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Abstract

The book consists of three parts. The first part describes new method of optimization that has the
advantages agreater generality and flexibility as well as the ability to solve complex problems which
other methods cannot solve.
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and finds a solution set near thgogtimum. Solutions found by this method can be exact or approximate.
Most other methods solve only for a unique local minimum. The ability to create a set of solutions
rather than a unique solution has important practical ramifications in many designspmdoand
scientific problems because a unique solution usually is difficult to realize in practice.

This method has the additional virtue of a simple proof, one that is useful for studying other methods
of optimization, since most other methods can bdigkered from the Method of Deformation.

The mathematical methods used in the book allow calculating special slipping and breaking optimal
curves, which are often encountered in problems of optimal control.

The author also describes the solution of bdary problems in optimization theory.

The mathematical theory is illustrated by several examples. The book is replete with exercises and can
be used as a textook for graduate courses. In fact the author has lectured on this theory using this
book forgraduate and posgraduate students in Moscow Technical University.

The second part of the book is devoted to applications of this method to technical problems in aviation,
space, aeronautics, control, automation, structural design, economic, gamesy thiecounter strategy
and etc. Some of the aviation, aeronautic, and control problems are examined: minimization of energy,
exact control, fuel consumption, heating ofeatry space ship in the atmosphere of planets, the
problems of a range of aircraftpckets, dirigibles, and etc.

Some of the economic problems are considered, for example, the problems of a highest productivity,
the problem of integer programming and the problem of linear programming.

Many economic problems may be solved by the aapion of the Method to the Problems of nen
cooperative games.



The third part of the book contains solutions of complex problems: optimal thrust angle for different
flight regimes, optimal trajectories of aircraft, aerospace vehicles, and space shijig) déoptimal
regulator, linear problems of optimal control.

This book is intended for designers, engineers, researchers, as well as specialists working on problems
of optimal control, planning, or the choosing of optimal strategy.

For engineers théook provides methods of computation of the optimal construction and control
mechanisms, and optimal flight trajectories.

In addition, the book will be useful to students of mathematics, general engineering, and economic.
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Part 1

Mathematical Base of the Optimization Methods

Abstract

A new method of optimization by means of a redefinition of the function over a wider set and a
deformation of the function on the initial and adidinal sets is proposed.

The method (a) reduces the initial complex problem of optimization to series of simplified problems,
(b) finds the subsets containing the point of global minimum and finds the subsets containing better
solutions that the given ax and (c) obtains a lower estimation of the global minimum.

Introduction
The classical approaches this problem is following:
Problem A Find a minimum of the given function.
Together with problem A the following problems are considered:
Problem B Finda smaller subset contains the all points of the global minimum.
Problem CFind a subset of better solutions where the function is less that given value.
Problem D.Find a lower estimation of function.

These norclassical approach B,C, and D requir@iative methods, different from the weknown
methods.

The author offers a new mathematical methods for the solution of these problems.

The new methods have turned out to be much more general, so that while solving one of the above
problems, another ray be solved in passing, which may help in the solution of the former. Thus, if a
satisfactory lower estimate found, it can be compared with various engineering solutions and give rise to
one very close to the optimum.

This method is applied to many mattmatical problems of optimization. For example, functions of
several variable, constrained optimization, linear and nonlinear programming, multivariable nonlinear
problems described by regular differential equations and equations in partial derivatiees, et

One can easy get from the given method to many ‘kmetwn methods of optimization, for example,
Lagrangian multiplier method, the penalty function method, the classical variational method,
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At present, the most of researchers in optimization fields are using the traditional optimization
problemc find a minimum of the given functional (Problem A). They look a single, local minimum. An
engineer, however, is usually interested in a sulidejuastoptimal solutions. He must make sure that
the optimum does not exceed a given value (Problem C). Also, a good estimation from below will
indicate how far a given solution is from the optimum solution (Problem D). An addition an engineer
usually kas other considerations that cannot be introduced into a mathematical model or can lead to
impractical complications. Approach C provides him with some choice.

Problem D is also of particular interest. If an estimate from bottom closes to the exacinmnfaf the
function is found, the optimization can frequently be reduced to finding a egoatéinal solution by trial
and error.

Solution of the Problem B can significantly simplify the solution of any of the above problems, since it
narrows the set coratining optimal solution.

These norclassical Problems B.C. and D require innovative methods, different from thkneaih
method of variational calculus, maximum principle and dynamic programming. This new method is
general, so that while solving onethie above problems, another may be solved in passing, which may
help in the solution of the former. Thus, if a satisfactory estimate from below has been found, it can be
compared with various engineering solutions and give rise to one very close totiheuop

Our reasoning in this book is not complex. But we are using symbolic of set Theory, which many
engineers forget. That way we are given these information in Appendix A of the book.

In Book we are using the double numbering of formulae, theorendlstrawings. The first figure in
nubbering formule or theorem notes the number of paragraph, the second figure is number formula or
theorem in this paragraph. The first figure of drawings means the number of chapter, the second is the
number of drawing.

Chater 1

Methods of /7 and Afunctions

81. Methods ofsz  functions
1. Statement of the Problem. Main theorems. Algorithm 1.

1°. Statement of the TaskAssume that the state of the system is described by elemeAtseries of
these elements form the se{x}. The numerical functiok{x) (functional) is defined and bounded by its

lower estimate oveX The relationships and limitations imposed on the system yield a subselt X



Traditionally the problem of optimization has been set akfes:

A. Find a point of the minimum of the functid({x)over the setx*.
We shall also consider the following problems:

B. Find a smaller subsd¥l E X~ that contains point* of global (absolute) minimumx | M .

C. Find a subselN E X" on whichL 6 E wherecxI(x).
D. Find the lower estimates dfx)over X*.
We will name the point (elemengthe solution ifxis result any presses, procedure, calculation or

reasoning. It not means thatis point of optimum. We Wllitell the pointx, is better solution than the
point x,, if (%) <1(%) and the point of the same solution,|{f)=1(x).

For simplicity we assume that the point of global minimxmexists inX*, but this is not impotent
limitation. The most resudt can be obtained without this assumption.

Let us introduce a sét={yland define a bounded numerical function (functiorialpp EoZe&X3Y.
We shall call it -functional.

Then we set
J(xy) =1(x) + b(xy).
Call our initial problem of findingt andl (x') =inf 1(x)=m, xi X" Problem 1
and the problem of finding<and
J(X(y),y) =inf[I(X)+ b(x,y)], xI X Problem2
We assume thai(y) exist overX3Y.

We deformed arbitrarily our functiondfx)by adding 6 E Ma¥eover we widened the domain of
the deformed functional and arbitrarily defined it on the &twe should do so in such a wthat
problem 2 will be easier to solve.

It might seem that this makes no sense because we must find the points of minimum of our initial
functionall(x), i.e., solve Problem 1. But it appears that from the solution of the simpler Problem 2 we

can obtaininformation about Problem 1. We can use freedom in choice of the functiodaEaRdthe
setYfor such a deformation of functiondlx,y)and the setythat we solve the initial Problem 1, but in
an easier way.

2°. The Fundamental TheorenThe following main theorem establishes the relationship between
Problem 1 and 2, as wels between Problems A, B, and C (The Principle 1 of Optimum).

Theorem 1.1Distinguishing between the sets containing: (1) The global minimum points, (2) only

better solutions than the one given, (3) only worse solutions than one given.



AssumeX 1 X, X(y) are thepoints of global minimum in Problem 2. Then:

(1) The points of global minimum in Problem 1 are containeq in the set
M ={x:b(x,y)2 b(X(y).y), ylI Y}

(2) The set
N={x:J+1¢J+I, yiY}

contains the same or better solutions (that is over N, we H{¥g ¢ | (X) );

(3) The set 0
P={x:b6(x,y) ¢ b(x(y),y), yI Y}

contains the same or worse solutions (that is ovet &) 2 1 (X) ).

Proof.3. By subtracting the inequality
b(x,y) ¢ b(x(y),y) from 1(xX)+b(xy)2 [(X(y)+b(X(y),y) we get 1(x)2 I(X)

overP. Point 3 of the theorem is proved.

1. Point 1of Theorem 1 is obvious becauXeM+PRand | (x) 2 1(X) overP, we havex | M . Point 1
of the theorem is proved.

2. By subtracting the inequalitd 2 J  from J+1¢J+1 we get 1(X)¢I(X) overN.
Point 2 of the theorem is proved.
Theorem 1 is proved.

If in setsN and Pwe write the strong inequalityy > & , then the set N will contain only better
solutions and the set P will contain worse solutions théx ).

Theorem 1.1 is correct whex*, X butM,N,Pcontain elements fronx*.

Let us focus our attention on the fact that after solving the simpler Problem 2, we distinguished in our
setXthree subsetM, which contains a point of global minimum, subBetontaining the same or
worse solutbns, and subsdtl, which contains the same or better solutions.

Consequences:
1. ElementX is the point of global minimum of the functional over the SétX.
2. X is the element which gives the maximum of the dtionall(x)over the setNEX

3. IfX*/ P, then X is the point if global minimum Problem 1 over 3ét In this case we hawd={x}.
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4.1 T'i ,6/Kthen
M ={x: b(x)2 b(X)}, P={x:6(x)¢ b(X)}, N={x:J+12J+1I
Theorem 1 is correct wheX*, X butM,N,Pcontain element fromXx*.

5. Letx*, X IfX*4M=A, then | (X) is the lower estimation(x)over the setX* (because in this case we
haveX*/ P).

6. LetX*, X IfX*EN, then | (X) is the top estimatiori(x) X! (X) over the setx*.

If X1 X*, the setsM,N,Pwill always contain at least one element from thet X*. This element isX.

Remarks

1. N/ M. The proof: Let us denot® =P{X}. ThenP /£N=A4, because oveP we havel(x)>I(X)

(o]
and ove Nwe havel(x)X{(X). ButNE XandM=X P . HenceN/ M.
2. Assume the definitions of the selt§ P (see Theorem 1) contain strong inequalities. Then the set
N will contain onjy better solutions and the seé® ¢ only worse solutions;ompared toX.
3. We can use the dependence of the setdN,PfromyAy 2NRSNJ (2 OKIFy3S (GKS «a
these sets.
4. i -functions exist and their number is infinite.
The last statement is obvious because we can défifnctionals awer the setX?Yin any

possible way.

The theorem 1 gives thalgorithm 1(ai -functional method for finding the subsets that contains the
points of global minimum or better solutions).

Algorithm 1.5 S F A(¥/y$so that Problem 2 becomes easier fwescand find sets Mind N. Then
M=/EM,; (that is not empty)s the set that contais the points of global minimum and Ki; (if that is

not empty) is subset contains nfiln(X )} or better solutions.

Note: The gettingM A & Y 2 NB  dnfainsNadPpsirts) sutidét then initiaM. That means the
findingx* is easier. The decreasingdfA & S&aLISOALF f €& AYLRNIIFIYG Ay F avYSi
because it is decreasing the number of computation.

Theorem 1.2(The lower estimate)et 8 | & & dzY' S (i @efinéd anddoEnHesfunctibrial over
X3Y then the lower estimateverX is

1(X) 2 [1(X(y)) + b(X(Y). Y) - S;pr(X, y)l for "yl Y. (1.1)

Proof:By adding the inequalities

LX) +b(xy)? 1(X)+b(xX(y),y) and - b(x,y)? - S)lgpb(X, y)
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over X, we get the estirate (1.2).
Remarks:

1. Forcasé I the éstimate (1.1) is

I(x)2 ir;(fJ(x)-supb(x) : OMOMQU
X

2. WhenX, X the estimate (1.1) is correct ové, becauseX*/ X In this case we can use the
better estimates:

I(x)Zin‘ J(X) - supb(x), I(x)lir)m(f J(X) - sqpb(x), I(x)Zian‘ J(X) - sqpb(x), OMPME D

When we found the se¥ for i ; the following estimate may be used

I(x)Zin‘ J(X) - supb(x), OMPMQE L
M

¢CKS LINR2F 2F O6MOMQUIT OMOMEDT OMDOMQED Aa&a alysS (KS

3. Dependence of the estimate (1.1pMmy may be used for its improving
I (X) 2 sugdinf J(X) - supb(X)], (1.1%
y X X

~ ~ ~ z Py z e 2 “/U
2 KSYy 6S dzaS (i K§1.19 aeidecrde thé grobléni 3um. It may be used for
X
Theorem 1.3AssumeX=X, X is point of a global mimum in the problem/;/uz supb ,
X

Then:

1) The points of global minimum in Problem 1 are contained in the set

70 70 L
M(y)={x:1+b¢l +b, yl Y}
Contains the same or better solutions.
2) The set

N(Y)={x:b-12 b-1, yi Y}
3) The set

70 70 P
P(y) ={x:1+b21+b, yl Y}

Contains the same or worse solutions.
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Hereisl = | (;6)
Proofof Theorem 1.3.

7! 70 7! 7!
1, 3. By subtracting the inequalit9 ¢ 6 from | + 62 | + b we getl 2 | over setP.
The statement 1, 2 follow from this.

7 70 7
2. By subtracting the inequalit¢ 2 b from | - 62 | - b and multiply this result byl,

we getl ¢ "over N. The theorem 1,3 is proofed.

Remark:

For proof of the theorems 1:1.3 the existence ok, X, X is notimportant, but correspondingnf and

supmust be existed.

Example 1.1.
Find minimum of functional
I:-e'XACosxz-zL, - @ <x<m, (1.2)
X“- 0.2x+1
Solution.Take
0.1
b(X) = ———.
() X2 - 0.2x+1

Then
J=l+bh=e"cos.
The minimum of thigis obvious:X = 0.
From theorem 1.1 we got the point of the global minimum is in set
M={xT (&) T (0)}
or

01
x?- 0.2x+1

2

The solution of this inequality is
nAQKN ®H @
LGQa y2i RAFFAOAA G (2 FAYR (KS LRAY

We get the lower estimate (theorem 1.2)

2T 3t 20l f

Y A
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J(0)- supb =-1- 0.101=- 1.101.

Valuel(0)=-1.100 . We sef{x)for x= 0 is very close to global minimum.

Example 1.2

Find minimum

0.1

| :-2—'
X°- 2x+10

+codApx- 4co2px, - @ <X<@o 1.3)

Solution; We take
b(X) =- coApx+4co2pX .
Then

J =] +b:2L, X =1.
X“- 2x+10

This solution is global minimum of Probléraver set
t I 9EY i 6EO0C I i6mMOY
or
- cosApx+4cos2px ¢ 3.
We transform this inequality in
8sif"xXX n  ®

We seeP=§: [x|<a }. ThereforeP=X*.That means (see Consequencexhl is point (and alone) of
global minimum of the functional (1.3)

Example 1.3
More full, we are demonstrating the new method on following simple functional.
Find the absolute minimum of the functional
I=2)¢+X-2x+1 on the setX*={x: |x|<a} . (1.4)

It is a simple example, which can be solved usingtkmelwn methods. For example, take the first
derivative, make it equal to zero. Solve an algebraic &der equation (it may not be a simple task) and
then analyze the points so found with respect to maximum and minimum.

We shall try to solve this exgite by the above method as it follows from algorithm 1.
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Let us introduce a seriegx). As follows from Theorem 1.1 we have the ddts

1) Take ;=2x.Then
J=l+p=2x"+x*+1, x=0, from b2 b we hae M,={x:x20}
As we see the domain which contain a global minimum have become less fim@g

2) Take ,=-x*+2x.Then
J=1+b,=2x"+1, x=0, from b2 b we hae M, ={x:0¢x¢2%}

hdzNJ AYGSNDEE O2yit Ay SeKnke If206Ff YAYAYdzy A

Q)¢

2y §

For given , we can use an estimation of the functional which follows from Theorem 1.2.

1(X)2 J(X) - supb,(x) =1- sup(- X* +2x) =1- 1=0,

where the point of supreme dfis X =1.
From theorem 1.3 we have the additional $ét
Y
M, ={x:3() ¢ I(xJ} or My={x:[{¢3.
As we see the seM =M, M, ={x:0¢ x ¢ 1}, The global minimum of this problem is in the
AYUiSNEMW® nX

3) Takeb, =2x*+2x- 0.5. ThenJ =1 + b, =2x"- x* - 0.5. From inflwe havex , = @.5.
4) Find for pointx; setM:
X =-05 M,={x:-05¢x¢1y,

X, =05 M,={x:05¢x¢0.5 .
The estimation givekx)x o y 3/8 .

We see that the diameter of the sbt=4M;decreases until reduces in the poikt=0.5. Therefore
this point is one of the absolute minimum of the Problem 1 Hfdb) = 3/8 .

5°. The geometric illustration of Theorem 1i4 given in fig, 1for single variable. The curvis), J(x),
i 6EO0 X L arid panrXdpe draven EThere are the setd, N, P. s setx, where

b(x) ¢ b(X),Mis setX\PandNis setx, where J(x) + 0.56(x) ¢ J(X) + 0.56(X) .
We can see thallE M.

In fig.1.2 we see setd, N, Pfor the case wheih(x;,%,) is function of twovariablesx; andx..
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Aﬁ@wﬂ

Fig. 1. Fig. 2.

Fig.1.1 Geometric illustration of Theorem 1.1 for case of single variable.
Fig.1.2 SetaM, N, Pfor case of two variable.

2. About Convergence of Algorithm 1.

*

X

o

Consider codition of convergencénf J(x), xI X to infJ(x), xi X’ and X t
» X8

for Algorithm 1. when we have the successigm),IT M3 H I X CKAA &adz00Saarzy 3AAL
setsM;, N and values of functionald (X ) .

The successiofinf J(X)}

Fori- oAd Y2y2G2y2dza RSONBIFAAY3 YR 02dzyRSR 27
one of lower estimates, thafl (X) =1 (X') .

(@]
N
[«
(enh
N

Let us to consider now convergence of diametévl), d(N)of setsM=4M;, N=4N;fori- o.

This cawvergence is also monotonous decreasing and bounded of botiogn: 1@ ¢ KSNBEF2 NB A {
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We have got the following simply criterian of convergence
Theorem 1.4Assume, the point of the absolute minimum of functional I(x) over set X=X* is single.
Ifd(M)- 0, thanx=limM(i)=x*,1 =.

In this case the sebntained of point of global minimurvl=48M; decrease in point. Therefore this
point is the point of the absolute minimum of Problem 1.

Let us take succession of functidi(x), sl MZ H Z Xb (®) ag I 1 S
.
bi = a CSVVS(X) (15)
s=1
where ¢ is constants.

We will take these constantg from condition

D, =min{1 (%) - inf J,(x) +suph, (X)].

¢CKS @IftdzS kL Aad RAFFSNBYOS TFdzyOlAz2ylf FTNRY AGA f2
value [(X) RAFFSNE FTNRBY 2LJiAY doesimateXlelygéstifate. it is bavioug izt 6 S NJ &k

successio® kis monotonous decreasf because every next sum (1.5) contains previous sum. It is also
limited of bottom g n 0 ® ¢ KSNB T 2 NFkcoiivkr§e. 4 dz00SaaArzy

From destinatiork; we get the following

Theorem 1.5L F- &k Thanir)1(f J(X) - |Qf I(X).

w =

Theorem1.6Assume I' - =€ 6IE0 S LOEOS 1 0EVU A& O2yiAydz2dza | yR |
Then, if ¢ 0 we have J(x) m=inf I(x) over X*.
Statement of Theorem 1.6 follows from continual(g).

