj.s, yielding AY .
6. Decrement Ps(J, Fs(J, Hy:s)).

7. Increment Ps(J, Fs(J, Hy.s)+1).

8. Increment Fs(J, Hys).

This ordering is necessary to avoid the possibility of colliding population
updates.

Despite appearances, no log operand can actually be zero because: (1) Ps(J,
Fs(J, H;)) is nonzero because this term is evaluated before Fs(J, H)) is
decremented. (2) (Ps(J, Fs(J, Hy)-1)+1) and (Ps(J, Fs(J, Hy:s)+1)+1) are
nonzero because population is by definition whole, and we're adding one to
it. (3) Ps(J, Fs(J, Hj:s)) is nonzero because if Fs(J, Hj.s) zero, then Ps(J, 0) is
nonzero because at least one mask is missing from the sweep window;
otherwise if Fs(J, Hj.s) is nonzero then it must appear in the sweep window



already, in which case its frequency and thus the population of its frequency
is by definition nonzero.

Further simplification yields

AY ,=InP(J,Fs(J,H,))~In(Ps(J,Fs(J,H,)—1)+1)+InF(J, H,)
+In Ps(J,Fs(J, Hyus))=In(Ps(J, Fs(J, Hyus)+ 1)+1)=1In (Fs(J , H . 5)+1)

where the same order of operations applies and it's still impossible to
generate a (In 0) term. By the wayj, it often occurs that Fs(J, Hy) equals (Fs(J,
Hj:s)+1), in which case AY) is simply zero, which can be exploited to thwart
precision erosion.

For its part, Ps(J, F) is best implemented via a sparsely populated list
mapping frequency F to its population in the sweep window, which must be
on [0, S]. But this can be unwieldy if S is much larger than the hardware
cache. So to save space, a Poisson cache of the sort used by Agnentro Scan
(via the included Poissocache library) would be useful.

4.1.6. The Exoentropy Transform

"Exoentropy" is short for "exotic entropy", which is a measure of how unlike
the surrounding data the sweep window actually is. More precisely, it's the
amount of information which would be required to losslessly encode the
sweep window, given only Q, Z, and the mask probability distribution
implied by the agnostic frequencies of all masks in the "exosweep", which is
the haystack excluding the sweep window. This method is optimized for use
in the search for anomalous signals of unforeseeable geometry. Indeed, in
tests of signal discovery performance under high noise conditions, it
outperformed every other entropy transform except for exoelasticity, a
conceptual derivative of exoentropy which we'll discuss later.

Recalling from [5] that agnostic frequency is simply frequency plus one, it
follows that the exoentropy of an entire haystack is simply its "raw entropy",
because the implied probabilities of all masks are equal:

E=QInZ



But if, as is the usual case, the sweep window is smaller than the haystack,
then the exoentropy becomes the Shannon entropy of the sweep window as
implied by the agnostic frequencies of the other subset of the haystack:

J+S-1

Y,=SIn(Q+Z-S)- Z In(F,(J,H)+1)

where the "exofrequency" Fe(J, Hk) is given by:

Fy(J,Hx)=Fy(Hy)—F4(J,H)

J+5-1

EQZ:: Z (H,=H,)

L=J

— in other words, the frequency of mask Hx everywhere outside the sweep
window of size S based at index J of the haystack. Using this definition we
can compute the exoentropy delta due to moving that sweep window base
index from J to (J+1):

AY ,=F(J,H,)In(Fy(J,H,)+1)—(Fs(J,H,)=1)In(Fg(J,H,)+2)
+Fy(J,H,,s)In(F(J,H,,s)+1)—(Fs(J,H,,s)+1)InF.(J, H,,s)

AY ,;=In(F;(J,H,)+1)—(Fs(J,H,)—1)(In(Fz(J,H,)+2)=In(F:(J,H,)+1))
+FS(J’HJ+S)(IH(FE(J,HJ+S)+1>_IHFE(J:HJ+S))_IHFE(J:HJ+S)

