Primes obtained concatenating to the left a prime having an odd prime digit sum s with a divisor of $s-1$

Marius Coman
email: mariuscoman13@gmail.com

Abstract. In a previous paper, “Primes obtained concatenating a Poulet number P with $(s - 1)/n$ where s digits sum of P and n is 2, 3 or 6”, I noticed that in almost all the cases that I considered if a prime was obtained through this concatenation than the digits sum of P was a prime. That gave me the idea for this paper where I observe that for many primes p having an odd prime digit sum s there exist a prime obtained concatenating p to the left with a divisor of $s - 1$ (including 1 and $s - 1$).

Observation:

For many primes p having an odd prime digit sum s there exist a prime obtained concatenating p to the left with a divisor d of $s - 1$ (including 1 and $s - 1$).

Note: see the sequence A046704 in OEIS for the primes having a prime digit sum.

Verifying the observation:
(true for 15 from the first 16 primes $\neq 5$ with an odd prime digit sum)

: 13 is obtained from $P = 3$ with $s = 3$ for $d = 1$, also 23 is obtained from $P = 3$ for $d = 2$;

: 17 is obtained from $P = 7$ with $s = 7$ for $d = 1$, also 37 is obtained from $P = 7$ for $d = 3$, also 67 is obtained from $P = 7$ for $d = 6$;

: 223 is obtained from $P = 23$ with $s = 5$ for $d = 2$;

: 229 is obtained from $P = 29$ with $s = 11$ for $d = 2$;

: 241 is obtained from $P = 41$ with $s = 5$ for $d = 2$;

: 643 is obtained from $P = 43$ with $s = 7$ for $d = 6$;
547 is obtained from \(P = 47 \) with \(s = 11 \) for \(d = 5 \);

661 is obtained from \(P = 61 \) with \(s = 7 \) for \(d = 6 \);

167 is obtained from \(P = 67 \) with \(s = 13 \) for \(d = 1 \),
also 367 is obtained from \(P = 67 \) for \(d = 3 \), also 467 is obtained from \(P = 67 \) for \(d = 12 \);

for \(p = 89 \) with \(s = 17 \) is obtained no prime but a square of prime, 289 for \(d = 2 \); indeed the observation could include those as well: from the cases above 529 for \(p = 29 \) and \(d = 5 \); 361 for \(p = 61 \) and \(d = 3 \);

2113 is obtained from \(P = 113 \) with \(s = 5 \) for \(d = 2 \);

2131 is obtained from \(P = 131 \) with \(s = 5 \) for \(d = 2 \);

2137 is obtained from \(P = 137 \) with \(s = 11 \) for \(d = 2 \);

4139 is obtained from \(P = 139 \) with \(s = 13 \) for \(d = 4 \);

1151 is obtained from \(P = 151 \) with \(s = 7 \) for \(d = 1 \),
also 6151 is obtained from \(P = 151 \) for \(d = 6 \);

4157 is obtained from \(P = 157 \) with \(s = 13 \) for \(d = 4 \),
also 12157 is obtained from \(P = 157 \) for \(d = 12 \).

Verifying the observation:
(true for 4 from the first 6 primes having 5 digits with an odd prime digit sum)

210037 is obtained from \(P = 10037 \) with \(s = 11 \) for \(d = 2 \);

110039 is obtained from \(P = 10039 \) with \(s = 13 \) for \(d = 1 \), also 1210039 is obtained for \(d = 12 \);

810079 is obtained from \(P = 10079 \) with \(s = 17 \) for \(d = 8 \);

for \(p = 10091 \) and \(p = 10093 \) is not obtained a prime;

910099 is obtained from \(P = 10099 \) with \(s = 19 \) for \(d = 9 \).