This theorem may be useful for finding of the local minimunt()foy way ofmethods of successive
approximations. Assumg=1 and problem inj(x)can decided simply. Because functiod@&)is
continuous, we can wait, that small change of ¢ give small changing (méing)

ThereforeX is good the initial approximation foc,<¢;. It is known, that a good initial approximation is
very important for speed of convergence. We cometdy decreasingto 0.

These criterions of convergence may be used for solutions Prob|énCD (see §1).
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3. Modification of the Theorem 1.1

Over we have considered the case, when we are looking for the additional fuXighsuch us the
problem 2 became simpler for solution.

But sometimes it's more comfatable to take such functibay) that the problem inxf J(x,y) became

easy for solution.

In this case Theorem 1.1. better to write as following
Theorem 1.1'AssumeX ™t X, x(y) is the point of global minimum in Problem 2 .
J=inf J(xy)
X

Then

1) The points of global minimum in Problem 1 are contained in the set
M(y)={x: J-123J-1, yi Y}

2) The set
N(y) ={x: J+1 ¢ J+I, yiY}

Contains the better or same solutions.

3) The set

P(y)={x: J-1¢J-1, yiVY}

Contains wors or same solutions.

This Theorem is correctdE kJ, wherek = const>0.

4. Method of big steps in set of better solutions. Algorithm?2.

From the Theorem 1.1 we can get the following
Algorithm 2(Method of big steps in set of better solutions)

Takeany pointx; from X* and such functiord(x) that pointx, is its minimum. Find the s&; of better
solutions. Take from this set a poitand such functioih(x) that x; is its minimum. Find the sé&,and
So on.
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It is obvious thatN, E N, E N, E ... . Let us suppose that result of this process is followiset N,
become pointxy .

Theorem 1.7Assume X* is open set,)i(¥(X) are continuously and differential (of Freshe) on X*.
Then point ¥ is a stationary point of the function I(x) owét.
Proof n Appendix 4of Chapterl.

Theorem 1.81f in point x, we have

b(xy) = 1(x) =sup[b(x)- 1 (x)],

Then x is point of global minimum of Problem 1.
Proofis in Appendix of Chapter 1.

If conditions of Theorem 1.8 is executed only in small sphere around xdimen xy is point of local
minimum of Problem 1.

The example for illustration of this method (for tests of constrained minimum) will be given in § 4
(remark 4.3.

We can get the direction in the sbt if we calcule a gradient of function

The advantegies this method with comparison of gradient method is big steps. When you ar8l,in set
you have not a danger of to get worthier solution than given onés @an substentionaly decrease
amount of calculation.

5. Method of b-function for Problems with constrains

A) Assumé(x) is function by its lower estimate over sétThe subsex*, A is separated fronX by
functions

F()=0 i=12..k F,(X)¢0, j=12..q, (1.6)

wherex - is n-dimentional vector of numerical values.

Takeb-function as following (we have a sum for lower ind@x
b(xy) =1,(x Y)F(X) +w (X, Y)F ;(x),
where/i(x,y), F ;(x,y) are functions ok,y, ¥ Y, w;(x,y)2 0.

Write Jfunction
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J%Y) =1(X) +/,(X, Y)FE(X) +w, (X, Y)F ;(X) . (1.8)
Theorem 1.9Assume exist ¥*X*, y is fixed.

In other X to be a point of global minimum of function I(x) over X* necessary and enough to exist of
function b(x,y) such as

1)J(x,y)=iXIn£J(x,y), 2% X', Jw(xy)20 over X, 4)b(Xy)=0, (1.9)

Theproof in Appendix &of Chapter 1.

Theorem 1.10. (The lower estimation)
Assume y is fixed is point of minimum (1.8) for conditions/ (x,y) 2 0.
Then J(X,y) is lower estimation of function I(x) of. X

Proof:On setX* we have/,F, * 0, wF ¢0 (thatis b(X,y) ¢ 0). Since ovek we have
J(X,y) ¢ I (X). Theorem is proved.

Likely a common case fér- function we can get the sets

M={x:b2 b}, N={x:J+I¢F+i}, P={x:b¢ b}

and in this case.

Freedm in choice off we can use for improvement of estimation and decrease sizes olvkdts
Remark only thaiX = X(y) and for everyy corresponding X you must find inf(x,y), xI X

Remark:

We can takeb-function (1.7 in form
k
b()=Zah F(+aa .
2 iz j=1

It is possible to show for some condition$(x)] ~;(x), F(X) are continuousxis compact setx* is close
set and don't contain separated points;/ X* and exist], whera- o, we haveJ- m, X=X .

B) Assura F(x) = 0 in (1.6) absent, i.e. the Problem is

[(X)=min, F (x)¢0, j=12..,q
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For solution of this problem we can use followadgorithm:

1. Take any functiong/(x,y) (it's may be less zero) and find the poi{ty) of global minimum (one may
be implicit form x(X, y) =0 ) of general numerical function

J=I(x)+aw(xy)F,(x) on X. (1.12)

2. Solve equations
x(X,y)=0, w(X,y)F;(X)=0, j=12..,9 (1.13)
3. Select from these solutions such which satisfy inequalities
w(X,y)20, j=12..4. (1.14)

These are points of global minimum of Problem (1.11) because all request the theorem 1.4 is satisfy.

We can solve (1.13) by different ways. For example, fifichm equation x(X, y) =0 and substitute in
the lastequations (1.13)

w, (X(y), Y)F ;(X(y)) =0, j=12...,q (1.15)

Findy from this system of equations. Select from these solutions such which satisfy inequalities
w,(X(y),¥)2 0, j=12...,q, (1.16)

or we can findy from x(X,y) =0 and substitute in tle last equations (1.13) and firx.

6. Application the method o - functions to linear programming.

The Problem of Linear Programming is

Qs

11,
Uy

Gx =mn, &a,X -b ¢0, k=12..m (1.17)
j=1

Herec, a,, b, are constant.

Takew, =y,. Then equation (1.13) are
Y (& a,x -b)=0, k=12,..,m (1.18)
j=1

c+day =0, i=12..n (1.19)
j=1
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Selective from (1.18)equations(l ¢ n, | ¢ m, | = max)andl variablesx such that determinant
2

, 0. FindX, from thesel linear equations (1.18) (correspondgg 0).

If this solution don't satisfy inequalities (1.17), we take¢her equations and repeat this procedure
(process) while we fin&; which saticfy (1.17). If thesejeations absent, we takie-1 equations (1.18)

and repeat process, thdn 2 equations and so on, while we det 0.

If solution, which satisfy (1.17), absent that inequality (1.17) is conflicting (incompatible) and cannot be
solved.

Assume that byising this procedure we find the solutiof) , that satisfy (1.17). Take in (1.19)gll
which don't belong the taken questions (1.18), equal zero andyfinom equation (1.19). If alf; 2 0
then X; is point of minimum of problem (1.17). If part ¢f <0, then we change corresponded
equations (1.18) by other and repeat this process while geyal 0.

We can suppose that this process makesyaf 0. Inequalityy, 2 0 means that antgradient has

direction into internal of the corresponding constraints. Because our problem and constrains are linear,
anti-gradient, which has direction into constrains, will has this direction ynpamnt of corresponding
hyper plate (1.17). It means that this procedure will increase the amount 8f0.

Example 1.4.
Find minimum of Problem
l=x+X, -%¢0, -x¢0 x-1¢0, X -1¢0. (1.20)
The equations (1.18),(1.19) are

- Y% =0, y;(x-1)=0, 1-y+y, -0,

1.21
_y2X2=O’ y4(X2'1)=01 1- y2+y4:0' ( )

Chose equations, - 1=0, x,- 1=0. From solution of them we have =1, X, =1. They satisfy

(1.20). From the first column of (1.21) we get y, = 0, and from the last column (1.21) we fipd-y,=
-1. Inequalityy;2 0 isnot satisfied. Change equalities by othets=0, X, =0. We gety, =y, =1>0.
HenceXx =X, =0 is point of the global minimum.

Example 1.5.
Find point of global minimum in Problem
Il =-%X-X, X+Xx, ¢0.

Solution Write equations (1.18),(1.19)
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Yy +%)=0, -1+y,
From x, + x, =0 we get X, =- X,. From-1+y= 0 we gety= 1 > 0. Sence ar¥ = - X, is optimal.
7. Application of methodb-function to quadratic programming.

Thisproblem is following:

I =§£cﬂ>§xj, aax-hb¢0, k=12..m. (1.22)
1

j=li=

Assume that quadratic form in function (1.22) is positive. If don't consider constraints in (1.22), it is
obvious the point of minimum in this problem 1§ =0. If this point sitisfy inequalities in (1.22), the

process of solution is finished. In particular, we have this case whby? &l We consider not triviality
case. Takev, =y, . Equations (1.13) and (1.14) are:

yk(g a,X -b)=0 i,k=12..,n é{cu.xj +a ya, =0, vy, =0. (1.23)
= j= =

=1
Later pocedure is analogous of the Linear Programming.
Example 1.6.
Problem are:
| =052 +05x, - X - X +1¢0, x-1¢0, Xx,-1¢0. (1.24)
The equations (1.23)

yl(-Xz'X1+1)=0, yz(xl'l)zov yz(xz'l):o

1.25
- Y, +Y,=0, X% -y +Yy,=0 (1.25)

Take the 2nd and 3rd equations. We gek =X, =1. The inequalitie (1.24) are satisfied, but from two
the last equations (1.25) for = O we havey, =y, =- 1. It is contrary the requesy, 2 0.

Take the ist equation in (1.25). We hawe =1- X, . Solve it together with equatian
X-Y,=0, X,-y =0wegetx =Xx,=1/2, y, =Yy, =1/2>0. Hencex=x=1/2 is point of global
minimum.

Appendix to #1. Proof of Theorems

1°. Proof of Theorem 1.1Proof of:

Statement 3By subtracting the inequalitp(x, y) ¢ b(X(y), y) from
[(X)+ 6(xy)2 1(X(y)+ b6(X(y),y) we getl(x)2 I(X) over P.Statement 3 of the Theorem 1.1 s
proved.
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Statement 1of the Theorem 1.1 is obvious becadéeM+Pand | (x) 2 1(X) over P, we have

X | M. Statement 1 of Theorem 1.1 is proved.
Statement 2 By sulracting the inequalityJ2 J from J+1¢J+1 wegetl(X)¢I(X) over N.

Theorem 1.1 is proved.

2°. Proofof Theorem 1.2By adding the inequality

[ (X)+ b(XY)2 1(X(y)) + b(X(y),y) and - b(Xx,y)2 - supb(x,y) overX we get the estimate (1.2).

3°. Proof of Theoem 1.3 Statements 1, 3By subtracting the inequality ¢ E from | + b2 E+ E we

get | 2 Fover setP. Statement 1 follow from this.

Statement 2. By subtracting the inequaliby? K from b- 12 & Eand multiply this result byl, we
get 1 ¢ Fover N, The theorem 1.3 is proved.

4°. Proof of Theorem 1.7 Assumex,, is point of the minimum of the objective functialx).Therefore

Ji(xy) =0 because]X) is continuously and differentiak, is single poini\; on setX* since this is (see
Theorem 1.1")

L) +3() 2 1(xy) +I(%y) -

This means that), (x,) = ian [1(x) +J(X)] . The functiori(x), Xx) are continuously and differentialehce

(%) +Ji(x,) =0. But Ji(x,) =0, therefore I i(x,) =0. Theorem 1.7 is proved.

5°. Proof of Theorem 1.8y subtracting the inequality 2 b, from b-1¢ b, - 1, we getl 2 |, over
set X*. The Theorem 1.8 is proved.

6°. Proof of Theorem 1.9.
SufficiencyFrom "1)" of (1.9) we have
| +/,F +wF 21 +/F+WF,.
From this and "4)" (1.9) we get +/ F +wF 2 I . Look it inequality over X*. On X* we have

/,F. =0, wF,¢0 hencel(x)2 I(X). Becausexi X' henceX is the point of global minimum d¢x)
on X~

Necessity (Method of designing). Assume thatf | X exists. Designb (x,y) following way. Take
/.10 on X and take functions/;, w; 2 0 such us J(x)>m on set X\X. Then we have as

the result of our design
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S
I
o

J(x*)=ixin£§J(x), X1 X, w20,

The theorem 1.9 is proved.

§2. Method of combining of the extremes.
Let us to have the problems:
Problem 1 [(xX)=inf 1(x), xI X";
Problem 2 J(X)=inf[ 1(X)+b(X)], xI X;
Problem 3 b8 =supb(x), xi X.
Assume that all points, X, ¥ are exist.

Theorem 2.1Let X=X*, then for every cougl®, £) which satisfy the conditio®, = X we have
X=k=x.
Proof. LetX, = X Then
inf J(X) - supb(x) =JI(X)- b(X)=1(X)- b(X)- b(X)=1(X).

But with other side from Theorem 1.2 we hamé J(x) - supb(x) ¢inf | . Thatis I (X) ¢ 1(X) . Asx
is point of global minimum an#=X*hence must be onlyf(x) =1(X) . As far ax and x exist we can
find the point of minimumx’ such thatx =x . Theorem 2.1 is proved.

Theorem 2.2Let X=X*.If exist at least one of the coufig X) such thatx, = X, then in every poink’
we have

)X =% 2)x =X.

Proof 1. Assume the contst: X , x . Than summarizé(X) =1(x) and b(X)<b(X) = b(¥X)
we get J(x') < J(X) . This contrastsl(x) =inf J(x).

2.AddJI(X)=J(X) and b(X)=b(X)=b(k) we getI(x)=J(x), hencex =X . Theorem
2.2 is proved.

From Thorems 2.1, 2.2 we have

Consequence:
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If we want to find all points of minimum of Problem 1 it necessary and sufficiently to find all
corresponding coupléx, ).

We shall call the Problems 1 an@@uivalentsf all correspadent points of minimum of these
Problems are coincided.

From Theorem 2.2 we have:

1. For equivalence of Problems 1, 2 is sufficient to exist one couple suck thag.
2. Let exist-functional and although one of coupl&,, X) such thatx, = X.

Then any points of minimum of Problem 2 and point of maximum of Problem 3 is point of minimum of
Problem 1, and back, any point of minimum of Problem 1 is point of minimum of Problem 2 and point of
minimum ofProblem 3.

Remarks:

1.1f b(X) =0, then inf J(X)=inf 1(X).

2. If X = %, then the lower estimate (1.1) in §1 coincide with infinum of the functidgl
From consequence 1 82 we have the following

Algorithm 3.(Method of combining the extrens}

Let us take some bounded functiowgk,y) where y is an element of the set Y. We solve this problem
infl 1(x)+ b(x,y)], xI X

and find the point of minimum

% =%(y).
From
supb(x,y)
we find
X, = %,(Y)
After thiswe equate
%,(y) = %,(y) (2.1)

and from this equation of the combination of extreme we find the roots y
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These roots are the points of minimum for Problem 1:
X=X(¥) =%(¥)

Since the Problem of finding of minimum is reduce®toblem of finding at least one root of equation
of the combination of extremes (2.1).

The exist and difficulty of finding of roots dipend from chous#g-ainctional, from freedom of its
deformation, which give they" relation.

Note that is differ fom the regular method of finding of minimum. In the usual method we take
partial derivatives, equal its zero, get the set equation and from them we find only the stationary
(extreme) points. They may be points local minimum, maximum, or inflectiorni8ynethod we find
points of global minimum.

Thus we find the connect two various (different) problems.

The existence of solution in equation of the combination of extremes is sufficient condition for the
existence of absolute minimum of functionalPnoblem 1.

The mathematic has good achievements in the field of existence of solution of equations. And equation
(2.1) give connection between these problems and give some opportunity in solving of optimals
problems.

Note also that equation (2.1) not geests that functional was continuous and differential function,
hence it has wider domain for application.

If point of minimum cannot be get in explicit form than we can write this equation in form
/.(xy)=0, j,(xy)=0, (2.1)
where functiony 4, / , are got from

inf J(x,y), supb(x.y).
X

Example 2.1Find a point of minimum of functional
| =2x* +x*- 2x+1, - @ <x<g@m
Solution Use algorithm 3. Take
b =-yxX +2x.
Than

J=1+b=2x"+(1- y)xX* +1.
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Denotex’=w and substute in &
J=2w +(1- Y)W +1.

Find point of minimum this functional
Jj=4w+(@1- y)=0, W=% =

and point of maximum functiona:
b(X)=-yxX +2x, bj=-2yx+2=0, %, =1/y.

Equatex, to X,

g2

1
X —

y? Y-y - A=(y- 2y +y+D)

1
=x> Z(v-1D=
FACAR
. . _ U R |
This equation has only alone ro@t= 2. Sincex = ; = >

83. Remark aboug-functional

A) Let us take
b(x) =[9(x) - Q1 (x) (31)

then
J(X)=1(X)g(X) .

This form of common functional is sometimes more comfortable because we can chouse the
multiplier to I(x) which makeXx) simpler.

Using our results aboutfunctional for this case we get following:

If X=X*and we firding the point of global minimum Problem 2:
inf 309 =inf [1(9g(x] (3.2)
than

1) Set
M={x:J-12J3-1, xi X}

contains the point of global minimum of Problem 1;

2) Set



28

N={x: g+l ¢ig+l, xi X}
contains the better or same solutiotisan X (that is overN, we havel (x) ¢ 1 (X));
3) Set
P={x:J-1¢J-1, xI X}

contains the worse or same solutions tha&rfthat is overP, we havel (x) 2 1(X) ).

All these statement follow frond3.1) and Theorem 1.1.
Lower estimate (from Theorem 1.3 and (3.1) look as

192 inf J- sup(d- 1). (3.3)

Condition of equivalence of Problem 1 and 2 (theorem 2.1) in this ¢a3&)(is:
x and ¥, which are founded from problems

inf J(x) and sugJ(x) =1(x)],

must equal respectively.

Algorthm 3(Method of combining the extreméss used for this case without change.

B) However for this case we get some new results.
Let ddine functionalgx,y), 0 over set@ Y. We call it agtfunctional Take functional
J(xy) =1(X)g(x.y)
Theorem 3.1.
Assume X=X*is point of global minimum of Problem
inf J(x), xI X, where J=1(X)g(x),
Then:

1) Set
P={x: 0<gt¢ g}
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contains worth or same solutions of Problem 1 (thdt(i§ 2 | (X) over P);
2) Set
N={x: 0>g2 g

contains better or same solution of Problem 1 (thalt(i) ¢ 1 (X) over N);

3) The point of global minimum is in 9ét = X \ 6, where IO:‘:{XZ 0<g<g}.

Proof 1. From inequalitieslg? Ig, O<g¢g wehave 12 1g/g, g/g?1.Thatisl 2.

2. From inequalitiedg2? 1g, 0>g2 gwegetl ¢ig/g, gl/g¢l. Thatisl ¢1.

3. Becaus Xx=M+Pand M ﬁEFO’ , 0, we haveM =X - IO?’ Theorem is proved.

Theorem 3.2Assumesupg > 0. Then we have the lower estimation
X

J
supb

on X.

1(x) =

If supg(x,y)>0 for "yl Y,wehave the lower estimate
X

(3.4)

Proof: 1) For written conditions fromg2 Igwe gotl 2 J/g and 12 J/supg.
X

Take this estimate by, we get expression (3.4)'.