AY ,=In(F.(J,H,)+1)—(Fs(J,H,)—1)AlIn(F(J,H,)+1)
+FS(J;HJ+S>AlnFE<J:HJ+S) InFg(J HJ+S)

where "Aln" denotes the "logdelta" function, which is easily cached for reuse:
Aln(F)=In(F+1)—InF,(F>0)

Note that there's no way that any of the terms of AY; will result in (In 0), in
particular because Fg(J, Hy:s) is at least one because this mask is known to be
present in the haystack at index (J+S), which is outside the sweep window
and is therefore counted in the exofrequency list.



4.2. Bivalent Entropy Transforms

These transforms have a haystack, a sweep, and also a needle as inputs. As
with monovalent entropy transforms, the point is to compute some particular
entropy parameter of all possible sweeps, all of which involving the entire
needle as well, then sort them in order to find the most useful information.
("Bivalent" means "2 faces", which refers to the haystack and the needle.)

4.2.1. The Diventropy Transform

"Diventropy" is short for "divergent entropy", which measures how much a
pair of data sets resemble one another. More precisely, it's the amount of
information which would be required to losslessly encode the needle, given
only Q, Z, and the mask probability distribution implied by the agnostic
frequency list of the sweep window. So as the sweep window slides step by
step, its changing agnostic frequency list is used to compute the Shannon
entropy of the needle. The reason we use agnostic frequency is because
there's no guarantee that all masks in the sweep window actually occur in the
needle. The reason we use Shannon entropy instead of agnentropy is that, in
the event that a strong match is found between the sweep window and the
needle, it's assumed that the former already provides an accurate
approximation of the generator which gave rise to both of them, so further
agnostic calibration would be of little value relative to its complexity burden.
(This isn't always a valid approximation, so some other more complicated
transform could do better.)

This is particularly useful for identifying parts of the haystack which are most
like, or most unlike, the needle. A diventropy transform could also support a
bandgap entrometry approach, in which objects are classified according to
how similar to the needle they appear to be.

The diventropy E of a needle with mask frequencies Fy, with respect to a
haystack with mask frequencies Fy, is given by:

Z-1

E=QyIn(Q,+Z)~ Y, Fy(M)In(F,(M)+1)

M=0



where the haystack and needle contain Qu and Qn masks on [0, Z-1],
respectively; and where, as stated, Fy involves the entire haystack without
regard to a sweep window.

Granted, it seems as though the downside of this approach is that it may be
possible to find or construct a mask list other than the haystack which, when
used as a needle, results a lesser diventropy than the haystack itself. (Beware
the potential security ramifications of the construction case, for example to
fool a classifier.) In a weird way, this is a reasonable result because it reflects
the uncertainty in the generator model implied by the finiteness of Qu. In
other words, we're not saying that "H is unequal to H"; rather, we're saying
that, based on only Qu masks, there are better approximations of the
generator which gave rise to H, than H itself. This is in turn a consequence of
the agnostic assumptions given in [5].

Anyway, conceptually, the diventropy of a needle with respect a haystack is
the Shannon entropy of the former as measured in terms of the agnostic
frequency list of the latter. This similar to the Kullback-Leibler
divergence[9], but lacks the singularities which can occur if a mask in the
needle has frequency zero in the haystack (due to a lack of agnosticism).

Let's be clear about this: in the act of selecting Z, we're implying that all
masks on [0, Z-1] are possible in both the haystack and the needle, in light of
whatever scant prior knowledge we might have of the generator. (If the
probabilities of some masks are zero in both, then a simple reassignment can
"densify" the mask list, at the cost of some additional information required
for invertibility. Fortunately, it's often possible to clip the range to minimum
and maximum possible values, which requires much less information and
thus introduces less error into the metric.) This doesn't mean that all such
masks occur, however. The Kullback-Leibler approach presupposes that any
mask which doesn't occur in the haystack can't occur in the needle. This
makes sense in the limit of infinite haystacks, but we live in no such world,
which is why it explodes with increasing probability as we examine
progressively smaller haystacks. (Technically, it doesn't explode; it just isn't
defined. Quoting Wikipedia: "The Kullback—Leibler divergence is defined



