http://philica.com/display_article.php?article_id=1017
http://philica.com/display_article.php?article_id=1018

The Recursive Past Equation Based On The Ananda-Damyanthi Similarity Measure

Author: Ramesh Chandra Bagadi
Data Scientist
International School Of Engineering (INSOFE)
2nd Floor, Jyothi Imperial, Vamsiram Builders., Janardana Hills, Above South India Shopping Mall, Old Mumbai Highway, Gachibowli, Hyderabad, Telangana State, 500032, India.

Abstract

In this research investigation, the author has presented a Recursive Past Equation based on the Ananda-Damyanthi Similarity Measure [1].

Theory

Given a Time Series \(Y = \{y_1, y_2, y_3, \ldots, y_{n-1}, y_n\}\)

we can find \(y_0\) using the following Recursive Future Equation

\[
y_n = \lim_{p \to \infty} \left\{ \sum_{k=0}^{n-1} y_k \left(\left\{ S_k \left\{ \frac{S_{k+1}}{L_k} \right\} + \left\{ \frac{S_{k+2}}{L_{k+1}} \right\} + \ldots + \left\{ \frac{S_{k+p-1}}{L_{k+p-1}} \right\} + \left\{ \frac{S_{k+p}}{L_{k+p}} \right\} \right\} \right\}
\]

where

\(S_k = \text{Smaller of } (y_n, y_k)\) and \(L_k = \text{Larger of } (y_n, y_k)\)

\(S_{k+1} = \text{Smaller of } ((L_k - S_k), y_k)\) and \(L_{k+1} = \text{Larger of } ((L_k - S_k), y_k)\)

\(S_{k+2} = \text{Smaller of } ((L_{k+1} - S_{k+1}), y_k)\) and \(L_{k+2} = \text{Larger of } ((L_{k+1} - S_{k+1}), y_k)\)

\(S_{k+p-1} = \text{Smaller of } ((L_{k+p-2} - S_{k+p-2}), y_k)\) and \(L_{k+p-1} = \text{Larger of } ((L_{k+p-2} - S_{k+p-2}), y_k)\)

\(S_{k+p} = \text{Smaller of } ((L_{k+p-1} - S_{k+p-1}), y_k)\) and \(L_{k+p} = \text{Larger of } ((L_{k+p-1} - S_{k+p-1}), y_k)\)

From the above Recursive Equation, we can solve for \(y_0\).
References

 http://philica.com/display_article.php?article_id=626
The Recursive Future Equation Based On The Ananda-Damyanthi Similarity Measure

ISSN 1751-3030

Author: Ramesh Chandra Bagadi
Data Scientist
International School Of Engineering (INSOFE)

2nd Floor, Jyothi Imperial, Vamsiram Builders,, Janardana Hills, Above South India Shopping Mall, Old Mumbai Highway, Gachibowli, Hyderabad, Telangana State, 500032, India.

Abstract

In this research investigation, the author has presented a Recursive Future Equation based on the Ananda-Damyanthi Similarity Measure [1].

Theory

Given a Time Series \(Y = \{y_1, y_2, y_3, \ldots, y_n \} \)

we can find \(y_{n+1} \) using the following Recursive Future Equation

\[
y_{n+1} = \lim_{p \to \infty} \sum_{k=1}^{n} y_k \left\{ \frac{S_k}{L_k} + \frac{S_{k+1}}{L_{k+1}} + \frac{S_{k+2}}{L_{k+2}} + \ldots + \frac{S_{k+p-1}}{L_{k+p-1}} + \frac{S_{k+p}}{L_{k+p}} \right\}
\]

where

\[
S_k = \text{Smaller of } (y_{n+1}, y_k) \quad \text{and} \quad L_k = \text{larger of } (y_{n+1}, y_k)
\]

\[
S_{k+1} = \text{Smaller of } ((L_k - S_k), y_k) \quad \text{and} \quad L_{k+1} = \text{larger of } ((L_k - S_k), y_k)
\]

\[
S_{k+2} = \text{Smaller of } ((L_{k+1} - S_{k+1}), y_k) \quad \text{and} \quad L_{k+2} = \text{larger of } ((L_{k+1} - S_{k+1}), y_k)
\]

\[
S_{k+p-1} = \text{Smaller of } ((L_{k+p-2} - S_{k+p-2}), y_k) \quad \text{and} \quad L_{k+p-1} = \text{larger of } ((L_{k+p-2} - S_{k+p-2}), y_k)
\]

\[
S_{k+p} = \text{Smaller of } ((L_{k+p-1} - S_{k+p-1}), y_k) \quad \text{and} \quad L_{k+p} = \text{larger of } ((L_{k+p-1} - S_{k+p-1}), y_k)
\]

From the above Recursive Equation, we can solve for \(y_{n+1} \).
http://philica.com/display_article.php?article_id=1017

http://philica.com/display_article.php?article_id=1018

References

http://philica.com/display_article.php?article_id=626