Example 3.1Find the lower estimate for functioha
| =(x*- cosx+1)e*¥ - no<x<no,
Take

g=e v,

(3.4)
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Then
J=x*- cosx+1.
Is it obvious the point of minimum this functional
X=0, g=1>0, sxupgzl.

Use the estimate (3.4) we gé{(x) 2 0. But forx= 0 we have(0) = 0. That way = 0 is point of global
minimum.

84. Applicationb - function to the multi-variables nonlinear problems of
constrained optimization and to problems described by regular differential
equations.

A) The first problem is following. Find minimurhfanctional
I=H(x) , (4.1)

Wherex-n-dimensional vector, which satisfy independent equations
f,(x)=0, i=12..m¢n. (4.2)

Functiond(x) is defended in the open domamdimensional vector of spacé The admissible se¢
separate fran Xby equations (4.2).

Let us take some functional(x), such that to find

infl f,(x)=b6(x)] on X"

It is easier to solve.

Then from solution of Problem 2 in accordance with thorems of §1 we get the following information
about Problem 1:

1) The pointof global minimum is in sem ={x: b(x)2 b(X)};
2) The setN ={x: 2f,+ b ¢ 2f, + b} contains better ans same solutions (that is
f,(x) ¢ f,(X) on N);
3) The setP={x: b(x) ¢ b(X)} contains worth and same solutions (thatfg(x) 2 f,(X) onP;
4) If X=X1 P, that X is point of global minimum of problem 1 (consequence 3 of §1).

Let us assume we widen the sét for simplification of solution. For example, we rejecte the part of
constrains (4.2). Then we have

5) If X" &M =A | than J(X) is lower estimatiorfy(X) onX* (consequence 5, §1).
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It is more comfortable some times to take the suitable J(x) at first and find the point minimum of
problem infJx) onX*.
Then the corresponding sets will be (frohebrem 1.1")

M={x:J-12J-1}, N={x: J+1¢J+I}, P={x:J-1¢J-1}.
If we solve the problemb(5 =supb(x) on X E X* we get the additional lower estimate

fo(x) 2 fo(X) + b(X) - b(H,

(theorem 1.3) and set

M={x: f,+b¢ E+8, N={x: b- f,2 b~ B}, P={x: f,+b2 £+ 5.
(theorem 1.4).

Take serie® we can get the solution of one from Problems of 81 or to facilitate thesolution of
Problem 1.

The example for cas€*=Xwas over (see Examples 4.13). Explain by simple exarepl(how you can
apply the method-functional for case, whel* | Xthat is problem with constrains.

Example 4.1Find minimum of functional
l=x on X*+y*-1=0.
Take any admissible point, for exampie =1, y,=0 and J(x) functional as
‘]1 = (X' X0)2 :

The point of minimum of this functional is obviods= x,. The setM, containing the point of global
minimum, is

J-123-1, that is (x-1-x2-1 or [x-3/223/2

The boundaries of this inequality together with admissible subset (circle) draw on digV¥e8see the
point of absolute minimum is in left half of circle.

Take now the admissible poi, =-1, y =0 andJfunctional in more common case as
J,=c(x- x,)°, ¢>0.
ThenM set is

cxX +2cx+c- x2 1.
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Take ¢ = 0.5. Then we de}? 1 (fig. 1.3b).

SetM contain only two admissible poink;=1 andx,=-1. But pointx;=1 from theJ, cannot be the
point of absolute minimum. Since the point of global minimunxs-1, y=0.

[
=

Fig. 1.3

Example 4.2 Find the point of global minimum of functional with constrain
| =x°- x+y?-2y+1 y- In(x° \/rl)=0.
TakeJfunctional
I=(x- %) +(y- v).
The setM is separated by inequality
J-123-1, or 2y(1-y,)? (2% - Dx+a,
where
a- X, - 2 +2y, - 2yZ.

Teke the admissible poink, =-1, y, =0. Then

M=7XxYy:y2 =x-= (Fig.1.4).

& 1. 14
} 2" 2y

From drawing we seB! is small domain and find the point of global minimum no difficult.
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=~ 5x-05

y=in [x +(x*-1)"5]

Fig. 1.4, Fig.1.5.

Example 4.3 Given functional and constrains is
| =2x+2y, Ihx=y*=y

Take

JI=(x- %) - (y- vo),
where couplex,, Yo is admissible point.

The seiNis separated with according Theorem 1.1 by inequalityl ¢ J +1 , that is

[x- (% - 0]+ [y + (% - D ¢ 2.
This is interior of the circle (fig.1.5).

Assume that a center of this circle is located in the péirthe selN intersect with admissible curve In
x=y*-y. If we take a poinko, yo from this intersection, we will descent along this cemwhole the seN
become by point. This take place in poBywhere the tangent to admissible curve has the ang®
(because the center of the circle is located from paigy, from -1, -1, that is the angle +45(fig. 1.5).
Any moving from thigoint will return us to it.

May be shown that the poirBis the point of global minimum.

Take into consideration when we have used the methodg-inctional (Chapter 1) we have not used
in continuously and differ of functional (4.1) and constas¢i®2) unlike from known methods (for
example, theory of extreme functions).

B) Consider how we can apply the methods given in §1 to optimization problems are described by
regular differential equations. Below we write the statement of problem, whichweaely use in future.

Assume that the moving of object is described by set of independent differential equations
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#=f(t,xu), i=12..,n, ti T=[tt,], (4.3)

wherex(t) isn - dimensional continually pieedifferential vectorfunction of the phase coordinates,
xi G(t); u(t) isn - dimensional function which continuous drexcept the limited number of point where
it can have discontinuities of thest form,ul Uis an independed variable. Boundary valtigs, is

given,x(t)l Gtz), x(t2)l G(tz).

The aim funcon is
| =F(x,%) +if fot,xu)dt, x=x(), X=X(t,). (4.4)

FunctionsF(x,, %), fit,x,u),i I n D ar&cdrfinuous ovel G U. Set of continuous, almost

everywhere differentiable functiongt)i G(t) we denoteD. Set of piesontinuous functionx(t)i U, we
denoteV. Set of couple(t), u(t) which satisfy these requirements and almost everywhere comply with
equations (4.3) we shall callimissibleand denoteQ, QE DB V.

Consider the problems:
Find the coiplas*(t), x*(t)i D, which give the minimum of function (4.@raditional statement).

Find supsetN E G LB Tsuch that any admissible curve frddwe havel(X) ¢ ¢, wherecis constant.
Find the lower estimate dfx) overQ.

Take the functiorﬁfb(t, x,u)dt, whereb (t,x,u) is a definite and continuous fation onT? G U.

Theorem 4.1Let us assume that and Problem 2 is solved. That means

J(X,0) =inf J(x,u) on Q,

where

J =il fo(t, x.u) + b(t, x, u)ldt.
Then:
1) Set

N={t,xu: 2f,+ b ¢ 2f,+ b, ti T}
contains the same or better solutions of Problem 1.

Set
P={t,x,u: b¢ b, ti T}
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contains the same or worse solutions of Problem 1.

Proof 1. On set Q from N we have

rff(z f, + b)dt¢ rflf(Zf_o +b)dt.

Subtract from this inequality following

d(f, + b)dt2 F(f, + b)dt,

we get overQfrom N

2. By analogy with above, subtract from inequality

,ﬁ;bdttt rffEdt

the inequality (4.5) we get over Q frobh

if fodt? i fodt.

The Theorem 4.1 is proved.

SetsN, Pnot empty. They contain at least one curve from Q. This curstis G(t) [ Q.

If we solve the additional problem

supji bdt,
Q

we get additional information about setd Pand lower estimate. It is following

Theorem 4.2 Let usassume F 0 and solved the Problem
supigb(t, x,u)dt on Q.

Then

1) Set

N={t,xu: b- f,2 &~ £, ti T}

(4.5)
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contains the same or better solutions:

2) Set o
P={t,xu: f,+b¢ F+& ti T}

contains the same or worse solutions.

Here \%= fo(t,ELB, £t), (i) is curve obxtreme

supib(t) on Q.
Proof 1. OveiQfrom Nwe have
&(b-fo)dt? (& E)dt
Subtract from this inequality the following
& bdte i Ait,
we get

& fdte f Fdt

g, g,
2. By analogy, subtrach! bdte fy Edtfrom

d(f, + bydtz F(F+ Bat
we get
& todt2 f Edt

The Theorem 4.2 is proved.

Theorem 4.3(Lower estimation).
Assume F 0, the ends of x(t) are fixef(t,x,u) is defined and bounded oF &T.

Then there is lower estimate of Problem 1:

L(x,u)2 [ f,(t,X,0)+b(t,X,T) - b(t, E@]dt (4.6)
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Proof Subtractg bdt ¢ g supbdtfrom inequality

i (f,+b)dt2 §(f,+b)dt

we get (4.6). The theorem 4.3 is proved.

Consequence: LoupleX, U is curve of absolute minimum of Problem 1 ovetr e

Consequence: 2f set EET2 G U (or accessible) thaR, U (or % Uf) is curve of global minimum of
problem 1 oveQ.

Similar results we can get for case, when0 and ends ok(t) can move.

Example 4.4Assume theroblem is described by conditions:
| =g(x*+e’)dt, #=u, |u¢l x(0)=1 x(1)=0.
Use the theorem 4.1. Takb =- €™ . We get the problem
| =g xdt, #=u, u¢l x(0)=1 x@=0.
Its solutionisx=-t, U=-1 O0¢tcC1.
Findse> ¢ b. That is e€'2¢e?, u21l
But valueu <-1 is rot acceptable. Sinceis cover all admissible set poirttg,u. That wayX = -t

Is the curve of global minimum (see Consequence 2).

Example 4.5 Find of minimum in problem
| =g(X+05x)dt, #=u, [u¢L x(0)=1 x(2)=0.

We have here undifferentiated function integral. Known methods us variational calculation or
principle of maximum are not been used.

Change this problem following "good" (easy) problem:
| =0.5x%dt, #=u, [u[¢l x(0)=1 x(2)=0

and find
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supL.
x(t)

The solution is shown in Fig. 1.6.

x
1

2

Fig. 1.6. For Example 4.5.

By according the theorem 4.2
P={x: X2 [3).

that means seP cover all accessible domain. Since abtained, solution is curve of global minimum of
Problem 1.

5. Method of b- function in minimizing sequeces

A) The sequencex§ such that 1 (x,) - inf I (X) on the setX* is named as a minimizing sequence

(for Problem 1).
We must design these sequence in a successive approximation methods and in case, when
extreme isabsent in an allowable (admissible) subset.

Theorem 5.1Assumeb (x) ¢0 on X* andhereexist sequence ${ X* such, that

J(x)- infJ for s- & on X (5.1)

Then: 1)I(x,) - m=infI(x) on X%*;

2) Any sequendg}/ X, which satisfys.1)or 1 (X,) - ir)l(f J , minimize I(x) on X*, minimize
and J(x) on X.

Proof:1. Becausé (x) ¢ 0 on X*, we haveir;(f J¢I(x). That is ir)1<f J¢ IQf J. From &Ji X* and
(5.1) we have that
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|r>1(f J :nQ]f l. (5.2)

That isl(x;) - m.
2. From (5.1) and (5.2) we have thtiatement 2 of the theorem.

3. Froml(x,) - mand (5.2) we haved(x,) - infJ for s- =@ onX.Theorem is

proved.
Remark The requiremend (X) ¢ 0 onX* of the theorem 5.1 we can change by the requirement
supb¢0 on X* because from qub ¢ 0 onX* we haveb(x) ¢ 0 onX*.
X*

Theorem 5.2 Assume there exist the sequencg/{X* such that

J(xs)-nian(x) onX (orX*) and b(x)- supb onX (orX*) (5.3)

Then this sequence is minimized

Proof From I (X)) + b(X,) - inf J and b(x,)- supb we get that 1(x,)- inf J- supb.
Because
I(x.)2 inf J- supb and thereexist{x}i X* we havel(x)- m=inf J- supb.

Q.E.D.
Remark From(1.1) and (1.1") we see th&tand X* in (5.3) we can take in any combinations.

B) Let us consider a case now, when we have both a sequence of elergeatsi{a sequence of
functions { (X)}.

Theorem 5.31n order that a sequendex.} | X * minimize function I(x) on set X*. It is sufficient

that there exist a sequence of functiods(X)} such that
(1) &(x) ¢ 0 overx* for alli;

(2) There exist numberg, :ir>1(f J,, g=limg;

R)Ix)- qorlx)- qifs- o.
This theorem may bproved easy, becausg= infl over setx.

From theorems 2.1, 2.3 we have nstatement
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If there exist one sequence which satisfy theorem 2.3 then any other sequence which belong to set
X {Xs}i X and satisfy the conditiol(x) - q or JX)- g is minimize for Problem 1.

Appendix to Chapter 1.

. Operations with signsnf and sup
Below there shown the characteristics of sigmfsandsup, which can be useful for solution of

problems. The proof is simply and no given. We assume tleagtaswn constrains have place in
domain of definition of function.

1. inf[- f(X)]=- supf(x), sup[ f(X)]=-inf f(x).
2. infcf(x)=cinf f(x) if c=const>0;
inf cf(x)=-cinf f(x) if c=constO.
3. inf[c+ f(X)]=c+inf f(X),
1 1

4, inf ——=
f(X) supx)

if f(x), 0.
5. If X(t) can have breaks and (t, X(t)) has integrality then
|Xr(1tf) rﬁ fltx(t)]dt= rjfirlf f (t,x)dt.
6. Assumd(; ) is monotone functionf /|y is continuous. Then
inf f[/ (X)]= f[ir;(fj(x)] if uf /W >0,

inf f[/ (] = f[sup (X)] if W /W <O.
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Consequences

Functionsof singlevariable
a) inf f2"(x) =[inf f(X)]*", if f(x)2 0,
inf f2"(x) =[inf f(X)]*", if f2"'(x)>0,

inf f2"(x) =[supf (x)]*", if > *(x)<O.
b) inf f**(x)=[inf f(x)]*"",
c) inflog, f(x)=log,inf f(x), if a>1.
inf log, f(x) =log,supf(x), if O<a<Ll
d) infa'™ =a"™"™ if a>1.
infa™ =g ™ if O<a<l.
e) infsinf(x) =sininf f(x) in domain (-0.5p ¢ x ¢ 0.5p).
f) inf cosf (x) =cossupf(x) in domain (0¢ x¢p).
g) infatanf(x)=ataninf f(x).
h) inf tanf (x) =taninf f(x), if |f(x)<p/2|.
i) inf\/f(x) =./inf f(x).
df(x) _d
dt  dt
df(x) _d
dt  dt

i) il’tlf f(x)|f in domain fij(t) >0. Heref:argirEf f(t).

K) irt1f f(x)|t, in domain fii(t) <0. Here t =argsupf (t).
t

Estimates
A. Functionsof single variable
1. inf[ f,(x)+ f,(x)] 2 inf f(X)+inf f,(X).
2. inf[ f,(x) f,()]2 inf f(X)inf f,(x) if f(x)>0, f,(x)>0.
3, inf 1002 MRG0 1,00 >0,
fo(x)  supf,(x)
We gave abovein 1- 3 the sign = if X =X,.

4. inf i (€ x(®)dt? inf f (€t
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B. Functionof two variables
1. 1 inf[ f,(X) + f,(y)]=inf f(x)+inf f,(y).
X y

2. nf[ £, (12 inf ,09inf £,() if 0070, £,()? 0,

L f(x), inf f(x) )
3. |£1£ £ suph,(y)’ if f(x)20, f,(y)>0.

4.t 1(xy) T (x y) =inf 1 (x(y).y).

2. Exercises fop- and g- functions

Choosings - function, find quasbptimal solutions to precision 5%.

Indication:Find thelower estimate. Separate subset which contains points of global minimum and take
guasiOptimal solution from it.

Examples: Answers:

1 1=x*+x2+02x+1, M ={x:-02¢x¢0}, 1(0)=12 0.99.
2. 1 =x°+x*+02x+1, M ={x:-02¢x¢0}, 1(0)=12 0.99.

3 1=x+x*-02x+1, M ={x:0¢x¢0.2, 1(0)=12 0.99.

4.1 =x"+x*-02x+1, M ={x:0¢x¢0.2, 1(0)=12 0.99.

5 1=¢"+x*- 04x+1, M ={x: - 02¢x¢0, 1(0)=12 0.99.

6. 1 =" +2x2- x+3, M=4x:-05¢x¢@,|«»=3>2}§.

7.1 =x2- 4x+6- 0./e ™Y M, ={x: 0¢x¢ 2, 1(2)=2-0.1e%°219,

M, ={x:1¢x¢ 3.

8. | =x?- 4x+6- 0—'21, M={x:1¢x¢3, 1(2=2- L2490,
(x- 1)%+10 10
9. 1 =x- 2x45- — + M ={x:1¢x¢ 2} |(1)—4-i239
' X2 - 4x+14’ ' ’ 1

0.1
Xt +3x3+3x% +2’

10 | =x* +4x+6- M={x:-3¢x¢-1, 1(-2)=1.95219.

0.1 o 01,
Wl M—{X. 3¢X¢]}, |( 1)—2 e2+l 1.9.

11 | =x*+2x+3-
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0.2
12 1 =x-1+5- ——= M ={x=1, |(1)=4.982 4.98.
g s iy MeeD 10
0.1 0.1 0.1
13 1 =4/x2- 4x+8- ———=— M ={x:1¢x¢3, 1(2=2-—"22- ==
(x- )2 +5 { 3 10 6 5
14. 1 =%/x? - 4x+12- L, M={x:1¢x¢3, 1(2)=2- 0i1,, 01
VX2 - 2x+5 5 2
15 | =vx®+4x+8- 01 , M={x:-3¢x¢-T, 1(-2)=1.95219
Uxt +353 +3x2 +2
16. 1 =|x- x1|”+cl-+, d>0, ¢,>0, n>0, m>0,
X- x| +c,

d
M ={x: |- %|¢[x - %} 1(X)2c- o

2

17 1 :kJ|x- X1|“+01_W, d>0, ¢ >0 ¢,>0, n>0 m>0, k>0, k, >0,
T2 2

M ={x: |[x- %,|¢[x - %} 1(x)2 ¥c, - %/Cé_

0.1 0.1 0.1
18 | = -2 -——, M={x:0 , 1(0)=0-—2-——,
X(x- 2)| x-1 +10 {x:0¢x¢2, 1(0) 1 10
d
19 | =|x(x- @) - ————, d>0, ¢>0,
x- b +c

M, ={x: [x- b ¢|a- b}, M,={x: 0¢x¢ 2b}, IZ-%.

20. | :%+|x|. M ={x: x<0}, 1(0)=-12 -1. Indication b=-[x]. 1(0)=-12 -1,

21. 1 =% - 1.8x+1+% Answer M ={x: 08¢ x¢1, 1(1+0)=0.2- 02 0.1.

sinx "
€

1

— , Ansfer M =1x: 21010¢, 1(0)=1012101
10+Iglcos(| nster b [cosq 3 1o

22.1 =x*- 0.2x+101+
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23. 1 =x*+xé*+10. Ans M ={x:x¢0}, 1(0)=102 1o-4ie.