only if [zero haystack probability] implies [zero needle probability]." Same
difference.) Agnostic frequency has its own problems, in particular, the
number of masks required for before a normalized agnostic frequency list
accurately approximates the generator; we call this "agnostic drag". But,
provided that Z is actually honest, we can do no better in practice than to start
with the assumption that all masks have occurred exactly once. (In theory, we
can do better, as explained in [5] — "namely that the frequency of all masks is
initially (1/Z)" — but it makes little practical sense.) Now, if Z is unbounded,
then we enter the uncharted territory of superagnentropy, as discussed in the
same; fortunately, this isn't likely to be a practical concern.

Now, when a sweep window is involved, we replace Fy(M) with Fs(J, M),
which yields

Y,2QuIn(5+2)- 3. Fy(M)In(Fy(7, M)+1)

where S, as usual, is the sweep. Finally, this implies that
AY ,=Fy(H,)(In(Fs(J,H,)+1)=InFs(J,H,))+Fy(H,.s)(In(Fs(J+S,H;,s)+1)=In(Fs(J,H ,5))+2)

AY ,=Fy(H,)AInFg(J ,H,)~F y(H,,s) Aln(Fg(J+S,H;,s)+1)

which is the diventropy delta due to sliding the sweep window from index J
to (J+1).

The diventropy transform seems to be a viable means of searching a large
data set for "something that looks like" a smaller one. Intuitively, however,
we should be able to achieve more accuracy by taking a weighted average of
the diventropy of the needle with respect to the haystack, and visa versa.

4.2.2. Why Diventropy is Tough to Beat

Diventropy treats all sweeps windows identically, even if we consider the
same sweep applied to many different mask lists, as is the case in a file
system search for a particular needle. The reason is that all sweep windows
need to compete, in effect, to compress the needle by as much as possible.



Those which best approximate the generator should be best able to do so,
within the limits of agnostic drag, assuming that there was in fact some
common generator which gave rise to both the needle and some particular
sweep window. (We want (Q>>Z7) for an accurate ranking of results.)

Since publishing the first edition of this paper, I’ve found other divergences
which are more accurate comparators of probability distributions. However,
they’re also much slower, so diventropy still excels in certain applications
where maximum precision isn’t worth the additional computational cost. I
summarized my findings in “Anomaly Detection and Approximate Matching
via Entropy Divergences”.

In practice, this seems to work quite well. For example, I have an album
consisting of almost 3000 photos, all of which in TARGA format. This is an
uncompressed format involving, in this case, 24-bit pixels having 8 bits each
of blue, green, and red. The photos vary in size by a factor of 10 or so, and
were acquired with a variety of scanners and cameras. The subject matter is
widely variable, as one would naturally expect of an album spanning many
years. There are people, animals, landscapes, vehicles, buildings, food,
machines, works of art, and more. As a test, I used Agnentro Find to search
for a photo of my late great cat, Scurry. (By the way, it employs
"divcompressivity", which is the normalized equivalent of diventropy that
we'll discuss later.) The photo has been inserted here in a somewhat lossfully
compressed JPEG format:



As expected, the highest ranking result was the image itself. The second
highest was a shot taken with minutes of the first, which in fact I'd long
forgotten. It, too, had been scanned from a physical photo, resulting in
entirely different data on the pixel level. Note the change in scale (and paw
position):



And the third highest was a photo of Purrsy, another charming family cat who
passed away some years ago. After that, the images were not generally of
cats.

