The Recursive Future And Past Equation Based On The Ananda Damayanthi Normalized Similarity Measure

Author:
Ramesh Chandra Bagadi
Data Scientist
International School Of Engineering (INSOFE)
2nd Floor, Jyothi Imperial, Vamsiram Builders, Janardana Hills, Above South India Shopping Mall, Old Mumbai Highway, Gachibowli, Hyderabad, Telangana State, 500032, India.
Email: rameshcbagadi@yahoo.com
Phone: +91 9440032711

Abstract
In this research investigation, the author has presented a Recursive Future Equation based on the Ananda-Damayanthi Normalized Similarity Measure [1].

Theory
The Recursive Future Equation
Given a Time Series $Y = \{y_1, y_2, y_3, \ldots, y_{n-1}, y_n\}$

we can find y_{n+1} using the following Recursive Equation.

$$y_{n+1} = \sum_{k=1}^{n} \frac{\text{Smaller of } (y_{n+1}, y_k)}{\text{Larger of } (y_{n+1}, y_k)} \ y_k$$

where $T = \left\{ \sum_{k=1}^{n} \frac{\text{Smaller of } (y_{n+1}, y_k)}{\text{Larger of } (y_{n+1}, y_k)} \right\}^2$

From the above Recursive equation, we can solve for y_{n+1}

The Recursive Past Equation
Given a Time Series $Y = \{y_1, y_2, y_3, \ldots, y_{n-1}, y_n\}$

we can find y_0 using the following Recursive Equation.

$$y_0 = \sum_{k=0}^{n-1} \frac{\text{Smaller of } (y_n, y_k)}{\text{Larger of } (y_n, y_k)} \ y_k$$
where \(T = \left\{ \sum_{k=0}^{n-1} \left\{ \begin{array}{l} \text{Smaller of } (y_n, y_k) \\ \text{Larger of } (y_n, y_k) \end{array} \right\}^2 \right\} \)

From the above Recursive equation, we can solve for \(y_0 \)

References