24.1=% +xin*x, x2 0. Ans M ={x:0<x¢1}, 1(0)=e?e.
X

25. 1 =x°+y°+2x%- 4xy+2y®>. Ans M= {xy:x=y}, 1(0,00=020 . I =
26. 1 =[{- €Y +x*- 2xy+y>. Ans M ={xy: x=y}, 1(0)=121

27.1 =|x+ly- ]””|Z+31+%+6.AnsM =(yzoe+y+ 22101 1):6+e_122 >
(S

28.Find the minimum from alhteger solutionsof function
(log, x- 5)(log, x- 5.1)
lg x '
Indication Take as the second member ihand consider the in the extended are@< x <a . We
find M :{x:32¢ X ¢ 34_3}. Calculate for x= 32, 33, 34 and select better.

| =(x- 32+

Find the lower estimation by using the; function.

29. . XZ(X_ 2)2

I . Ans 1(X)=0, x,=0, x,=2.
2- sinx (%) 2 %

30. | =(x- 2*@+Ig®x). Ans 1(X)20, X =e.
3L =(N+y)e*™ . Ans M={0,0}, 1(0,00=020.
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Chapter 2

Methods ofh ¢ functions. Estimtions.

81.h ¢ functions over arbitrary set.

A. The special case of-function ish -function. It is defined over set=Xx¥and has the following
properties:
1) There exist subs&E Zwith projectionKon X pr;K = X*.
2)a(x,y)=0 onK

Theorem 1.1 Assumed (X, Y) is & -function and exist the point of global minimuxai X"

Then the elemenK is point of the global mimum of object function I(x) over set X* if and only if
there exista (x, y) such that:

1) J(X,y) =inf[I(x)+a(x,y)] xyl Z;, 2%yl K.
Proof AsX,yi K, thena(X,y) =0 and

J(>"<,37)=igf[|(X)+5(X,Y)]=iQf[|(X)+a(X,Y)]=iQI 1(X) .
Q.E.D.

One may made vice versa. DefsetK, ={x,y:a(x,y)=0, xI X, vyl Y}.FindX, = pr,K,
. ThenX is the point of minimum(x)overX,, if X, )"/I' K, .
The special case @ -function ish -function defined oveZ and such that (x,y)= 0 overx* for all

yi Y.

The following theorem is important:

Theorem 1.2 Let us assume(x,y) = 0 over Xor all yi Y and there existx | X .

The elementX will be the pint of global minimum of objective function I(x) over X* if there exist
functionh (x,y) such that

1) J(X,y)=inf[I(X)+a(xy)] xyl zZ; 2)xi X . (1.1)

Proof Asxi X", thena(x,y) =0 and

J(x,y) =inf[1(x) +a(x, )l =inf[1 () +a(x, y)l =inf 1(x) .
Q.E.D.

If yis not consant, one can use it (the functioa (x, y) fromy) for gettingXi X" .
Theorem 1.3 & andh ¢ functions exist and their number is infinite.
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Theotem 1.4(Estimate). If in (1,1XxT X", we have a lower estimation of the objective function I(x)

on X:
J(X(y),y)¢1(x) for all vyiyY.

One can get this estimation from(x, y) =0 on setX for all yi Y andPrinciple of Extensioh[5],
becaug X 1 X.

1) The Principle of extension state: any extension of set, which you find on a minimum of functional,
can only decrease on a minimum of an objective function (can only decrease value of a minimum).

The de@endencel(x,yfrom y one may use for improving of estimation. In particular, one canftake
=h(x). Then from theorems 1.2, 1.3 one can get the following consequences:

Consequence Assume' (x)=0 onX and existx | X . ElementX is point of a minimum of the
objective functionl(x)on X* if and only if the exist (x) such, that

*

1) J(X) =inf[I(X)+a(xy)] xI X; 2yxi X" . OMDPMQU

Consequence.df Xi X', bt a then infJ=infl.
X

X3Y

As far ad -function is the particular casefunction consequently the theorem 1.1 of Chapter 1 is
right in this case.
Theorem 1.5AssumeX is point of global minimum of Problem 2:

J(X) =inf[I () +a(x)], xi X.
Then: 1) The points of global nrimum of Problend are in the set

M" =M AEX", where M ={x:a2 &} ;

2) SetN"=NAX", where N ={X: J+I¢J+ I_} , contain same or better solution

that is inN the object functionl (x) ¢ 1 (X) ;

3) SetP’P&EX’, where P ={x:a ¢ ET} contains same or worse solutions
(thatisI(x)2 I(X) inP).

The samewayfor this caseve can be formulatedhe Theorem 1.1
Since the seiX " is selected by equad (X) = 0 we get from Theorem 1.the consequences:
Consequence 3: If

Consequeer8: If a(x)>0, then X1 P.
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Consequeed: If a(X)<0, then X1 M.
Consequer&: If a(x)=0, then xi X .

From Theorems 1.21.4 and Consequence 1 we gdgorithm 4:
We take the bounded of below functional (objective function) defined on X* pfiimimal X = X(y)

of Problem 2inf (I +&), xI X or minimal in implicit formx(X, y) = 0. We solve together the
system equations (combining equationsheffunction): inf(1 +a), xIi X. Then valuex - root pf this
system is the absolute minimal of Problemaf(l +a), xi X .

I £ 32 NA($oKith6n by ah@ice df fanction).

We take the bounded of below functionaldefined onX(or X*V), Solve the Problem 2:
inf (I +a), xIi X .1f xi X", we get minimal of Problem 1, %l X', we get the estimation below

J(X) ¢ 1(X) of value of the objective functiot{x)on set X and we get the set™, N, P

Comments 1. If the admissiblset X allocates by functionaE(x) =0, you can find the" -
functional in forma =/, (X)Fi (X) (herei means sum), wheré, (x) are some function ox.

2. If the admissible set allocate by functiortal (x) ¢ 0, you can find' ¢ functional in form
a =w(x)F,()+[F, (4],

where m(x) are some function ok, or in form
a =w(xJF, (%),

where l/l/(X)2 0 and it is fulfilled the conditiorw(x)F | (X) 10on X",

3. Assume there is sonflecfunctional and elemenxi X such J(X) =inf[1(x) +a(x)], xi X.
Then any elemeni, | X" and is satisfying the condition
J(x)=inf[I(x)+a(x)], xi X. OMOME O
is point of the absolute mimum the functional(x) on X" and any point of the absolute minimum the

functionallx)on X &+ GA&aFe GKS O2yRAGAZY OMOMED P
This direct statement follows immediately from condition 1.

We proof the converse.iige the global minima)(li X" , it meansa(xl) =0, then
1) =inf 1(x) = 3(x) = I(®0) =inf[1 () +a ()] .

Q.E.D.
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Thus if it is exist one element which satisfy (1.1) then all rest minimal elements of Problem 1 must
satidy it.
| illustrate the idea off -functional the next sample.

Let us take some functidifx) definite on interval 4, b. Digital valuesni [a, b] are admissible for it.

We want find the minimum of this function. The addition membercfundional) do not changé(n)
in points n, but deformsf(x) in gaps betweem (see fig. 2.1).

Fig. 2.1.

Ifh ¢Fdzy OG A2y I fen )I,T\Pﬁ})][f@()}l-zﬂxﬁ & ‘iil[wfb]ii‘ ¢). If in additionX = n, then we get
the minimum of Problem 1.
Remark:There are different way® solveproblems by the -functional:

a) You can take the known functionfa$unctional.

b) You can take-functionalas unknown function and find it together with the point of minimum.

c) You can take-functional as functio® =h (x,y)whereh is known function buy = y(x)s unknown
function ofx. You must find it together with the point of minimum.

Let us considethe example. We take as example the rgood the functional which is difficult to solve
by conventional method.

Example 1.1Find the minimum of function

_ A +4px+ 4.1+ p? sim x- sin® x@osx + sin” x@os x

= in X" ={x=0. 'n=0,°1°2..1Y12
4 +px+1) +p? (sinx- cosx)(sir’ x+cos x) n Tt e 1 (12)

It is difficult to apply the known methods here because the functional finelé on digital set. The

current methods offer only the calculation of all X" . But number ofX " equals infinity and
calculation may be meaningless.
Let us to solve this example by the offered methdake" 6 i form

_ A 4+ 4.1+ p? a 0.5sin2x @osx
4%+ px+1) +p* (sinx- cosX)(sitx+cosSx)
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You can see thdt(x)= 0 in X" because fox=0.5n n=0,°1° 2,..., sin2x=sinpn=0.
Let us to create the general functional

_AX 4o+ 41+ p? C.:§in5 x- sin® x@osx +sin’ x@os x- 0.5sin2x @osx

J=l+a=
4% + px+1) + p? (sinx- cosx)(sir? x + cos X)

Here the variablecis uninterrupted andk ~ %xf Kk X a S

The additive" (x) allows to change théunctional (1.2) to simple form
_AC+Apx+41+p* o (sifx- co$X)(L- sinx@os)sinx  _4 01 +1c”) inx
AX* +px+1) +p? (sirf x- cos X)(sirf x- sinx@osx + cos x) ;?H (2x + p)? @S '
This general functional is simple. His minimum may be found the conventional method of theory the

function one variable. Her& =-"/2, XxI X" forn=1 1 =-1.025. Consequently, that is absolute
minimum (and sole) of initial functional (1.2).

We can apply an analogical method for finding of minimunx tre next functional

| =cog; +0.5c092xc0s - 2cosxcoy cosk+/)+0.5- 0.1e <X ={x=05pn:n=0,°1"° 2...}.
Here. is givenxis digital. Let us take = - 0.5sin2xsin2/ . After this we can change our functioral
=1+h tosimple form: J =-0.1e * +sin’x. The point of absolute minimum this task (Problem 2) is

X= 0. This point is in all@ble set X" for n =0. That meand1 =0 is point of the absolute minimum
od the initial Problem 1.

The reader can think: if the allowable numerical set is limited we can use the conventional L&jéange
method [7]. Let us show: that is not correct.

Example 1.2Findminimumof functional:
I =x*-3x+x on X ={x=0,x=3. (1.3)
Letustowritethe Lagl y3S5SQa Fdzy Ol A2y
F=x-3x"+2x+/x+/,(x- 3),
where/,,/,} NB [ I DN} y3SQa TIOU2NBR® CAYR GKS FTANRUG RS
Fi=3x"- 6x+2+/,+/, .
Substituteto herex= 0 x = 3 and write the equation§&i(0) =0, Fi(3)=0. We find from these
equaions /, , /,. Find the second deviatioR j =6x- 6. Whenx = 0 the functionFii(0) =- 6 <0.
Whenx = 3 the functionFii(3) =12> 0. Consequentlyk = 0 is the point of maximunx,= 3 is the point
of minimum. Let uskeeck up. Substitute =0 andx= 3 in (1.3). We fint{0) = 0J(3) =6 .
2SS 4SS GKS [FDNry3ISQa YSiK2R 3IAGSa GKS 2L aSR
maximum, but the point of maximum as the point of minimum. In here it is tddaae condition of

NA

NI

[ F DN} y3S$Qa YSGK2RY ¢KS ydzYoSNI 2F FRRAGA2Y I S| dz

aK2gayY (GKAa QA2flGA2y F2NJ[FDNry3ISQa YSIiK2R Aa

dzy’
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Let us to solve this example by the offered method. Take {lgin form
h =x(x-3)(2/3X) .
Then

J=l+a=x- 3% +2x+x(x- 3)(2/3- X), Ji=4/3x=0, x=0i X",Ji=4/3>0.

From Consequence 1 the poiRt= 0is absolute minimum of functional (1.3). That shows the method of
h ¢ functionalhasmblB | LILIX A OF GA2y GKSy GKS GKS [FDN)}YRSQa

Example 1.3Find minimum of integral
| = f{Intgt- 10°)dt on X ={a=10°pn:n=12,...,40Q (1.4)
-10°8

Here the interval of integration is discrete. The direct search is difficult because integral (1.4) cannot be
presented ly simple function and it not have of tabulations.

Let us to find' -functional in form: @ =- 10°sin10’a . You see onX  the functionh (x) = 0. Further

J=1+a-= %(Intgt- 10%)dt- 10°sinlC’a,

10°3
J.=Intga-10°-10°cosCa=0, X=p/4i X* for n=250, (1.5)
Ji=———+sinlCa
sin2a

As10°<x<0.4p, then Jj> 0 into this interval. That means the root isgle andin = 25C is point of
the absolute minimum.

Analogically we find the minimum of other integral which cannot be presented in simple functions
| =- fsin@®) +10°Jp]dt on X ={a=10°VJpn:n=0,1...15AQC} .(1.6)
0

Here isa =10°sinl0°®sinlCvpa; n=1000

Example 1.4 And the minimum of integral
- & .
1= 8% 20t on X ={a=10°n:n=0,°1°2,..}. (L.7)

plzg

Here the under integral function is discrete. The integral from this function cannot be presented as
elementary functions.

Let us take&? =10°sin"10’pa, J=1+a. Then
J,=1,+a, =g,(- sinat+40a)dt+ 240 psin2A0pa =

p

2 .3 4 iy (1.8)
=. as|nzrpacs|nza+2()oa+10 psin2AQ0 pa
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This derivative not exist foa =01 X".
For a20, Ji>0; for a<0O, Ji<0; (or Jji>0 for "a, 0).

Consequentlynn =0 is point of absolute minimum.

B) Consider the case when the point of optimuml X not exist, but exist the sequence such that
limI(x,) =m. This sequence is named the minimizing sequence (see 85 of Ch.1).

n- o

Similarly point A we can show that consequence 1 can be generalized in this case.
I 2y &Sl dzEef @)= @nly onx*, For minimizing sequendgx } E X' is necessary and

sufficient the existing of functiol(x) such that

lim[l (2,) +a()] =inf[1 ) +a(], xi X. (1.9)

The sufficiency of this consequence is same the lemri2] BndJ(x)=Lin [2].

We can generalize remark 3 of item 1 in this case: If Xistction and one sequencgx} E X

which satisfy (1.9), then the any sequer{og} E X" which satisfy (1.9) is the minimizing sequence.
Andon the contrary any the minimizing seuence satisfy the condition (1.9).

2. h ¢ function in Banach space.

Let us to apply Theorem 1.2 to optimal problem is described in Banach space by equation
dx
a: f(x,u), tetet,, xt)=x, X{t)=x, (1.10)

wherex, f(x,u)c element complete linear normed spa&gandX; respectively and
X, E X,, ti Ht,t,]=T is segment of real axis.
Let us name the permissible control the measurable limited functiore¢m {1], p.85)with value
ui U » WhereUis set in arbitrary topological space. In particular thelsetay be metric, closed and

limited. Let us assume that for any contugt)the equation (1.10) has single solutig¢t) with x(t)|' X,
for almost allt | [t,,t,] » Wherex(t) is continuousalmost everywherelifferentiable on function on

th[t,t,] -

Operatorf(x,u)is defined on the direct productxU One iscontinuous and bounded. Boundary
conditionsare givert,, t,, X() = %, x(k) = %.

State the problem Find the admissible control which transfers the system from given initial state in
given final state with function
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| = ﬁ f.(x y)dt 1)

has a minimum.

Let us the set athe measurable functions (t) isdenotedV: set of the continuousalmost
everywheredifferentiable on(t,,t,) the functionsx (t)is denotedD. Set of couple x(t), u(t) having named
over propertes and almost all satisfied the equation (1.10), we nah@issibleand denote Q. It is
obvious QE D3 V.

Assumey =y (t,X) is the some unequivocal continuous differentiinction defined orXxT. We
name it thecharacteristc function. We will find the? ¢ function in form

a= rffyx*[#- f (x,u)]dx (1.12)

_W

Herey , is particular deviation of Freshe. One is linear function. The * is sign of composition.

Obvious that equest ofh -function is performed.
Compose the generalized functidn= J # and produce the function# =y #+y ., we get

3=y [t X1 Y I X1+ [ (fo- v, - v ADAE=y -y, + Bt (1.13)

where B = f, - y, - y, Af . Because the s@is different fromthe setDxVonly that couplex(t), u(t)

satisfy almost every where (1.10). Poefunction in form (1.12) with according of Theorem 1.2 we can
the initial Problem 1 (find the minimum (1.11) @) replace the Problem @find minimum (1.13) on the
broader s¢ DxV In this set the(t), u(t)not bind the equation (1.10). So we have

J=y,-y,+ inf ﬁt‘z B(t, x,u)dt. (1.14)

x(t)i D,u(t)i v "t

Theorem 1.6. If functiorti (t) getting from solution of problem  jnf ﬁBdt ist(t)i v,
x()i D,u(t)iv 't

that it is same almost everywhere the function getting from solution the problemnf ﬁz Bdt and

x(t)i D, &
u(t)l v
inf [y Bdt=inf fjinfBdt (1.15)

x(®)i D,u(t)i v 't XDty yiv

Proof.Assume the contraryB(u’) , inf B(u) on subset of intervalf, t] with measure not equal
uiu

zero. In this caseB(u’) > B(U) i.e. ﬁth(u*)dt > ft"tf B(T)dton the subset. This contradt: the

function u* (t) made the minimum for integraﬁt2 Bdt,
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From requirement (1.14and Theorem 1.6 we have

=YV,-y.tinf n inf B(t,x,u)dt (1.16)

x() D 1 ui v

If function a[x(t),u(t)] is such that absolute minimum of Problem (1.16}{t), T(t)i Q, then
h faccording to Theorem 1.1 functiong(t),U(t) are absolute minimum of the initial Problem.

So, we proofed

Theorem 1.7. To couple function were the absolute minimum the functignit is sufficient the
existing the characteristic fun@n y (t,Xx) such that

D B(t,x,0) = lnf Bit,x,u): 2R n B(t,x,0)dt = inf n B(t,x,u)dt; 3) >(<:(t), at)i Q; (1.17)
x(t)i D

In particular, if takg/ = p(t) Ah, where p(t) is linear functionhi X, , then from item 1 and

stationary condition item 2 [1.17] we get

H (t, x,0) =supsupH (t,x,u) , B(X) =- % , (1.18)

where H = p(t) Af (x,u) - f,(x,u). AssumedpH /X is Frechet derivative, which is continuous.As

we see the necessary condition of Problem 2 following from (1.17) is same the necessary condition
of Pontriagin pincipe of maximum generalized in Banach spaces.

3. Design off -function for allowable subset of two function connected by logical conditions

Assume two functionB;(X) andFx(x) are refinished on the set Allowable are only pointd Xand
functionsF, and R which are connected the logical conditions. Assufifed ' n A &0 & & NazS ¢
Ad GaFltasQe ¢KS FTADS Y1]-~)\ V¥, B, B )Cate presOrdeyl iyf S i A 2 YV &
tables:

F F AT C,

t t t
t f f
f t f

0T .
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Double implication
F R Fyhk
t t f
t f t
f t t
f f f

disjunction in the exclusive sense

R R . R
t t t
t f t
f t t
f f f

disjunction in the sense of a non-exclusive

= [ F| R
t t t
t f f
f t f
f f t

Conjunction

Flp
t | f
folt

Denial
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We will use the ymbol:
signF =1 if F >0,

signF =0 if F =0,
signF=-1 if F <0,

In this case thé& -function we can search in form:

DX ={x:F(0)? F(¥}, a=(pF+p,FR)I |signFF,)[]
2) X' ={x:F(¥) YF(X}, a=pFF,+p,[1 |signF>+F)]],
3) X' ={x:F(X)UF,(x)}, a=pFF,,

4) X" ={x:F(X) @F,(X)}, a=pF+pF,,

5) X" ={x:F(X) ~ F,(x)}, a=(p[l- |signF ],

Herep, p, p. are some functiorx .