Granted, there are several other photos of Scurry in the album, so it's likely
that Purrsy ended up at #3 because Agnentro Find was zeroing in on his
similar fur statistics, or perhaps the plush carpet beneath him. I did try a few
other searches, and discovered that smooth, distinctly colored objects such as
gray skyscrapers seem to produce the most consistent results in the top ranks.
For example, a photo of a dense urban area was selected as the needle.
Agnentro Find then turned up some other shots of the same city, as well as
similar areas in other cities. To be sure, this is nothing to compete with a
human or a thoroughly trained deep learning system. But the point here is to
search rapidly and without any training. Given those constraints, it's frankly
surprising how robust diventropy turns out to be.

Bear in mind, Agnentro Find knows nothing of pixels, chromatic
components, or even 2D data structures, let alone cats. It could, with some
heavy modification, be morphed into a powerful photo search utility. (I



would probably start by sorting the pixels in a photo by their Hilbert
coordinates, then treating the result as a 1D mask list. This is a cheap trick to
enhance accuracy without the overhead of a bona fide 2D diventropy
transform.)

Again, it's reasonable to assume that by somehow combining the diventropy
of the needle with respect to the haystack with diventropy from the opposite
direction, we ought to be able to produce an even higher quality metric.

I personally put tremendous effort into this quest. But the results never beat
plain old diventropy for quality, and ended up being much slower as well.
Part of the reason is that when the direction of diventropy is reversed, the
objective of optimization is no longer constant, as we're now trying to
compress the sweep window from the perspective of the needle, which
implies that the target data set changes from one base index to another and
one file to another. Even attempts to normalize the opposing diventropies
relative to their Shannon entropy failed. I then combined them in a manner
weighted by the square root of the number of masks in the agnostic frequency
list (for the sake of approximate proportionality to standard deviation), to no
avail. But nevermind all that. Suffice to say, I've concluded that the
unpredictability introduced by reversing the direction just overwhelms
numerical stability, resulting in a persistently inferior metric. Perhaps
someone else can improve upon the situation.

Meanwhile, diventropy is the only worthwhile bivalent entropy transform at
out disposal.

5. Normalized Entropy Metrics

In the practical use of entropy transforms, there often arises the need to
compare entropy metrics across various sweeps (as in, various sizes of sweep
windows). For instance, if sweep windows X and Y are both remarkable in
light of the entropy they contain, then which is more "interesting"? Perhaps Y
has higher entropy, so in that sense it's more interesting, but maybe that's
unremarkable because it's also larger than X. A reasonable solution to this
conundrum is the use of "normalized" entropy metrics.



Normalization in its simplest form involves dividing a particular entropy
metric by (Q In Z), which as explained in [5] is its raw entropy, that is, the
amount of information (in nats) required to store the mask list in base Z if all
masks are equally likely.

An entropy metric is "compressive" if it results in an amount of information
less than (Q In Z), "expansive" if it results in more information, or
"conservative" if it results in precisely the same amount. Due to these 3
distinct possibilities, we unfortunately can't always divide by the raw entropy
in order to normalize a particular entropy metric, as we'll see in the following
sections.

5.1. Dyspoissonism

As explained in [6], the dyspoissonism D of a mask list with logfreedom L
and raw entropy (Q In Z) is given by:

L

D=1-
QlnZz

recalling that we always assume (Z>1). In this case, normalization is
straightforward because the numerator can never so much as equal the
denominator. This is because the former excludes the information content of
the population list. Without that list, one couldn't create an invertible code.
(This is neverless a minor omission in comparison to Shannon entropy, which
excludes the information content of the frequency list.)

Like logfreedom, dyspoissonism is a randomness metric which for most
practical purposes can be conveniently misappropriated as an entropy metric:
the lower the dyspoissonism, the more random the mask list. (And hence the
more its population list resembles what a Poisson distribution would imply —
not that Poisson distributions imply maximum randomness, which is a
popular misconception of an analog object which is merely asymptotically
accurate.) Randomness and entropy are substantially similar, except that the
entropy of permutations is maximal whereas their randomness is not. For
example, {0, 1, 2, 3, 4, 5} has more entropy but actually less randomness



than {0, 1, 2, 3, 4, 4}. The reason is that an unbiased random number
generator with (Z=6) would be more likely to generate the latter, even though
it contains less information from an agnostic perspective. Insofaras security is
concerned, it's more important to behave with maximum randomness than
maximum entropy, if for no other reason than that systems exhibiting
maximum entropy probably involve a highly ordered process buried within
them (ironically). Apparently the designers of the AES encryption standard,
for example, didn't understand this decades ago, which is certainly related to
the inherent weaknesses which have since come to light. (Fortunately it
remains "strong enough" for the moment, in our classical computing world.)