It is using these five connections we can create all other complex logic statements.

82. The general principle of reciprocity the optimization problems

Let ussupposewe want to solvethe optimal problemCh.1 84 p.4 :
I =f,(x), f(x)=0, i=12,..m, (2.1)
Design general function in form

J=a /N 2.2)
where<(x,y)arbitrary functions ok, y.
AssumeX(y) is absolute minimum (2.2) oX
The general principlef reciprocitythe optimization problems

1. For anyy| Y the point of an absolute minimum of the functidif2.2) is the point of the absolute
minimum any function

[,(xy)f;(¥), j=01..m (nosumfor j) : (2.3)
for limits in form

/. (%y)=/.(X(Y),y) f.(X(y)), i=0L...m, i, j, (nosumfori). (2.4)
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Any numbers of equality (2.4) you can change by-egualities
1i(xy) ¢ /i(X(y),y) fi(X(y) ) - (2.5)

2. For anyyl Y the point of the absolute minimum of the functial{2.2) is point of the absolute
minimum any sum the functions

a’;xyfx 6H D00V Q
j

for restrictions absent in sum (2.3)
[.(xy)=/,(X(y),y)f(X(y), i=01...m, i, j, (nosumfori). OH®N U Q
l'ye ydzYoSNBR 2F Sljdz f A (-equaitiesP26)Q &2dz Oy OKFy3aS o8

Proof.
1) For any function (2.3) for conditions (2tA¢ Theorem 1.2 is made. The poixfy) is point of its

absolute minimum. As every function reaches the global minimum, obvious, the change equality (2.4) by
restrictions (2.5) not influence to minimum. The point 2 is proofed similarigciple is proved.

Consequence 1.

Magnitude J(X(y),y) Ada GKS t26SN) SadAYldAazy 2F yé& TFTdzyOlaz2y
OHPNOZ OHD®NOQ OKFy3AS SldadtAGASa Ay TF2NY
/(Y () =0 26

Consequence 2In case corresponded (2.6) the absolute minimum of any functions (2.3) are located
in set

My () =AM () B9 2 &R/ (K). ) F(Y) @7)
Consequence.3f possible the solution of Problem (2.1) by Algorithm 4relerey such that
1{((X(¥),Y) f,(X(y) €0 (nosumfori) (2.8)

From the existenceof solutions(2.1)followsthat f,(X) =0. So /_IfI isminimum,than (2.8)is

obvious.

83. Applicatonsh -function to well-known Problemsof optimization

1. Problemthe searchingof conditionalextremethe functionof the limited numbervariables.
Itisgiven
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I =f,(x), f(x)=0, i=12..m<n (3.1)
Herexis n-dimensionalectorgivenin somenumericalopenregionof n-dimensionakpaceX .
Letustake the h-functionin form
a=pf(x, i=12..m (3.2)

(repeatedindexesmeanssummarization)Herepi(x)  arefunctionsx, givenon X

X' ={x:q | f()F0, X =X.

Letusto designgeneralizedunctional J(X) = f,(X) + a(x) take somep;(x) andsolethe problem
inf J(X), xI X.From this solutionthe Problem2, accordingTheorems§1, we canget the following

information about Problem1:

1)If XI X", than X isabsoluteminimumof Problem1l (consequencd, §1).

2)If xT X", then:
a) J(X) isthe lower estimationof functionf,(x)on X* (Theorem1.4).

b)Fora(X) >0 X islocatedinset P ={x:a(x) ¢ a(X)} (consequenc, §1).

c)Fora(x)<0 X islocatedinset M ={x:a(x)2 a(X)} (consequencd, §1).

d)SetN" = N £X where N ={x: 2f, +a ¢ 2f, + &} contansthe equalor worsesolutions
(Theoreml.5).

Aswe seeevenif XI X" our computationis useful. We receivedthe lower estimationand narrowthe
regionfor searchingof the optimal solution. Takerow of h; we cangetthe solutionone of the Problems
a, b, c,d or facilitate the solutionof Problema (seeCh,1, §1).

Lookyour attention: the offered method does not requirecontinuity and differentiabilityof the
functionsfy(x), f(x) in contrastto the classicainethod of Lagrangenultipliers. Themethod canbe
appliedto non analiticalfunction, for example to the functionsdefinishedon the discretsetand
extremalproblemsof the combinatoricyseeCh.10).

2. Application the Theorems 81 to optimal pblems described the conventional
differential equations.

Assume the moving of object is described by system of the differential equations

#=1f(t,xu), i=12..n, ti T=[t,t], (3.3)
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wherex(t) ¢n-dimensionalcontinuouspiecewisedifferentiable function, x  G(t); u(t) ¢ r-dimensionall
functionscontinuouseverywhereon T, exceptlimited numberof points where one canhave
discontinuityof the first kind u  U(t). Boundaryvaluesty, t, are given,x(ty), X(t;) R

Optimalfunction is

= FO0%)+  htxudt x=x@), % =x(b). (3.4)

FunctiongF(%,%), f(x,u,t), il n D ar&asrdinuousF(x,%)> Kk dSet of the continuouslmost
everywheredifferentiablefunctionsx(t) with x G(t)we designateD. St of the piecewise continuous
(they can have theliscontinuityof the first kind) functionsu(t) suchthat u  U(t) we designateV.
Couplex(t), u(t) havenamedover propertiesand almosteverywheresatisfythe equations(3.3)we
nameallowableanddesigrate Q. QE D3 V..

Enter in our research singlevalued functionss(t.x) il ™ X.wvBick &re continuous and have
continuous derivatives on’TG. Let us to take the-function in form

a=f/ 690 ftxudt (35)

It is obvioud' = 0 onQ. Let us design the general functidrr | +# , integer the term/, % by part and

exclude ¥ by (3.3). We get

_ t, | 2 vy W, (3-6)
J=F+/x| +I:1][fo' (Xj?+/i)fi' )ﬁﬁ]dt
Designate
a=F+/x, B=fy (M as)r - x
1 M m

Apply to (3.6) Consequence 1 81. Here @is X* and DxVis X(see Consequence 1 §Bincenowthe
coupleof functionsx(t), u(t) from DxV (havingendsin Rfor condition
x(t)i D,u(t)i V,x =x(t,), x, = X(t,) ) arenot connectedby the equations(3.3)we can write

. A . L.
!Drgf/(A+ Q Bdt) = XlI’I)‘(lj, RA+ N .inf Bdt

tf xGulU
and final

J=inf A+f{ inf Bt (3.7)

X1, Xl R tf xI G,ulU
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So we proofed th& heorem 31.:
The couple vectefunction X(t), t(t) will be point of absolute minimum of function (3.4) if it is exist

n differentiable<(t,x) such that:
DB=infB, 22A=inf A>- g 3 xul Q (3.8)

X G,ui U X, %l R
NoteY ¢KI G Aa adzZFFAOASY( O2yRAGAZ2Y 2yfed ¢KIFG OFyy
advance about an existence df,x).

From (3.8) it is follow: if we find at least one solution of an equation in particular derigahaving
n-unknown functionss(t,x) :

3.9
%]:07 (3.9)
pt

: W
il O ) %

for boundary conditiorA = const, than points 1, 2 of the Theorem 3.1 will be executed. Any
unsuccessfu(t,x) (if X(t), a(t)T Q) with according Theorem 1.4 gives the lower estimation of the

global minimum.

Assumefor example,x = 0*. Substitute them in (3.7), we get the result published in work [2]*,

(condition BellmafPikone):

J= infF - @ supR({txu)dt (3.10)

X1 Gy, X5l G, 1 X G,ul U

Here F :F+/ttf’ R:jt+jxifi- f,=-B.

* This limitation is not important becouse ay, 0 in [ty,ts].
** Note: in given method (in difference from [2]) not regstea priory assamption about existing the
single potensial function 6 (isBch that. , =<.

Sometimes it is more comfortable take functiond (i = E 0
or in other terms (see [4]) 6 (i BThend, Bare written:

A=F+y,-y,, B:fo'yxifi'yt’ (3.11)

And Theorema 3.1 is same with [2], (see also [3]).

[N
ey
w»

Cdzy OGAz2y h F2NJ IAQSy Gl al 6SOIy .ROHFBAS | f &2
Lo
a=qyy [®- f (t,xu)]dt

Integrate but parts thdirst member we get
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t
a=y E - fj(yx, fi +J/t)dt

Note:1. Theorema 3.1s corrected and in notations (3.8) p.1:

4 uiu

L L.
rt'] Bdt= xl(gifs N inf Bdt.

This form is offeredh [4]. Difference between these forms is important in consideration the second
variation, conditions inrgle points and in some other cases. Let us takethe last corrected form of V.
Krotov optimization [8] (problem of speed):

Example 3.1Find minimunt, in task:

| =fjdt #=u, |uEL x(0)=1 x(t,)=0.

t

Fig.2.2.

If we take. =0, we get R =1. ConsequentlgupR is reached in ANY curve, for examples-0.01 (=

X,u

100). In case whemmin forward integral for- = 0 we have

o .
inf I’jdt = x'(githZ[X(t)]'

x(t)i D

Since the set all serves with bounded derivati¥¢ 1 for x(0)= 1 located between lines=t¢ 1,x =
-t+1 (Fig. 2.2), we gt =1-t, u=-1 and | =t =1

1,min
Notes 1. As set B we can take a sét)} with bounded derivative# | X, ={f (t,x,u):ul U}. This

narrowing can help in finding of optimal solution.

2. Note 3 §1 in given case has the following view: If exist the functiériiakicEab list one allowable
couple X(t), u(t), satisfying (3.8). That any other couple satisfying (3.8) is minimum of problem 1 and

any allowable minimum the problem 1 satigfyi, 2 (3.8).

3. If t1, t2 are not fixed, we can show that pbl, 2 (3.8) are:
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)B= inf B=0, 2JA= inf A>- ¢

X G,ul U ty,th, X, Xl R

We can satisfy the conditianf B=0, ifwetake [ . g.jabdc0 b @&
Vu=f-/fi-/.

4) Theorem 3.1 is particular case of SBor 02 YY 2y (G KS2NBY H dm

O
N
<
QX
b
pu
(V)]
P
&
¢

Assume we take some(t,x) (or- 6 ).Z E 0

Theorem 3.2Assume-= 0 and solved the problenmf B. That:

1) SetN ={t,x,u:B+ f, ¢ B+ fo,ti T} contains same and better solutions of Problem 1;
2) Set p={t,x,u:B- f, ¢ B- fo,“’ T} contains same and worse solutions of Problem 1.
Proof 1) Deductg 2 B from inequality B + f, ¢ B+ fo. We get

f,¢f, on T, ie. ﬁfodt¢ﬁfodt'

2) Deductg 2 B from inequality B- f, ¢ B- fo. We get

-f,¢-f, on T, ie. ﬁfodtz ﬁfodt' Theorem is prooved (QED).
Let us take instead function (3.4) simpler f“nCtiﬁE(t X, u)dt (here B1 is given function). Than
Theorem 33. AssumeF= 0 and solved the probler]'j1 —inf ﬁBl(t’ x,u)dtonQ- Than:

3)SetN ={t,x,u: B, + f, ¢ B, + f_o,t|' T} contains the same and better solutions of Problem 1;
4)Set p ={t,x,u: B,-f,¢ §1 - fo,ti T} contains the same and worse solutions of Problem 1.

Proof 1) FromN we have the inequalityﬁ( f,+B,)dt¢ ﬁ(gl + fo)dt' Deduct fom this inequality

the inequalityﬁBldtg ﬁgldt. We get ﬁ fodte ﬁ fodt .
2) FromP we have the inequality ﬁ(Bl - f,)dte ﬁg ) fo)dt' DedUCtﬁBldtz ﬁgldt from this
inequality. We getﬁ f dt2 ﬁ fodt' Theorem is prooved ED).

.onsequencef setPcoverthe set T3 G3 U (or reachability set) an&k,ul Q, then X,Uare
absolute minimum of Problem 1.
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Note.Delete part equation (3.1) or (3.2) [in case (¥2prrepodeddeleted equations became the
controlin the rest equations]. Then getten solution is the low estimation of initial Problem as it is follow
from principle of expension [5t(x) 2 1(X) and [(x,u)? I(X,0), whereX(t),u(t) are absolute
YAYAYdzY aGNHzyOF GSRéE G alo

When right parts of equations (3.3), (3.4) do not depdaady from x(t), we can stand out not only set
N,Pbut the setM. It is correct the following theorema

Theorem 3.4AssumeF 2 O, ends x(t) is free, the right parts of equations (3.3), (3.4) depent only
fromt u,ie:f=ftuyA T NIMIXIYdnfBE®. Taght SR G &

1) Setm ={t,u: B - f,2 §1 - fo’“’ T} contains the absolute minimum of Problem 1;
2) Set N ={t,u: B - f,2 gl - f_o’“' T} contains the same and better solutions of Problem 1;

3) Setp ={t,x,u: B,- f, ¢ §1 - f_o, ti T} containsthe same and worse solutions of Problem1

Proof for setsN, Pfull equally with the proof of Theorem 3.2. Proof fdrfollows from discontinuity
u(t) and depends the right parts of equation only frem

3. Taskhe dynamic programmingf Bellman

Assume there is physical syst&irhe control of this system separatedhirsteps. On everystep we
have the controlJ,. Using this control we transver our system from allowable stpgetted in (-1)
step in new allowable stad §=S(S.1, Ui). This transwer is bounded by some conditions. The purpose is
minimum function

Let us to biuld the common function

J, =W +a,whereW =3 w,,i =12,..m

k=1

In this case we can change the task of the conditional minimum inf Wi in the task of direct minimum
inf J. - If the limitations are absent or they allow the selekin every step to make with associated
\%

conditions, hen fromh = 0 in the admisseble elements we get the Bellman equation [6].

W(S.) =minW(S, U}, i=12..m

3. Application" -function for solution the problens with distributed

parameters
Let us consier about absolute minimum the Problem with distributed parameners
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L(x,u) = [ fo(t, x, u)dt+ F(x(t)) (3.12)

where t = (t,,t,,...,t ), X=(X,X,,....,X;), U=(U,,U,,...,u ) are elements of vector spadg X, U

respectivelyPis closed area in spadeboundedcontinuouspiecewise smoothfixedhypersurfaces
OnSthet =_. P*is internal part this area, functiongt) onPare absolutecontinious,us(t) are
measurable orP and have velues from ardd, which can be closed and bounded.

Functionsx(t), u(t)satisfy almost everywhere the systanm independed differensiadquetions with
particulal deviations

BX - fitxu), i=12..m j=12..m (3.13)

ut,
FunsionSfJi , fare continiouly together with its particular derivitives the first order. The funcxi(i))
u(t) we name allowable if they safy the named above conditions (38}.

Statement og Problerrind couple functioni(t), x(t) which give the functioh(3.12) the minimal value.

Add to system (3.13) the integrability condision:

i i (3.14)
/g:&-ﬂ:, i=12.n jk=12..m k> ]j.

Not difficult to calculate, that number of difficalt equation (3.14) may be
0.5(m-Y)mn, i.e g=212,..,0.5m- )mn (number of combinationscén). For simplicity we will

assume: all functions’ in (3.14) containu and theseu may be find from (3.14Assume the number of
independed equations (3.14) are lass

Let us lead to considen-dimentional function. ¢ (=% E%% X 8..The components of this function
Jx) jr m meaie Xantinious and have theontinuous partial derivativealmost eerywherein T.

Name this functiorg charasteric function. Let us lead also the integrable veftinction

AWK WROY
[ SO dzafunatiorirSforrm

a=fy (¢, xcosq,t)dr - i, +y, fi+/,/ 9)dt (3.15)

Wherenis outer normal to sudceS.  iRelementsurfac& 2 S LINBaSyd GKS TFdzyOdGA 2,
= = i i —f _ ] jfi ; 9.(3.16)
J=A+ ﬂ_%dt, where A @/ (¢,x)cosqt’)dr, B=f,-y/ +y, fi+/,
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Theorem3.5. Assumeu(t) [ V. In order to couple u(t), x(t) will be the absolute minimum the purpose
function (3.12) it is sufficiedlF S E A Guictiory(3.152sHch that

)B= irlifU B(t,x,u), 2) A= ir(ltf) B>- g 3 x(t),u) Q- (3.17)
The proof is identical [2$ 7, but in difference from [2] the theorem 3.5 contain the integrability

condition.

If >‘((t),U(t)T Q, than Jisthe lower estimation the functio(8.12).

If exist the functions X and at least one paik(t), U(t) satisfying (3.17), then any other pair

satisfying (3.17) is minimum of the function (3.12) and any allowable minimum the function (3,12) is
satisfying the points 1, 2 (3.1{consicvently remark 3 §1). The set contains the same or better solution,
then X(t), u(t) is

N ={t,x,u: B(t,x,u) + f,(t,x,u)2 B+f} on P 3U.

Assumefunctions fji (t,x,u),/ ?(t,x,u) arecontinuous and differentiableLet us take linform. 1=
p;(t)x. Let us denote:

H =p, (O)f; (t,x,u)- fo(t,x,u)+/,/ 7(t,x,u) -
Then p.1 (3.17) of theorem 3.4 we can rewrit¢{(1) =supH and nessusary condition of minimum

ul U
(stationarity condition) following from p.2 (3.17) gives:

WB_ WOy pH i=12,..n. (3.18)
UX Mt X

84.Inversesubstitution method

A. From previous paragraph we have: if we know the mininany function on acceptable set, we can
get informationabout solution the Problem 1 and solve one from Problem a, b, c, g the 8§1.
It is known, that the most direct Problerainf fo(x) on X* or

t
inf r“j fdt
onQ (i.e. finding the minimum of main Problem) are difficult or do not have the aatieh solution.
However, if purpose function is not in advance definished, the solution for thislebnished purpse is
finding easy. This is not suprisiigmathematicst has long been knowthat manyinverse problems

are solvedmore easily thamlirect problemsAn example, let us considdre problem of finding the
roots of an algebraic equatiorin the general case fan> 5 it is solved with difficulty and her decision
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(roots) not to be expressed in terms radicalfsthe roots are given, then the corresponding algebraic
equation may be found easyOn the basis of this idea below it is given method to build function for
which an admissible element would be tpeint of absolute minimunon an admissible setSince we
thus have to solve a problem back to the origipadblem (not find the minimum given function, but
find the functio for giventhe minmum or for fien field) This method is callethe method of
reverse lookup.The method is presented for two cases: problems of the theory of extrema of
functions of a finite numbers of variables ( p.B) and optimization problems desdybedinary
differential equations (p.C).

B. Let us consider usial Problem of minimum the function of finite variables
| = fo(x), f;(x)=0, i=12..m<n. (4.1)

Let us convert this Problem. Selectomponetsxand name them main (baseuppose for
definitenesghat this is the firscomponentsm of the vectorx. The rest of components - m = rdenote
4 G MZHIXZIND O

Rganthe Problem (4.1) we canwgite
I = f,(x,u), f(xu)=0, i=12..m<n. (4.2)
wherex ¢ m - dimentional vector,xi X ,ucr-dimentional vector,ui U.