So the notion that more entropy means less order needs some rethinking. To
put a finer point on it, the Kolmogorov complexity[10] of a counter is
remarkably small, and yet its output has maximum Shannon entropy,
maximum agnentropy, and almost maximum logfreedom.

To conclude, dyspoissonism is useful because it allows us to compare the
randomness (entropy, roughly) of various mask lists of different Q and Z.

5.2. Shannonism

After the fashion of dyspoissonism, "shannonism" S of a mask list with
Shannon entropy E and raw entropy (Q In Z) is given by:

E

S=1-
QInZz

Given some fixed Q and Z, just as mask lists with greater randomness have
lesser dyspoissonism, lists with greater Shannon entropy have lesser
shannonism. And likewise, shannonism can be used to compare the entropies
of disparate mask lists in a normalized manner.

5.3. Compressivity

Similarly, lists with greater agnentropy have lesser "compressivity". But
compressivity fundamentally differs from dyspoissonism and shannonism



because unlike logfreedom and Shannon entropy, respectively, agnentropy
isn't always compressive. Therefore we define compressivity C of a mask list
with agnentropy E and raw entropy (Q In Z) by the following "compressivity
formula":

such that C is differentiable on (0, 1) and continuous on [0, 1]. This
expression can be tricky to compute with interval math, as both partitions
may apply to subsets of the intervals in question, in which case piecewise
computation would be necessary.

Of the normalization methods presented thus far, compressivity is the most
accurate means of comparing the relative entropies of disparate mask lists,
subject to agnostic drag, for the same reasons that make agnentropy itself
more accurate.

5.4. Exocompressivity

Compressivity is to agnentropy as exocompressivity is to exoentropy. If we
replace the agnentropy E in the compressivity formula with exoentropy, then
the output C is the corresponding exocompressivity. Note that the
exocompressivity of an entire haystack is always (1/2) because by definition
the exoentropy thereof is just its raw entropy. Thus, like exoentropy,
exocompressivity is only useful in the context of sweep windows.

5.5. Exoelasticity

Exoelasticity is an inherently normalized entropy metric, without any
unnormalized counterpart. It outperforms every other entropy metric in the
SETI signal injection simulation ("setidemo") included in the Agnentro
toolkit. The exoelasticity of a haystack is just its Shannon entropy divided by
its raw entropy, which is by definition just its shannonism. So, like



exocompressivity, exoelasticity is only meaningful in a sweep window
context:

meaning that the exoelasticity Y; of a sweep window based at index J is just
the ratio of its Shannon entropy Ys; to its exoentropy Yg;. We could expand

the numerator and denominator; unfortunately they don't simplify, although
there are some similar log terms.

For maximum speed, it's best to keep a separate accounting of Ys; and Y&, so
that their respective deltas can be efficiently computed as previously shown,
while the sweep window slides along.

The downside of exoelasticity is that it's about 10 times as computationally
expensive as exocompressivity, which is about twice as expensive as
Shannon entropy, which in turn is about twice as expensive as agnentropy.
This is largely on account of the divide operation. Nevertheless, if sufficient
computing power is available, it provides excellent sensitivity in certain
cases. It's somewhat unclear what distinguishes those cases, but overall it
appears as though it works best on highly anomalous but very short pulses;
whereas exocompressivity works best on slightly anomalous but longer
pulses. Exoelasticity could be just the thing for laser SETT!

5.6. Divcompressivity

Compressivity is to agnentropy as divcompressivity is to diventropy. If we
replace the agnentropy E in the compressivity formula with the diventropy
(of a needle with respect to some haystack or sweep window), then the output
C is the corresponding divcompressivity. Agnentro Find uses
divcompressivity to great effect, in order to deliver "similar" files rapidly, as
in the example previously presented.

6. Preprocessing Hacks



Getting the most out of entropy metrics, normalized or not, usually requires
some preprocessing techniques. Those presented here are of O(Q)
complexity, although more elaborate preprocessing could facilitate higher
dimensional searches, such as video search, without the burden of neural
network training or expensive discrete transforms and convolutions. As
always, it's a tradeoff among accuracy, energy, and latency.

6.1. Quantization and Entropy Contrast Optimization

Ostensibly, none of the entropy metrics presented herein apply to floating-
point numbers (floats) We could, in theory, consider each such number as its
own mask, and measure total set entropy accordingly. However, considering
that there are billions of 32-bit floats and about the square as many 64-bit
floats, such a task would generally require unwieldy amounts of data. A better
option is "quantization".

In its simplest form, quantization involves mapping a range of floats on the
interval [X, Y] to a range of masks on [0, Z-1]. It's easy enough to discover X
and Y by inspection, although in general they should be the same for the
entire data set under analysis, as otherwise we would end up with a distorted
concept of the relative entropies of various files. The trick, however, is to
select an optimal value of Z.

On the one extreme, if we set Z to its minimum allowed value of 2, then we
would destroy the richness of the data set, collapsing all floats into a single
bit. Such severe degradation would probably leave us with unacceptably large
uncertainty.

On the other extreme, we could set Z just high enough to ensure that different
floats always map to different masks. This would preserve the ordering
information embedded in all of the floats. On the other hand, if we end up
with a huge set of masks, none of which occurring more than once, then
every subset would have maximum entropy, so nothing would stand out from
the crowd.

What we need to do here is select a value of Z which optimizes the "entropy



contrast” of our search results. This refers to the ratio of the maximum
entropy on the rank list to the minimum entropy on the same list. (The "rank
list" is the "high score" list — just like in sports or video games. For its part, a
"score" could be greatest when entropy is least, or visa vera; it all depends on
the ranking rules, which are downstream of any entropy transforms.) To first
approximation, we could discover an optimal value of Z via binary search on
the interval [2, Q]. (Q is, in most practical cases, an upper bound for Z,
although it's possible that much larger values would be required, depending
on the "lumpiness" of the distribution of the particular floats involved.) This
means we can potentially identify the most "interesting" sweep windows of a
set of Q floats in O(Q In Q) time, as compared to O(Q) time with integers.
This is ostensibly sufficient time to do a full blown discrete transform such as
a wavelet transform, but in fact it's nowhere near sufficient in the limit of
large Q, considering that such transforms suffer from poor cache efficiency,
unlike entropy transforms generally. The point here is that we might well be
able to accomplish for floats what we can demonstrably accomplish for
integers (and cats!): rapid identification of interesting or relevant signals
without the burden of complicated transforms or neural networks.

6.2. Channelized Deltafication

"Deltafication" is simply the discrete equivalent of differentiation in calculus:
if we have the mask list {A, B, C, D}, then its "first delta" is {A, B-A, C-B,
D-C}. Its 2nd delta is {A, B-2A, C-2B+A, D-2C+B}, and so on.
Deltafication very often increases entropy contrast without modifying Z,
simply because the first deltas of many real world data sets contain less
entropy than the sets themselves. For example, the first delta of an
uncompressed sound file is likely to compress better than the file itself.
Which brings us to channelization.