Let us take more simple purpos functidix,u)l YR FAYR A0Qa (KX3UopTai®t dziS YA\
solution may be used for building of séfs N, P

M={xu:J,- f,2J,- f}, (43
N={xu:J,+f, ¢J +f}, (44
P={xu:J,- f,¢J,- f.}. (4.5)

Desandvantage this method is next: the some of these sets can di not have the admissible
elements (i.ex, usatisfactingf; = 0).

Assume, the limitationsf, (x,u) = 0 in (4.2) may be solved abou
X =x(u), i=i=212..m (4.6)

and xI X foranyUui U .
Assume we take simple functidkix,u) { dz6 & G A 4 dzi S A YinfA QA u)i ESand n dc o Yy
U

(4.6) X. This solution is analog 83-(4.5). One may be used for finding sktsN, P Theintersection of
these sets with admissible set is not empty. You can take J(x,y,u) than U =u(y). You can use

the dependance of, N, Promy¥ 2 NJ OKIl y3Ay 3 (K fisdearkads&men2 ¥ GKSasS a$s
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D =ir;f sud J, (x(u),u) - 1(x(u)),u] -

C In point 2 83 we considered the optimization Problem described by conventional differencial
equations

= §f fotxu)dt #=f(txu), i=12..n ui U (4.7)
We was shown: if we take some functiend { anéfind minimum ofinf B in (t1, t2) andinf A, we

X1,Xo

get the minimum of Problem 1 or the its lower estimation.

Statement of the ProblemLet us to state the Problem 1 the otheay: the find the function which
matches the function 6 GasdEminimum of this function of the admissible set.

Note.Let us note: the offered statement very different from the back problem of variation calculation.
In variation calculation, thback problem states next: we have a curve. Find the function, which gives
the minimum in this curve. In common case this problem is more difficult then a direct problem.

In our case the minimum curve not given. We find it by given function £ E 0 @

Theaem 4.1 The minimum function corresponding functiond (i€ E 0

t t, . . 4.8
3, = [ B XdE= - inf - £, x,)- vt “9

And correcponding to it the minimum curve is given by equations
% = f[txutxy,y)l 1=12..n, (4.9)

where g =a(t,x,y, ,v,) we find from (4.8).

Proof.Write the expressio (see (3.11)) for problem (4.7) and check up condition (3.8) of theorem 3.1.:

B,(t) =inf inf [B,(t,X)- ¥, f,(t, x,u)- y,]- (4.10)

Obviosly, the (4.10) identically equals zép- ' )-fromi(Z& andX, U satisfacting (4.7). If we take

asx(t,) the valuex(t), received from (4.9) fan, then the point 2 (3.8) disappear and all condition (3.8) of
theorem is executed. Theorem is prooved.

Consequencelf B, = f,(t,x), then x(t) getting from (4.10) give the set of the minimal curves for

boundary condition ,I' . In particulary, if the end of curugt) from (4.9) match with given boundary
conditions, that this curve is minimum curve of Problem 1.

Note. Boundary conditions in the left end can always be performed. For it we must start the intgration
from the given conditions (4.9). We can perform the boundary condition in the right end the next
method. Take in form 6 (i keFe®qn ¢ dimentional cmstant. Substitute ¢ (i InK49Paid seleat
such that to perform the given end condition in the right end.
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Getting numerical function may be used for receiving theNsdPof Theorem 3.3 :
N-{t,x:f,+B ¢ f,+B}, P={t,x:B,-f,¢B,- f},
where f, = f,[t,x,u(t,xy,y.)], y(tXx) is given

If we find

— t, .

J :yz'yl*r:lz”lf(fo' Bl)dt ’
We get also the lower estimation.

Memo, the assignment ¢ (igh’és s not single nometical function and its point of minimum. One
gives a set of minimums satisfaction the boundary conditions - ;= c.

Note: We can take 6 (i ZTReB(f)x,y) If we can select Sucf(t) that B,(t,x,¥) = f,(t,X) and

boundary conditions is perfomed, them(t, X, ¥) is the optimal synthesis of Problem 1.
D. We also show: how yazan find the numerical function for given the syntes of contred u(t,x)
Equate the givem = u(t,x}to the control findedfrom (4.8). We get the equation in particular derivities
u(t, x) = u(t, XY Y- (4.11)

Substitute its solution 6 (iakdEgiven u(t,x) in (4.8), we find the numerical corresponding functid. If
= f(t,x) that is synthesis the Problem 1 for the bounded conditioi’ - ®

Possible the other method . We take= u(t,x,y)Substitute its in (4.8). The® = B(t,x,c,y) We can try
usingy to reach the identifyf, 1 B, and usingcto minimize the nymerical functioh

Example 4.1Let us consider the task of design the regulator

| = fyBxxdt, (412
¥ =gx;+u, 0¢t¢no, (4.13
%(0) =X, %(2)=0, (4.14)

wheref, = bxx; is the positive definite form.

Takeu = ¢, whereg are constants. Let us to searchas the quadratic form  Fxx With unknown
coefficients. Equatef 1 y#:

b % X; = A (3%, +C;X;).

Let us equate coefficient in sarmg x in left and right of this equation. We get the sgh+1)/2 the
linear inhomogenius equations having the same number of unknéyviif the determinant of this
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systemD, 0, we find A;. We substitute f, 1 y# in (4.12), integrate and find =) (=, c) - y (0,c) or

using (4.28) | =-. G.f). When we find minimum of this expression fgwe get the optimal syntes.If
- ¥ (x,T) is the positive definite form then this function is the Lyapunov function (becay#é 0 and

the regulator is assimptotic stadl

85. Method of combining extrema in problems of constrained minimum.

We will show in this paragraph that method combining extrema, considered in 82 the Chapter 1, itis
apply in tasks atheory the functionf a finite numberof variables (point A) and tasks described the
conventional difference equations.

A) Let us again consider the Problem of the theory the functimfres finite numberof variables
I =f,(x), fi(x)=0, i=12..m (5.1)

Write the numerical funtion
J(x,c) = f,(X) + b(x,c) +a,(x) (5.2)
Hereh 4(X) ish ¢ function, cisn ¢ dimentional constant.

From condition

inf J(x,c) (5.3)
Xl X
we find ; l(x(l) ,c) =0.
From condition
F (x,€) = sud b(x,c) +a,(X)] (5.4)
xi X"

we find/' z(x‘z),c) = (0. Solve equations ;> ,together with (5.1) (cjmbining equations):
J(x®,6)=0, j ,(x?,c) =0, xXV=x?, (5.5)

we receive the absolite minimum the Problem 1. The edditive Esalddtés so that tasks (5.3), (5.4)
are solved easier.

For examplea, =/ f,

a, =n, f.. Functions(x), i n hmarg coxthious andifference ,

the functionsWé E = O have singleenfindniim and maximum for anyThat we have systemn(3
omb Slidd GA2ya BAGK aFYS ydZYoSNE 2F dzyly2ey Y Iyl

Example is not include.

B) Let us to consider the task, described ttenventional different equations:
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|=f fotxudt %= ftxu), i=12..0, ul U, x(t)=x, xt)=x' 9
Take- inform,;, @ = n®(t) 2™ and create the function

B,= f,+b(t,x?,u?,2)- p@ O - OO =  HO . gOKO,

Herez(t)isr ¢ dimentinal function. One can have the limited gaps the first type.

Frominf B, and (5.9) we find

#(1) - Hf(l), og® =g® (t,x(l), p‘l),z), #O = f(t,x(l),u(l’). (5.10)
Takey 2 = p.(z) Xi‘z) and create the function
B,= b(t x? y®@ 2) - p_(2) £ _ r5{}(2))(52) —-H®. #Z)Xi(z)_
Frominf B, and (5.9) we find
#(2) —_ H>(<2)1 og® =g® (t,x(z), p(2)12)1 #? = f(t,x(z),u(z)). (5.11)

Using the combining equatiorg® = x®  y® =y we get final:

#=f(t,xu®), pO=-H®, p2=-H?, u®txp? 2=u?@txp?,2 (612

That is syster8n + requations with3n + runknownx, g%, p?, z .Last equation in (5.12) is the

combining equation. Tdadditive functior selecting so that the solution task of findirigf and sup
were simpler.

§6. Generalizing the Theorem 3.1 in case the brockea (i  E 0

Theorem 6.1 Assume there is numericldzy Ol A 2 Y .o0sétT E@ , bBuSded bgl&R
piecewisdlifferentiableandLJA SOSgA aS O2y Aydz2dzad® ¢KS Fdzy OluAzy
breaks the first types on the limited sBt_(t_, x), s=12,...,k - 1 zero measure. This function is such

that there is:

Dinf (F+y,-y.)., 2) inf (v, -y, =t t =1, s=12..k-1
R SYX S

3)inf B=0, 4)X(t), uit)i Q.

Then X, U (are got from points 13) is the absolute minimum the Problem 1

Hereyg 1y; are value- in left and right side (along(t) ) of the breaks the function and its

derivatives.
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Proof Frompoins 1¢ 3 we have

k-1 k-1 ]
J=inf(F4y, - yo)+&iInf(v; -y )+& fy inf Bt
s=1 ' s=0 = XY

On feasible cirves (frolQ) the J convertin function, _ L . In this case if we apply the
| =F+ A fdt

consequence 4 , 81, point 4 of the theorem statement is@lsly. Theorem is prooved.

Note. The conditions 3 of Therem 6.1 is sometimes difficult to check up. In this case the requirements
2 - 3 of theorem 6.1 we can change the damage

- N S :
|Qf[|rlf(yS -y )+ I;]l!;QEBdt+ 0 inf Bd{]

G3U
One must be chéed up in every point,, sI' M-k X =

87. Optimization the problems described the conventional differential
equations having the limitations.

We find minimumA, Bin Theorem 3.1, chapter 1l on the corresponding seend U 3 G. The most
widely method of separating the feasible sets is the separation of them from more widely set by
equilities and inequilities. In this case, we can solve our problem by the methoés &imeli -
functions.

Let us shortly consider the most common cases.
1. Limitations are the equilities

a) Assume the admissible dRis separated by equilities:
g (X, %) =0, i=12..,l<2n. (7.1)
Then the tasknf Awe can change the task

inf [A+m(%,%,2)9; (%, %,)] - (7.2)

Herep; is known functinszis|-dimentional unknown vector. In particulary, we canaak= z.
b) Assime the admissible sex3 G is separated by equilities

Jitxu)=0, i=12..l<r. (7.3)



72

Assume, we can find from (7.3) theomponent the vectou. Than the probleminf B we can change
G3U

the problem
inf [B+/,(t, x,W)/; (t,x,u)] (7.4)
Wheres< are known functionyy; is| - dimantional unknown vector function. In particular, we can take
S=W;.
¢) Assume the admisseble set G is saft by the equilities
Jit,¥)=0, i=12..l<r. (7.5)
Differenciate (7.5) full case foand find

./ i(l)(t!X1u) ! L fj(t,X,U)+w—.i =0, i :112’___’| <n’ (76)
i T

J

If in system (7.6) there is equations do not containve difierenciate them next time and so on
whole we get the the system where &#qution containu. Assume we can find dltomponents from
this systeml(< 1).

Than the problem (7.5) is redused to the tasks the paijriin which (7.6) is (7.3), but (7.5héall
equtions (7.6) not contain, are (7.1).

2. Limitations are inequalities. (excerpt)

a) Feasible seRis allocated by inequalities:
9(x,%)¢0, i=12..l

Then acording the Teem 1.4 Chapter 1 we change the problgnf A by problem (7.2) with the
R

additional conditions:
/.g,=0, /,20 (here i is not sum (7.7)
b) Feasible set) 2 G is allocated by inequalities:
Jitxueo, i=12..,1. (7.8)

All inequalities containi. Then the taskipnf Bwe change the task (7.4) wuth conditions
UsG

/j,=0, 7,20 (here i is not sum (7.9)

Example 7.1Assume indsk
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| = rff f(t,x,u)dt, # = f(t,xu), i=12..n,
Controlu is scalar, the feasible sketlimited inaquilitya ¢ u ¢ b, (a <b). Compose (7.4):
iUf [B+/,(u-b)+/,(-u+a)l.
According (7.9) on feasible lﬁ_il(lj - b) =0, /_2(- U +a) =0. That way wenave

inf [B+/,(u- b)+/,(-u+a)] = inf B.

ug,ul U

In right side we have one condition the Pontryagin method.

(Part of the text are missing)

XXo

810. Note on the equivalence of different forms of variational problems

A) In 83 the next problem of minimization was considered
| = F(x,%,)+ rff f,(t, x,u)dt, (10.1)
on solution of equations
® =f (t,x,u), i=12...,n (10.2)
In the theoretical analysis for the sake of simplicity, we often assume that in (3.1)
F10 or f,*0.
We show that it does not restrict the generality of our reasoning

Take
1
| = r:j f, (t, x,u)dt

And differentiate it for the variable upper limiteand designate# ,, = f,. We get he task

| =x,.(t), ®="f, #.,=f1,. (10.3)

n

B)Assume| =F(x,,x,). Differenciate it byt and integrate, we get numerial function

| = (F, f)at (10.4)
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We can same way to convert (10.1Y19.4) and in (10.3).

O Let us to assume the (10.1) and (10.2) depend from constamteich must be optimal. Designate
ck = xi+k and add to (3.3) equatigh,, = 0. We reduced the task having the optimising constants to

conventional task.

In practice it is camfortable to solve the problema (10.1), (10.2) with constant parameters. Than to
change them (for example the gradient method) so, the function (3.1) decreases.

D) The problem witH; (t,x,u)which obviously depend from, we can reluse to problent;(x,u)do not
depend obviously from, if to designate = x..; and add to (10.1) the equatiog,, =1.

C) Let us to show how the task with the mooving emgdandt, we can reduse the task with fix interval
of integrate. Tak the new variabléi [ Tha&h task (10.1),(10.2) having variables t1 or t2 was
redused in task with fix intervaly(_»):

| = F+ﬁcfo(r,x,u)dt, xi = cf, (ct,x,u),

where the touch means the derivative farThe constant > 0 is sadcted from minimum |I.

Application to Chapter II.

1. Theorem 3.1 and known methods of solution the problem described the
ordinary differential equations.

From Theorem 3.1 we can to get the conditions whichsame with known algithms of optimal
O2y GNBf X F2NJ SEIFYLX SY t 2y dNRI 3A Caculsofyabidtiod[7§ wme =

Let us to request additional that functioh Zhave the need continious derivatives.

a) Pontriagin principle According [2] take (t,x)in form- = po (  whEre pi(t) are some
differenciable functions, Dx, = x - x.Create the Hamiltonian

H=p f(t,xu)- f,(t,xu). 1)

ThenB =- H- p . Necessary condition of the minimufor x, which follows from p.1 (3.8) of €arem
3.1 (stationarity condition) is

B, 1-p-H, =0i=12..n )

Moreover of claim 1 (3.8) we have
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B(t,x,U) :i% B(t,x,u) or |rI1L1j (-H)=-supH )
u u ui U

Terms and conditions (2), (3) together with (X8)ncide with the correspondg terms and conditions
of the Maximum princije* [1].

b) Belman equationAssumex_ | 0.Takeak=0A T MWithEXedioh / =y (t,x)/x, -
Sabstitute them in (3.9) 83, we get the known Belman equation [6]

inf (fo-y fi-y) =0 )

Boundary condition for them i& = constSolution of this equation is the field of all optimadjectories.

c) Classical calculus of variatiofRtrom claims 1, 2 Theorem 3.1 easy to get the conditioresrefative
minimum coinciding with the relevant terms of the calculus of variat{@hs

Let us assunb is the open area(t),u(t) are continioslyf;(t,xu) have continious partial deriveties up
the third order. Take = po G  Rrdm (3) that at minimum

B, (t,x,u) =-H, (t,xu)=0, i=12..,r, (5)
Equtions (2),(4) equal the conventional Ell&grange equations [7] 82 p.1. From [3] also follow

- Huiujdjid-'lj 20, |,J =12,...r. (6)

That matches with Klebs condition.

(Itanslation of theChapter 2 is ndinished

XXX
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Attachment 1
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pgs. ISBN3: 9780-08044-731-5, ISBNLO: 0080-447317 . pp.383422

Optimal Trajectories of Air and Space Vehicles

Summary

The author has developed a theoryoptimal trajectories for air vehicles with vasla wing
area and with conventional wings. He applied a new theory of singular optimal solutions and
obtained in many cases the optimal flight. The wing drag of a variable area wing does not depend
on air speed and air density. At first glance the tesoay seem strangeowever, this ishe
case and this chapter will show how ttev theory may be usedhe equations that follow
enable computations ttie optimal control and optimal trajectories of subsonic aircraft with
pistons, jets, and rocket @ngs, supersonic aircraft, winged bombs with and without engines,
hypersonic warheads, and missiles with wings.

The mainidea of the researchistouseh e vehi cl eds ki theerdangeoof ener gy
missiles and projectiles.

The author showthat the range of a ballic warhead can be increaséd 3imes if an
optimal wing 5 added to jtespecially a wing with variable area. If we du need increased
range, thenead masef rocketscan be increased. The range of laggm $ells can alsbe
increased 0 times. The range @naircraft may be improveldy 3i 15% ormore.

The results can be used for the design of aircraft, space ship, head of rockets, missiles, flying
apparatus and shells for large guns.

Key wordsMethods of optimizatiom, optimization, optimal control, aviation, space ships.

Nomenclature(in metric system)

a ¢ the speedof sound, m/s,

ay, by, a, b, ¢ coefficients of exponential atmosphere,
G c lift coefficient,

G ¢ dragcoefficient,

G, ¢ drag coefficient folG = 0,

Gw ¢ wave wing drag coefficient whem = 0,

Gob ¢ body drag coefficient,

c ¢ relative thickness of a wing,

f
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G, ¢ relative thickness of a body,

¢, ¢ relative thickness of a vehicle body,
Cs 1 fuel corsumption, kg/skg thrust,
D ¢drag of vehicle, N,

D¢ drag of vehicle withoug, N,

Dow ¢ wave wing drag whea = 0, N,

Do ¢ drag of a vehicle body, N,

H ¢ Hamiltonian,

h ¢ altitude, m,

K = @Cs ¢ the wing efficiency coefficient,
ki, ko, ks ¢ vehicle average aerodynamic efficiencies for-digtances 1, 2, 3 respectively,
L¢ range,

M = V/a ¢ Mach number,

mi mass of vehiclekg,

p=m/S ¢ load on a square metef wing,

q=rV?2 i a dynamic air pressure,

R aircraft ran@ orR = distance from flight vehicle to Earth center
R=R,+ h, whereR, = 6378 km is Earth radius,

tg time,

T=V,b ¢thrust, N,

V ¢ vehicle speed, m/s,

V. ¢ speed of throw back mass (air for propeller engine, jet for jet amttebengine), m/s,
Scwing area, M,

s¢ length of trajectory,

T1 engine brust,N,
Y lift force, N,

a ¢ wing attack angle,

b ¢ fuel consumption,
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g ¢ angle between the vehicle velocity and the horizon,

w ¢ thrust angle between thrust and velocijty

ue ¢ Earth angle speed,

ject SAaSNI I y3ftS 0Si6SSy (KS 9FNIKQa t2fFNIEA& | YR

r ¢ air density. kg/m.

Introduction

The topic of the optimal flight of air vehicles is very important. There are numerous
articles and books about the optimal trajectories of rockets, missiles, and aircraft. The
classical research of this topic is by Miele Unfortunately, the optimal theory of this
problem is very complex. In most cases, the researchers obtained complex equations, that
allow one to compute a single optimal trajectory for a given aircraft and for given
conditions, but the structure of optimal flight is not clear and simple formulas of optimal
control (which depend only on flight conditions) are absent.

The aut hhearyfsingularwptimaolutions, developed earlfe¥, does not contain
unknown coefficients or variables as previous theories have. He fourtebatimal flight
path depenslonly ontheflight conditions and the addition of certain variable gvitructures.

In conclusion, the author applies his solution to ballistic missiles, warheads, flying bombs, large gun
shells, and subsonic, supersonic, and hypersonic aircraft with rocket,-feband propeller engines.
He shows that the range ofi¢se air vehicles can be increase® 3mes.

1. General equations

Let us consider the movement of an air vehicle given the following conditions: (1) The vehicle moves in a

LX IyS O2yillAyAy3d (G4KS 9 NIKQa OSy ijodaldhanged @hiswiKS @S KA
LINE @S AYLRNIIFIYd Ay GKS NBYFAYRSNI 2F GKA& OKIF LG SND
rotation (it is less then 1%). (4) Earth has a curvature.

Then the equations for flying vehicle (in a system of coordinateere the center of the system is
located at the center of gravity of the flying vehicle, thaxis is in the direction of flight, theaxis is
perpendicular to thex- axis, Fig. A4.1) are
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Fig. A4.1 ¥hicle forces and coordinate system.

dL
—=Vcoy ,
dt (A4.15(A4.2)
dn =V sing
dt ’
dv _T(hV,b)cosw- D(a,V,h) .
—= - gsing,
dt m
dg _T(hV,b)sinw+Y(a,vV,h) g V coyy )
29 - 2coyg+——L+2w.coy ., A4.3)¢ (A4.5
dt mvV v YT TR MECOT e (A4.3)c (A4.3)
am__,
dt

All values aran themetric system and all angles are takebein radians.

Flight with a small change of vehicle mass and flight path angle

Most air vehicles fly at an angdgin the range® 15° (g = ° 0.2618 rad), with the engine located along

the velocity vector. This means

sing =g, coyy =1, w=0, (A4.6)c (A4.8)

because sin1%5=0.25882, cos15=0.9659.

Le as substitute (A4.6) (A4.8) into (A4.13 (A4.5)
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(A4.9)c (A4.10)

= - (A4.11); (A4.12)
dg _Y(a\V.h) 9.V Loy coy

dt mV j .

an__, (A4.13)

dt

where
9] ¢ Gy (A4.14)

Many air vehicles fly with a low angular speddig/dt. The change of mass is also low in flight. This
meansm = const,dm/dt @0.

dgdt © 0, dm/dt =0. (A4.15)c (A4.16)
Let us take a new independent varialsle length of tragctory
dt = ds/V, (A4.17)

and substitute (A4.140A4.17) in (A4.9)A4.13). Then system (A4@4.13) takes the form

%:1’
ds
dh
_ZQ1
ds
_ (A4.18)c (A4.21)
dv _T(hV)- D(a.V,h) 9,
ds mV v
Y(@a,Vv,h) g V .
0O=—"""72.Z4+_+2 )
mvV v R MO

Let us rewrite equation (A4.21) in the form

2

Y(a,v,h)- mg+ mv +2mVi,. cog - =0. (A4.22)

If we ignore the last element, equation (A4.22) takes the form
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2

Y@v.h-mg+™" -0 . 61l NOHHUQ

If Vis not very largeM< 3 km/s), the two last elements in equation (A4.21) are small and they may be
ignored. Equations (A4.2R)y R 6! n ®HH 0O Q Ol wframPD .dza SR F2NJ RSt SiAy3

Note the new drag withoug is
D=D(h,V). (A4.23)
If we substitutea from (A4.22) into equation (A4.20) the equation system take the form

dL _

—=1,

ds

dh_,, (A4.24)c (A426)
ds

dv _T(h\V)- D(V,h) gq

ds mV v

Here the variableyis new control limited by

9] € G (A4.27)

Statement of the problem

Consider the problem: finding the maximum range of an air vehicle describeguiayiens (A4.249,

(A4.26) for the limitation (A4.27). This problem may be solved using conventional methods. However, it
is a nonrlinear problem but contains the linear control, which means the problem has a singular
solution. To find this singular solati, we will use methods developed previodsly

Write the Hamiltonian (for purpose minimum of time):

lal-b_ .8 (A4.28)

H :1"'/157"‘/2\—/86?' a9q

where /,(S), /,(s) are unknown multipliers. Application of the conventional method gives
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1OT-_ D.6
p= M __, 1ali-Dig
1 uh zva; m 0
o 14T-D 5, 14Ti- Dj @
po H__ e ; Pl NV 2 A24.29) (A4.31
> Y, 28 VZEET 9g0 V?T% ( X ( )

Where D, ,D, , T, , T, denote the first partial derivatives @, Tby h, Vrespectively.

The last equation shows that the conttan have only two valu€sgn,... We consider the singular
case when

A=/, - /2\%1 0. (A4.32)

This equation has two unknown variablesand/, and does not contain information about the control

g. Let us to differentiate equation (A4.32) for the independent variabidter substitution the
equations (A4.26), (A29), (A4.30), and (A4.32) into the result of differentiation , we obtain the relation
for/y, 0,/,, O

V(Tj- Dj)=9g(Tji- Dj) (A4.33)

This equation does not contaipeither, but it contains the important relation between the variables
Vandh on the optimal trajectory.

If we have the formulas (or graphs)

D =[h\V), (A5.34)

T=ThW, (A4.35)
we could find the relation

h =HV) (A4.36)

and the optimal trajectory for a given air vehicle.

This also givesmportant information abg the structug of the optimal solution. Investigation
of equation (A4.3Bshows that the e@tion has one solution in eachtioé subsonic,
supersonic, and hypersonic fields. The equation can have two solutions for a transonic field.

This means th optimal trajectory in most cases has three parts (see Fig. A4.2):
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a) When climbing and in flight a vehicle moves from the initial pAintith the angle® g, up to

the optimal curve (A4.36), then continues along the optimal curve (Ad36)noves with at an
angle® g, to pointB.

b) When descending and in flight (Fig. A4.3) a vehicle moves from the initialfpeitit the angle
° ... (up or down) to the optimal curve (A4.36), then continues down thinogd curve

(A4.36), and moves at an andlg. ., (up or down) to the poinB.

Fig. A4.2.. Optimal trajectory for air vehicle climb and flight.

—
Fig.A4.3. Optimal trajectory for air vehicle descent and flight.

The selection of direction (up or down, wit}), ., or ¢g.,.,respectively) depends only on the position
of the initial and end point# andB.

For air vehicles with rocket engin&s const, equation (A4.33) has a very simple form
VDj =ghy . (A4.37)

The same form (same curve) also applies for a ballistic warhead, which does not have engine thrust
(after itsshort initial burn) T=0).
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If we want to find an equation for the contrgl we continue to differentiate equation (A4.33) with the
independent variable, and substitute into the equations (A4.25), (A4.26), (A4.29), (A4.30), (A4.32), and
(A4.33). We otain the relation forg if /1, 0,/,, 0

-D
q= Bcl(T ) < (A4.38)
mvas Y- B, 8
¢V +
where
—(Ti- Di)+V(Ti - Di)- i - Di) |
B, =(Ty “ i) “ (T “ M“ a(Ti, - D) (A4.395 (A4.40)
B, =V(Tii, - D) - 9(Tii, - Dii,)
Here signs in forr®,,, are the second partial derivatéfor h, V.
2
= W0 (A4.41)
Hhpv

If the thrust does not depend am, V (T = const) or no engind € 0), the equation fog becames
simpler

[(9Di, - Dj) - VDM(I- D) (Ad.42)
mg(9Dy, - Dj) +V D,

qg=

In accordance with other publicatiofi(e,g, equation (4.2) the necessary condition for dptal
trajectory is

d2k o
Hq edSZ

T
<O

20, (A4.43)

Q

wherek = 1.

To obtainresults for different forms of the drags and thrusts, we must take formulas (or
graphs) for subsonic, transonic, supersamitiypersonic spee@ndspecific formulas for the
thrustand substitute them in the equation (A4.33) and (A4.38). Consider two cases: subsonic and

hypersonic speeds.

Subsonic speed< 270 m/s) and different engines.

Lift, drag, and derivative equations for subsonic speed are
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2 2 9 2o \s2
L=mg=vd4Y s, D=c,’V's, c ,=C,_+ed D= ecDo+e%/2m§§urV s,
iy MD _ a 2mg § pD 1€ 4 2mg 6 9rV?
r=age"?, s ea/—gurvs — = —eC <8 U S,
v g he  cV¥'Sty 2
(A4.44)
6.24/ V . . . - . :
where V= Ty e= Y, magnitudee® Z/ p/ is an induced drag coefficient,= F/S, lis a wing
p
span.
It is known in conventional aerodynamics that the coefficient of flight effici&nsy
k:&:L, from maxk weobtain a,, = CDO, Konax = v . (A4.45)
C, Cptea a e 2,/ €Cy,

a) Aircraft with rocket engine. For this aircraft the thrukis constant 00. Equation (A4.33) has
form (A4.37). Find the partial derivatives

Ti=0, Tj=0. (A4.46)

Substituting (A4.44) to (A4.46) in (A4.37) we obtain the relation betweedeasity s, altitudeh, and

aircraft speedv:
20p | e m Q
==2F | =, p=—, h=pIn2 | A4.47
X 2 Coo P S b, r ( )

wherep = m/Sis the load on a square meter of wing. For a diapasdn-0€;11 km the coefficients; =
1.225,b; = 9086.

Results of this computation are presentedrig. A4.4.
b) Aircraft with turbejet engine. The thrust for this engine is

T=T,~, T':-%, T =0. (A4.48)
r

0

Substitute (A4.48) in (A4.33). We obtain

by

and substituting (A4.44) and (A4.48) in (A4.33), we obtain

aT
v§—-Dﬂ8 -gDj or T= bl(gD\; VDj), 6! ndny 6 Q
G
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18v2 & a2pg0 2 T, - _T
e ] o U= , Where T,=-2. (A4.49)
pon, Y% vl T, Som

We can then find, h from (A4.49)

. 2pgle
w2 /A,

Results of computation for the differept T =0.8N/kg, a; = 1.225), = 9086 are presented in Fig. A4.5.

2 pfo T To

, Where A, =C,, - ——— —
ATt vy T

h= blln%. (A4.50)

p =400 500 600 700 ka/m?. Rocket engine

N AJ
l QTSF
18

16

14F

124

10+

Altitude, km

120 140 160 180 200 220 240 260
Air vehicle speed, km/s

Fig. A4.4. Air vehicle altitude versus speed for weag p = 400, 500, 600, 700 kgfrand a rocket
engine.

p =400 500 600 700 kglm’. relative thrust 0.8 N/ kg vehicle

20
Ay T T T
[ OTEF1

18
16
14F
124

10

Altitude, km

20 140 160 180 200 220 240
Air vehicle speed, km/s

-
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Fig. A4.5. Air vehicle altitude versus speed for wing ppadi00, 500, 600, 700 kgfrturbojet engine,
and relative thrust 0.8 N/kg vehicle.

¢) Piston and turbo engines with propeller. All currgnopeller engines have propellers with
variable pitch. The propeller coefficient efficiendy approximately is constant. The thrust of this engine
is
T=No /7 o T - T (A4.51)
VvV r, \/ b,

whereNy= N/, N is engine power alh = 0.

Substititing (A4.44) in (A4.33). We obtain the equation for thrust

ar 0 AaT . .0 _ bVv(gD; - VDj) , :
V +DjQ= +Djo or = ) ol ndpmL Q
é%: A§ 92@ VO V- gb p

Substitute (A4.44) and (A4.51) in (A4.33). We obtain

Vav: & 42pg62 N &g 106 — N m
—e—- 22 . —a where N,=—2, =—. (A4.52
péﬁq 98&- Do~ eévzﬁa ro éﬁlz blg - p S ( )
We can then find, hfrom (A4.52)
_ 2pgle pN, a,
, Wwhere =Cpo+t——=, h=DbIn—=. A4.53
WA, A =Co rV? b r (A4.53)

Results of computation fa@y, = 0.025/ = 10, for different values gf, N are presented in Fig. A4.6.
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8,(10‘ C,=0.02, C -0025p 600kglm
v L )
— vanablc wing area
-- optimal ballistic trajectory

Range, km

Initial rocket speed, km/s

Fig. A4.6. Air vehicle range versus speed for wingpead50, 300, 350, 400 kgfirpiston (propeller)
engine, and relative engine power 100 \W/ehicle.

Hypersonic speed (1 km/s¥< 7 km/s).

¢KS fAFTO FYR RNI3I F2NOSa Ay KELISNE2YAO ¥FfAIKID

2
L(a,V,h) =mg- m;/ =V ar2VS D=(Cpy +e é)ﬂs +Cpp ZVSJ’
e &
_2p(g-V /R)’ D=&C,, arv , 2e am(g- V2 /R)§US+CDbar—VSD (A4.54)
VaVv é 2 ravg 15 “H
e 2q-V2/RED
or 2 &DWE-FQ%Q\/—/Rgu-FCDbiy q_l’aV
m g P ag V =y Py 2

Note

h-11000
raVv raV o
Dow =Cow——S, Du =Coo——S,» Cow =4, Cpp =26,, 1 =ae > | (A4.55)

The derivatives oD by V, hare

NB
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Dow , Do _ 2ampa V2~°3+g

o v g

DIV V@ RER V2

Dj=D.r, =- 1a, D, - 26MAg- LA e
i r'n bzég)ow ob VraV 8

a) Rocket engine or hypersonic glider. The derivatives freantonsandT= 0 are

Tj=0, Tj=0.
(A4.57)

Substituting (A4.55) in (A4.56), and expressions (A4.56) and (A4.57) in (a4i3dY, h, we obtain for
h >11,000 m

%_Vzgigé%+gg+l%-\/2$
2pe R% cR Vi b R =
- ?a VAL A =S ovz_e — 25 4, h:11000+b2|n%, (A4.58)

wherea, = 0.365h, = 6997 are coefficients of the exponent atmosphere for the stratosphere at 11 to
60 km.

If we ignore the small terng% +\%8 for M > 3in (A4.58), the equations take the form
(5) -
2p(g- V2 /RNe 1 &S, §
r = , = , where C,, =C,, +C,,&=0,
|A \/E AS CDO(\/2 +gb2) D ow Db(; S -

where Gw © 4c. If we ignore the terngh, (for M > 3), then

2
p=2PQ-VIIR) | e (A4.59)
laVv Co,

In the limit asR- 2 in (254), we find
2 e
r=<P9 ] € 61 ndpdoQ
lav\ C,,

Here \/Cy,/ € = a,,, is an optimal (maximur@/Cp) wing attack angle of the horizontal flight.

Results of the computation in (A4.58) are presented in Fig. A4.7.
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Drag coefficients C, =0.02, C = 0.025, p = 600 kg(mz

T L} 1
OT-F2.6 ===+ variable wing area

Optimal vehicle altitude, km

Vehicle speed, km/s

Fig. A4.7. Optimal vehicle altitude versus speed for specific bodyPlea8, 5, 7, 10 ton/rf) body drag
coefficientG,= 0.02, wing drag coefficie@ = 0.025, wing loag = 600 kg/m.

b) Ramijet engine. The thrust of the jet engine is approximatdly @)

T=xlve, 1,221, 1= 1, (A4.60)

rs v b,

wherex is a numerical coefficient; is the air densy at the lower end of the selected atmospheric
diapason (in our case 11 km).

Substituting (A4.60) and (A4.56) in our main equation (A4.33), by repeat reasoning we can obtain the
equation for the given engine

(g-vz/g)ggé%%gﬂ(g-vzm)ﬁ
_2p\/2-\/— _ & cR Vi b, i 7T ael
r = |a A%, Aﬁ— N A2 2 — o . - T ( . )
as, geeaVv opaVv 2902 m

@D
O
0]
&
N

whereT, is taken at the lower end of the exponent atmospheric diapason (in our case 11 km). The curve
of air density versus altitude is computed similarly to (A4.58).

Optimal wing area
The lift force and drag of any wing may be written as

Y=mg=Y(a,q,S), D=D(a?q,S). (A4.62)
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Substituting (A4.62) in (A4.28) and finding the minimtdrersusS we obtain the equation
D+DjaiS=0, or D+DiS=0, (A4.63)

where a is the value found from the first equation (A4.62). Equation (A4.63) is the general equation for
the optimal wing area and optimal specific lgag m/Son a wing area.

a) Subsonic speed. Lift force and drag of the subsonic wing are

Y=mg=VgS or a:%g, 5:(CD0+e é)qS D:CDWqS+6%nE§i 6! ndcHOLQ

whereq =rV?/2is a dynamic air pressure for subsonic speed.

Substituting thedst equation in (A4.62) into the first equation in (A4.63), we obtain the optimal
specific load on the wing area

ECDW
g\l e

0! ndcoUv Q

popt

SubstitutinggaF NBY O0! ndcH0Q AyiG2 GKS t1adG Sljdza GA2vh AYy 6! n
we obtain

2

o

. Ag
¢

R

DO

3|0

e
= f(:DW
e

ok

a
pug. (A4.64)
d

HereD/mA & &LISOATFTAO RNI I O6RNI I LISNI dzyAl 6SAIKAE F2N GK
abtain the minimum drag for a variable wing

aDo g,/ eCpoyy 6! ndcnovQ

Qm_

where the term on theight is wing drag for the lift of one unit of weight for the vehicle. We discover
the important fact than theoptimalwing drag of a variable wirdpes not depenan air speed, it
dependsonly on the geometry of the wing. This may look wrong, but carstide following example.
Wing drag i® = mg/KwhereK = @C; is the wing efficiency coefficient. The valdém does not
depend on speed.

If the air vehicle has a body, the minimum drag is

2
mm%‘%8 291/ o —, :r\Z/ . (A4.65)
g —



92

Full vehicle drag depesdn speed because the body drag depend¥.on

{dzoadAldzi Ay 3 G&ASYy (62 nodcroddctr OOBINIYE SF22N3 G F Ay GKS 2LIGA YL
a,, =.—2% . (A4.66)

This is the angle of optimal efficiency, Iy is the wing drag coefficier@nlywhen a = 0 (not the full
vehicle as in conventional aerodynamics). The coefficient of flight efficiency

k=9 or k=3 (A4.67)
D/m min(D / m)

b) Hypersonic speed. The equations of wing lift force and wing air drag for hypersonic speed are as
follows:

V?: or a:p(g+i/R)’ 5:(CDW+e é)qS, q:izv. (A4.68)

|- QDO

Y=VgS=miy-
¢

Substitutinga from (A4.68) intoD , we obtain

é 2 _v2/RIFO

D:a%w+é§ﬁlllﬂgguqs ol ndcyQ
7 S - ~
& ¢ WS =y

Substituting the wingloag=m/SA y 12 6! ndcy 0 QX ¢S 200 AY
D € 1 VZ/RG 9
E—¢w—+%¥———8mq (A4.69)

e - H

To find the minimumhe air dragD for p, we take the derivatives and set them equal to zero, then we

obtain
= A4.70
Popt = (g- V /R)V ( )

Substituting (A4.70) into (A4.69), we find the minimum wing drag

aDg 2a V2§
minge—o —a/eC,, .
T, %? R 8V €&-ow

The sum of the minimum vehicle dragiplbody drag is
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. 4D _2a V?*Q q raVv m
min =—gg- —a/,, +C,, —, =—, =—. A4.71
gerﬁg : R _8\/ DW Db D, q 5 Py s, ( )

Substituting (A4.70) into the term farin (A4.65), we find the optimal attack angle of a vehicle without
a body

A, =+/Cpw /€. (A4.72)
The coefficient of flight efficiendy= Y/Dis

_g-V?IR _g-V?/R
k=9 VIR -9 VIR
D/m min(D / m)

For hypersonic speed the coefficients are approximately
V=4, e=2, C,, =4c*, C,,=2c?, C, =Va C,, =C,, +C,, - (A4.73)
In numerical computation the anglgcan be found from (A4.25) a&s= [h/ [R,.