Sound files typically have more than one speaker (for instance, left and right
in the case of stereo). Uncompressed image files tend to have more than one
color component (usually blue, green, and red). We could consider, say, the
pair of 16-bit sound amplitude channels as a single 32-bit number. But this
practice would probably result in poor entropy contrast because everything
would appear to have high entropy. A much better approach would be to



deltafy the channels separately. For example, suppose we have {8, 5, 2, 7, 4,
1}, corresponding to 3 samples from 2 channels in alternation. The "2-
channelized" first delta would then be: {8, 5, 2-8, 7-5, 4-2, 1-7}, with
negative numbers converted to their equivalent values modulo Z. We could
iterate this indefinitely, always resulting in an invertible mask list. Pixel data
would probably involve 3-channelization, unless for example it contained a
fourth component, such as a zero high byte, in which case it would be best to
discard that byte prior to deltafication.

All forms of deltafication suffer from one major drawback, which is that the
Nth delta contains N atypical masks at the beginning of the resulting list. This
is a necessary side effect of the invertibility requirement. (These masks are
analogous to constants of integration in calculus.) For better entropy contrast,
they could be deleted and Q adjusted appropriately. However, except in the
case of a very small mask list, doing so would probably not affect the results
in any meaningful way. It's important to be cognizant of this defficiency,
however, for those cases in which it matters.

Agnentro Find and Agnentro Scan both support up to 3 serialized
deltafications, with optional byte channelization of N-byte masks, where N is
up to 4.

6.3. Densification

Sometimes, and always if (Q<Z), there is a subset of possible masks which
have frequency zero. In theory, this reduces entropy contrast and makes
computations less precise as a result of the unnecessarily large integers
involved. If this occurs, then densification may help.

The densification process maps a mask M to another mask M' in such a
manner that (1) the ordering of masks is preserved (which is not always
required, depending on the particular task) and (2) no mask M' has frequency
zero. It therefore reduces Z to its minimum possible value. As a rule,
densification takes place after deltafication, as it makes little sense to deltafy
reassigned mask values.



By way of example, consider {1, 9, 0, 1, 7}. Its dense equivalent is {1, 3, 0,
1,2}.

A theoretical side benefit of densification is speed, on account of more
efficient cache utilization. However, this must be weighed against the cost of
densifying in the first place, or doing so lazily inside the entropy transform
pipeline itself. (One could also just not densify, but still keep track of the
minimally sufficient value of Z, then compensate the resulting entropy metric
accordingly.)

The point, in any case, is to improve entropy contrast. First of all, global
densification, wherein Z is reduced to some minimally sufficient value which
is then applied to all mask lists under comparative analysis, is essentially
useless. One reason is purely mathematical: as is evident from a study of their
respective formulae, the ordering of various mask lists by their Shannon
entropy, agnentropy, or exoentropy is unaffected by densification; only
logfreedom is affected, and usually in a minor way, on account of the
population of frequency zero varying from one mask list to another. So
despite an improvement in entropy contrast, the rank list is the same subject
to the limits of numerical precision. But another reason is just that: precision.

The logs of smaller naturals require more terms to converge. Depending on
the particular implementation of the Taylor series for the log (and related
functions) with interval math, it may ironically turn out that greater operands
produce more accurate results, up to some limit. So global densification ends
up reducing the precision of the final result. Both caveats apply to local
densification as well, which otherwise might prove beneficial.

Local densification involves minimizing Z on a per-file if not per-sweep-
window basis. It's important to realize that doing so distorts an entropy metric
in the sense that invertibility is lost, unless we somehow account for the cost
of the information required to invert the new masks back to the old ones. But
nevertheless this might be a useful exercise because it's very likely that Z is
some convenient round number, such as 256, instead of a true representation
of the number of masks which are are actually possible. Densification is a bet
that Z was chosen in this haphazard manner. The flipside, though, is that if Z



was honest to begin with, then densification might result in a catastrophic
underestimate of entropy, on account of the aforementioned discarded
information. It's hard to predict, therefore, whether or not it will improve
search quality in any particular case.