For the rocket engine or gliding flight we find the followirelation: wherSis optimum (variable), the
partial derivatives from (A4.71) are

Vi ra C, raVv
j=- —.€&,y +Cyp—, Dj=- "2 —_ .
D\P R DW Db zpb ) 2b2pb

Substituting these into (A4.37), we find the relationship between speed, altitude, and optimal wing
load for a hypersonic vehicle with a rocletgine andrariableoptimal wing:

8gp.V./eC
= SRINTow 19000k, In22
1AC,,R(g +V 2 /b,) ;

(A4.74)

Forz=4.el H SlidzZ A2y o0!ndTto00Q KIFa (GKS F2N¥Y

2gpV+/2C
ILINTow 1 =11000rb,In 22,
CoraRQ +V?/by) r

O!' mdTnuvQ

Resuls of computation using (A4.746 zE6,e=2, =0.365, b =6997 and differenp,
arepresented in Fig. A4.flasledlines). As you sedhe variable area wing savidsetic
energy, because its curve is located over an invariable (fixed) Whigyis advantageous only at
orbital speed (7.9 kmydecause no lift force is necessary.

Estimation of flight range
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Air and space vehicles without thrust

The aircraft range can be found from equation (A4.26)

Razvi' mvav_ sy or Ra—V1 VdvV_ i 1=0 (A4.75)
M bmgg ™7 MBim+gq’ ' '

Consider a missile with theptimal variable wingn a descent trajectory with thrusi= 0.

a) Make the simplest estimation using equations for kinetic energy from classical mechanics. Separate
the flight into two stages: hypersonic and subsonic. If we have the ratio of vehicle efficiency

k, =C /C,,k, =C_ /C,, wherek,, k are the ratios of flight efficiencfpr the hypersonic and
subsonic stages respectively, we find the following equations for a range in each region:

m m(g- V?/R) (\/2 V2)

—\V2-Vvi)=—"=—"R, ——2, =k, h, =R +R,,

b vi) =T R Rt Rk R=RR

Or more exactly
émV20 m(g- V?/R) kR, 4g-V//RQ
d d =- In , A4.76
?2 2 K, R R= 2 ¢ -V12/R§ ( )

whereR; is the hypersonic part of the rang®, is the subsonipart of the range; is the initial
(maximum) vehicle hypersonic spead,is a final hypersonic speeandh is the altitude at the initial
stage of the subsonic part of the trajectory.

b) To be more precise. Assume in (A4 /75)consttaking averageiadensity).

1. For thehypersonic part of the trajectory: substitute (A4.71) into (A4.76). We then have

\Z

vdv 2vdv
= R . or =ff——. where X =aV?+bV+c,
R vz sov+c R X

a=— =, oot CT o, 99 D =4ac- b®
Vpb m (A4.77)
el b .dVg~® dv 2 2aV +b
Ru=e—InX-—Noy » No = —=argtan for D20,
" 82a 2a' 'X H, X D J JD
AV _ 2 tanlﬁ2av+b 1 | 2aV+b- \/ or DEO
M~ Vb V- J-D " 2av+b+- '

2. For the subsonic part of the trajectory: substitute (A4.65) into (A4.75). We then have
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Re = — |n|C1 - Gy , (A4.78)
2C, |C,- C,V2|
where the values fo€, G are
C, :rT—n- gge Z:VDW +q§, C, :CDbZLpb . (A4.79)
The trajectory (without the rocket part of the trajectory) is
R=R,+Rs or R =R, +Rs+R,. (A4.80)

where R, =k;h computed for altitudeh at the end of the kinetic part of the subsigrtrajectory.

3. Theballistic trajectory of a wingless missile without atmosphere drag is

t? 2h 2h
h:g?, t= |2 R ovi=v /E' V. = VZ+VZ, VZ=2h(g-VZ/R), (A4.8))

g

whereh is the initial altitude; is the initial horizontal speed of the wingless missile at altitude
h, Vy is initial (sha) vertical speed dt= 0, V; is the full initial (shot) speed &t=0 .

Forthehypersonic interval 5 V < 7.5 km/s we can use the more exact equation

R, :Vlw/(g+hz/|:z) : (A4.82

whereR =6378 km is the radius of Earth. The full rangeadfallistic rocket plus theange of a
winged missiles

R=Ry+ R+ Ry, (A4.83

whereRy = khis thevehicles gliding range from the final altitud® (see Fig. A4.1}lwith
aerodynamic efficienci.

The classical methadithding of the optimal sbt ballistic range for spherical Earth without
atmosphere is

Ny _Va

= 2Rb SN
Rb 2/1-n," " VZ

tanb,, = (A4.89

opt !

wherebop is theoptimal shot angleva is theshot projectile spee@ndV, is an orbital speed for
a circularorbit at a given altitude.

4. Cannon projectile. We divide the distancetmthree sultlistancesl) 1.2V <M, 2) 0.M <
M< 1.2M, 3) 0< M < 0.9M. The range of the wing cann@rojectile may be estimated using
theequation
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Rz%(\/lz B V22) +l2<_;(v22 B V32) +:_;(V32 B Voz)’ where 0<V, <V, <V, <V, , (A4.89)

whereks, k, ks aretheaverage aergehamic efficiencies fosub-distanced, 2, 3 respectively.
Conventionally, these coefficients hawe followingvalues: subsonik; = 8/ 15, near soni&, =
2i' 3, supersonic and hypersokic= 41 9. If V > 600 m/s, the first term in (A4.85) has the
greatestvalue and we can use the more simple equation for range estimation:
=ﬁvf. (A4.84) 0o
29

At the top of itstrajectory,amodern projectile can have an additional impulse from small
rocket engines. Their weight is il16% of te full massf theprojectile aml increases the
maximum range byi7Zl4 km. In this case we must substitute V; + dV into (A4.89 6, wher e
dVis the additional impulse (15270 m/3.

Subsonic aircraft with thrust. Horizontal flight

The optimal climb andescent of a subsonic aircraft with a constant mass and fixed wing is
described by equatioris4.50) and (A4.4Y. Any given point in a climb curve may be used for
horizontal flight (with different efficiency). We consider in more detail the horizongdtfli

when the aircraft mass decreases because the fuel is spent. This consumption may reach 40% of
the initial aircraft mass. The optimal horizontal flight range may be computed in the following

way:

dm _gdm gV gV dm
dR=Vdt, dt=—=="—, dR=———d = N A4.86
' c.T ¢cD c,D(m) m Cs m D(M) ( )
wheremis fuel massgsis fuel consumption, kg/&g thrust.
a) Forafixed wing, we have (from (A4.4%
o ~2 o ~ 2
D= Cooq5+£%§ m?, where C,, =C,, +CDbgeS—°8 q= v (A.87)
QS(; = C S-= 2

Substituting (A4.8Yinto (A4.86), we obtain

JC./C; (m- m) %g c

e
, Wwhere C, =—
1+(C,/C,)mm, qSg

argtan , =C0S. (A4.88

rR=— 9V
CS V ClCZ

b) Foravariable wing we have (from (A4.6pb

_ 9V In Cm-C,
Cscl Clmk - Cz
(A4.89
Results of tk computation are presented in Fig. A4.Be arcraft have the following
parametersCpw= 0.02;Cp, = 0.08;b; = 9086;S= 120 nf; m= 100 tonsm= 80 tonscs=
0.00019 kg/&g thrust; wing ratio/ = 10.

, where Cl:ZTg/ €.y, C,=C.0S, r=re"™.
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As you see, the specific fuel consumption does not depend on speed and altitude, a good
aircraft design reaches the maximum range only at one point, in one flight regime: when the
aircraft flies at the maximum spepdssible for theritical Mach number, ghe maximum
altitudepossible for thatengine. The deviation from this point decreasdbe range in 610i 15
percent or more. The variable wing increasiigiency of the other regimeyhich that
approximately reducethe losses by a half.

The coeficient of flig ht efficiency may be computed usiaguationk = g/(D/m), wherethe
values

oo

o 2 o
0, .28 c, 9 &
m P qc¢cV=+ P, ¢m

applyfor fixed and variable wings respectively. Reswt computation are presented in Fig.
A4.9. The curve of the variable wingtise round curve of the fixed wing.

= 2% J&Cou +Cop pﬂ , (A4.90)

g b

H=6 810 11 12, R_=4381km,M_=0.2, C_=0.08, C,=0.02

4500 T T T T T T T
OT11-F1 — fixed wlng
~==- variable wing .—"”f

_______
________

40004 H=12km '-,r:

-----------
PP e il S o

"""""""""
.....
o
PP ik
QBOOK iy g srich- - i ot e e ML i
''''''''
________

,,,,,,,,,,

-
-*”’

H=10km
2500 H=11km

H=12 km

2050 160 170 180 150 200 210 220 230 240
Vehicle speed, m/s
Fig. A4.8. Aircraft range for altitudéd = 6, 8, 10, 11, 12 km; maximum rangg = 4361 km;
relative fuel masdi, = 0.2; body drag coefficier@@, = 0.08; wing drag coefficiery
=0.02.
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17— D= 400 600 800 1000 kgim®, H =11 km, C,=0.02.C b =008,
---- Variable wing
sel -~ — Moveless wing 4

p = 1000 kg/m?

Aerodynamic eficiency

OT&F1

?40 1&0 1&0 2:)0 2&0 24.0 2&0 280
Air vehicle speed, m/s
Fig. A4.9. Aerodynamitfieiency of norvariable and variable wings for wing lopg 400, 600, 800,
1000 kg/nf, wing dragl = 0.02, body dra@s, = 0.08, wing ratio 10.

Optimal engine control for constant flight pass angle

Let us to consider equations (A4¢ljA4.5) br a constant angle of trajectorg,= const. Substituting
= constant, thrusT = \¥b, and a new independent variabe= Vi{wheresis the length of the
trajectory)into the equation system (A4.%)(A4.5). We obtain the following equations

d_L =coyy ,

ds

d— =sing

ds

av _ V.(hV)b- D(a,V,h) ) gsinq,

ds mV \Y; (A4.91)c (A4.96)
dm__ 1,

ds \%

2

Y(a,V,h)- gmcogy + mv +2mVw; cog ¢ =0,

o¢oHLe b,
Equation (A4.95) is used to substitute foin equation (A4.93) and for a change of air drag
D(a,V,h)=D(V,h). (A4.97)

We find a noHdinear system with a linear fuel contrél This means theystem can have a singular
solution.
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Solution
Consider the maximum range for vehicles described by equation (A2(82)96).

Let us write the Hamiltoniahl

) ev,(hV)b-D\V,h) g . @ 1
H=cogy+/,sing+/,z:= -=singy-1.—b A4.98
37 1 q 28 mV V qH 3V ( )

where /,(9),/,(S),/ ;(s) are unknown multipliers. Applicatiosf conventional methods gives

8 1@Vb-DV.Y) . & Dig , 1
p= M, e 1E. - gsingo- —L- 1,—=b
TTw o VIR m IENTY vl v
p=Wl_, Veb-D (A4.99)c (A4.101)

(&)

=maxH = bmxsign[lzve - /3m] .
b

Where Dj is the first partial derivate db by V.

The last equation shows that the fuel conttotan have only two value$p,... We consider the
singular cae when

A=/N, - /,mt0. (A4.102)

This equation has two unknown variablésand/ ;, and does not contain information about fuel
control b.

The first two equations (A4.9%)(A4.92) do not depend on variabls and can be irdtzd
L = 0y, (A4.103)
H = ssing. (A4.104)

In accordance with the Referenédst us differentiate equation (A4.102) by the independent variable
After substitution into equations (A4.98)(A4.95), (A4.97), (A4.99), (A4.100), (A2)Land (A4.104) we
obtain the relation for/,, 0,/5, O:

A=VD- m\Dj, +V,(- D- mgsing +VDy) - Wj, (D - mgsing) + mV3/j, =0. (A4.105)

This equation also does not contamhowever it does contain an important relation between
variableam, h andV, on an optimal trajectory. This is addnentional surface. If we know

D=0hV), (A4.106)

Vo= \4hV), (A4.107)



100

The mass of our apparatus, and its altitudeh, we can find the optimal flight speed. This means we can
calculate the necessary thrust and the fuel consumption for epeigt m, h, V (Fig. A4.10).

If we want to find an equation for the fuel contrb)we continue to differentiate equation (A4.105) to
find the independent variablsand substitute in equations (A4.94)A4.104). If we calculate the
relation forb,if /,, 0,/3, 0,V.=const, then

lﬁ(D +mgsing) - mvﬁ

(A4.108)
VK - mAj

where

(A4.109)

B

=

T

Fig. A4.10. Optimal fuel consumption of flight vehicles.

The necessary condition of the optimal trefery as it is shown in the Referenédqsee for example,
equation (4.2)) is

d2k o

52 0. (A4.110)

dO%

H
G Ms =
wherek = 1.

If the flight is horizontalg = 0), the expression (A4.108) is very simply

= (A4.111)

This meanshe thrust equals the drag, a fact that is well known in aerodynamic science.
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To obtain the specific equations for different forms of drag and thrust, we must take formulas (or
graphs) for subsonic, transonic, supersonic and hypersonic speetrimst &nd substitute them into
the equations (A4.105) and (A4.108).

Simultaneous optimization of the path angle and fuel consumption

Consider the case where the path angle and the fuel consumption are simultaneously optimized.
In this case the general agtions (A4.1}; (A4.5) have the form:

dL _
<
dh _
e
dv _V.(h,V)b- D(mV,h) g

ds =y - \70 , (A4.112)c (A4.116)
dm _
e

1,

2

L
Y,
h) =

Y(a,V. mg+ mv_ . 2mV; coy ¢ .

Let us write the Hamiltonian

av,(h,V)b- D(mV,h Q
H :1+/lq+/zgee( ’ )bmv (mV.h) 3‘78' /S%b. (A4.117)

The necessary conditions of optima give

A:E:
Hg
B=%:ve/2- m/, =0,

v/, -9/,=0,
(A4.118)c (A4.119)

The lambda equatius are
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&V, b- D,V - (V.b- D o
o= ﬂv - /zg(\/e,v Vn?1v2 (Ve )+\%qg- /3\%17, (A4.120) (A4.122)
g
fio M _, Vib-D+mDj,
um m’V

If we differentiateA (A4.118), frondA/ds =0, we find the optimal fuel consumption

. 2/ -
= OWi-VIDi (A4.123)
9(Ve +Vd,V) - VdV
Then we differentiatdB (A4.119), frondB/ds =0 we find the optimal path angl
Vj,D-V.Dj-V.D/V- D+nDj
- VDo Vel - Ve h (A4.124)

m(g +V4,V - Vi, 9)

We have used the conventional forms for the partial derivatives in (A4 (R0)124) as in the earlier
sections of the chapter (see for example (A4.51)).

If we know from analytical formulas or graphical ftions Ve D, Ywe can find the optimal trajectory
of the air vehicle.

In the general case, this trajectory includes four parts:

Moving between limitationgyand b.

Moving between one limitatiomyor 6 and one optimal controb or g.
Moving simultaneosly with both optimal controlgyand 4.

Moving at a given point along one limitation and/or both limitations

PR

Application to aircraft, rocket missiles, and cannon projectiles

A) Application to rocket vehicles and missiles

Let usapply the previous restd totypical current middleand longdistance rockets with
warhead. We will show: ifthewarhead has wings and uses the optimal trajectory, the range of
thewarhead (oits useful load) is increased dramatically in most sa®¢e will compute the
optimd trajectories for a rockdaunched warheaat a particular altitude (2860 km) and speed

(i 7.5 km/s). Bint B is located on the curve (A4.btr a fixedwingandn curve (A4. 73

a variable wing (Fg. A4.11). Futther, the winged warhead flies &end} alongthe optimal
trajectoryBD (Fig. A4.58) according to equations (A4)8xed wing) or equations (A4.336
(variable wing) respectively. Whehe speed is reduced bysmd amount (for example, 1 kn¥/s
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(pointD in Fig. A4.1)), the winggdwarhead glides (distancBE in Fig. A4.1J).

- T
! i 1w Urptimal heallistic frajectory

§ ), without air drag tip E

.l
t7 B K. o H.r_""
R -

Fig. A4.11. Trajectory of flying vehicles.

The following equations are used for computation:
1. The optimal trajectory fora fixed wingspace vehicle.

a) Equation (A4.58is usedo cdculateh = h(V) to find theoptimal trajectory ok warhead
with anon variable fixed wing in the speed intervakd < 7.5 km/s The result is
presented in Fig. A4.7

b) Equation (A4.54) givethe magnitudeld/m).

c) The guation (A4.7%in theform

VDV Dh g-V//R
— , =S , = k==2_"0"_"" , =hk, A4.12
R (D/m)+gg R B g DR, D/m R =h ( )
is used for computation in the intervédg Ry (Fig. A4.11) HereRy is the range of a
gliding vehicle.

d) Equation (A4.7%is usedo calculateR, in the launch intervahB (Fig. A4.11)
e) The full rangeR, of awarhead with aixed wing and the full ballistic warhead ranégg,
are

R=R +R +R,, R,=2R. (A4.126

f) Equation (A4.8%is usedo calculatahe optimalballistic trajectoryof a shotwithout air
drag @ vehiclewithout wings). The range of this trajectory, asstknown, may be
significantly more thatherange in the atmosphere.
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s = 2
x10° €, =0.02,C, =0.025, p=600 kgim

4 T v
OT-F52

A3 L a3 1
- non variable area
-~ optimal ballistic trajectory

Range, km

Initial rocket speed, km/s

Fig. A4.12 Range of NONVARIABLE wing vehicle for body drag coefficier@, = 0.02, wing
drag coefficienCq = 0.025, wing loagh = 600 kg/n.

Cb = 0.02, wing drag coefficient C g 0.025, wing load p = 600 kglm2

OT-F&

55

13

454

4+

Relative range

35F

aF

25

2 3 4 5 6 7 8
Initial maximum rocket speed, km/s

Fig. A4.12. The relative rangéanon-variable wing vehicle for the body drag coeffici€ht 0.02, wing
drag coefficieniG, = 0.025, wing loag@ = 600 kg/m, body load?, = 310 ton/m?.

The esult are presented in Fig. A4.12. Computation ofréhative range (for differen,)
using theformula

R =—" (A4.127)