For its part, the Agnentro toolkit does not, as of this writing, support either
form of densification. The reason is that while the local variety might help, it
probably wouldn't help much, as the best entropy scanning metric appears to
be exoentropy, which in the typical case of a large file results in a very
accurate model of the generator, which probably would not be significantly
improved by densification. And, frankly, the price of local densification in
terms of speed and pipeline complexity doesn't seem to justify its benefits, if
any. Nevertheless, there may be some applications wherein the opposite is
true.

6.4. Mask Overlap

The entire point of diventropy is to crudely approximate the amount of
information in a needle from the perspective of a haystack (or sweep
window). To be sure, the approximation is quite precise, to the extent that Z
is honest and the only statistical bias in either mask list is distributional, as
opposed to contextual, in nature. (This distinction was discussed extensively
in [5].)

Of course, reality is rife with contextually biased information, for example
the words right here in this sentence. This means that the amount of
information in the world is considerably less than we would conclude based
on the foregoing assumptions. In theory, we could more accurately account
for this deficit by trying to find some minimal representation of the needle in
terms of the haystack. For example, one could better compress this paper by
translating the word "haystack" into a couple of bytes, instead of
decomposing it into its constituent letters. At a higher level of analysis,
perhaps there are repeated phrases which would offer even more
compression, and thus an even more accurate estimate of the entropy content
herein, provided that sufficient information were saved in order to ensure
invertibility back to this text.



The reason we don't measure entropy this way is because the discovery of
such minimal representations is almost always computationally intractable.
That said, one could rapidly derive a fairly accurate approximation. By way
of proof, the history of lossless file compression dating back to the advent of
the ZIP archive format has been based on such approximately minimal
representations.

If someone were to recast a compression algo such as Lempel-Ziv-Welch into
an entropy transform, the result could be a major breakthrough in the field of
signal analysis. However, such an approach would need to be mindful of
computational complexity, because at a certain threshold, it would become
more efficient (and perhaps more effective) to use established deep learning
approaches instead. That said, neural networking in general appears to be
overused in cases where a lighter entropy analysis approach would get more
work done faster, so the climate is ripe for improvement on both fronts.

In the interim, we have a technique called "mask overlap", which is not
formally part of the theory of entropy transforms, but seems to enhance
entropy contrast nonetheless. It works like this:

Suppose we have a series of 3-byte pixels, say {{9, 2, 7}, {1, 0, 8}, {4, 5, 5},
{4, 3, 6} }. (Perhaps these aren't actually pixels, but rather the 3-channelized
deltafication thereof. It doesn't matter insofar as this technique is concerned.)
Conventionally, we would treat each triplet as its own mask. But we could
also create new "virtual masks" out by shifting our "pixel window" by a byte
at a time, asymptotically resulting in triple as many masks: {{9, 2, 7}, {2, 7,
1}, {7, 1,0}, {1, 0, 8}, {0, 8, 4}, {8, 4, 5}, {4, 5, 5} }. But how would this
help?

Mask overlap is essentially a hack which causes contextual bias to manifest
as distributional bias, so we can use a fast computational process for
detecting the latter in order to detect the former. If in fact there is no
contextual bias to be found, beyond what distributional bias would imply,
then overlap will merely waste time and precision. But in cases such as DNA
comparison, natural language analysis, and malware analysis, where context



is of the utmost importance, it can make the difference between detection and
nondetection of a salient feature.

Agnentro Find and Agnentro Scan offer overlap as a mask list geometry
option.

7. Remarks

The revolution in artificial intelligence has grown explosively on the broad
utility of neural networking. As a result of this tidal wave of experimental
success, comparatively little effort has been dedicated to the question of
whether less computationally intensive methods might be appropriate for
certain problem classes traditionally recognized as the domain of such
networks. Likewise, not much investigation seems to have been directed at
the question of whether there might exist more efficient or even more
accurate methods of signal detection, comparison, or classification based on
mathematical models which could not have evolved in nature as easily as
multilayer nested weighting schemes. Entropy transforms are one family of
methods which go some way toward addressing both questions while
demonstrating economic utility.
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