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Abstract     

  The book consists of three parts. The first part describes new method of optimization that has the 

advantages at greater generality and flexibility as well as the ability to solve complex problems which 

other methods cannot solve.  

  ¢Ƙƛǎ ƳŜǘƘƻŘΣ ŎŀƭƭŜŘ ǘƘŜ άaŜǘƘƻŘ ƻŦ 5ŜŦƻǊƳŀǘƛƻƴ ƻŦ CǳƴŎǘƛƻƴŀƭ ό9ȄǘǊŜƳŜύέΣ ǎƻƭǾŜǎ ŦƻǊ ŀ ǘƻǘŀƭ ƳƛƴƛƳǳƳ 

and finds a solution set near the optimum. Solutions found by this method can be exact or approximate. 

Most other methods solve only for a unique local minimum. The ability to create a set of solutions 

rather than a unique solution has important practical ramifications in many designs, economic and 

scientific problems because a unique solution usually is difficult to realize in practice. 

  This method has the additional virtue of a simple proof, one that is useful for studying other methods 

of optimization, since most other methods can be delivered from the Method of Deformation.  

  The mathematical methods used in the book allow calculating special slipping and breaking optimal 

curves, which are often encountered in problems of optimal control. 

  The author also describes the solution of boundary problems in optimization theory. 

  The mathematical theory is illustrated by several examples. The book is replete with exercises and can 

be used as a text-book for graduate courses. In fact the author has lectured on this theory using this 

book for graduate and post-graduate students in Moscow Technical University. 

  The second part of the book is devoted to applications of this method to technical problems in aviation, 

space, aeronautics, control, automation, structural design, economic, games, theory of counter strategy 

and etc. Some of the aviation, aeronautic, and control problems are examined: minimization of energy, 

exact control, fuel consumption, heating of re-entry space ship in the atmosphere of planets, the 

problems of a range of aircraft, rockets, dirigibles, and etc. 

   Some of the economic problems are considered, for example, the problems of a highest productivity, 

the problem of integer programming and the problem of linear programming. 

  Many economic problems may be solved by the application of the Method to the Problems of non-

cooperative games. 
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 The third part of the book contains solutions of complex problems: optimal thrust angle for different 

flight regimes, optimal trajectories of aircraft, aerospace vehicles, and space ships, design of optimal 

regulator, linear problems of optimal control. 

  This book is intended for designers, engineers, researchers, as well as specialists working on problems 

of optimal control, planning, or the choosing of optimal strategy. 

  For engineers the book provides methods of computation of the optimal construction and control 

mechanisms, and optimal flight trajectories. 

  In addition, the book will be useful to students of mathematics, general engineering, and economic.   
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        Part 1 

Mathematical Base of the Optimization Methods 

       Abstract 

 A new method of optimization by means of a redefinition of the function over a wider set and a 

deformation of the function on the initial and additional sets is proposed. 

  The method (a) reduces the initial complex problem of optimization to series of simplified problems, 

(b) finds the subsets containing the point of global minimum and finds the subsets containing better 

solutions that the given one, and (c) obtains a lower estimation of the global minimum. 

Introduction 

 The classical approaches this problem is following: 

Problem A. Find a minimum of the given function. 

  Together with problem A the following problems are considered: 

Problem B. Find a smaller subset contains the all points of the global minimum. 

Problem C. Find a subset of better solutions where the function is less that given value. 

Problem D. Find a lower estimation of function. 

  These non-classical approach B,C, and D require innovative methods, different from the well-known 

methods. 

  The author offers a new mathematical methods for the solution of these problems. 

  The new methods have turned out to be much more general, so that while solving one of the above 

problems, another may be solved in passing, which may help in the solution of the former. Thus, if a 

satisfactory lower estimate found, it can be compared with various engineering solutions and give rise to 

one very close to the optimum. 

  This method is applied to many mathematical problems of optimization. For example, functions of 

several variable, constrained optimization, linear and nonlinear programming, multivariable nonlinear 

problems described by regular differential equations and equations in partial derivatives, etc. 

  One can easy get from the given method to many well-known methods of optimization, for example, 

Lagrangian multiplier method, the penalty function method, the classical variational method, 

tƻƴǘǊŀƎƛƴΩǎ ǇǊƛƴŎƛǇƭŜ ƻŦ ƳŀȄƛƳǳƳΣ ŘȅƴŀƳƛŎ ǇǊƻƎǊŀƳƳƛƴƎ ŀƴŘ ƻǘƘŜrs. 
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  At present, the most of researchers in optimization fields are using the traditional optimization 

problem ς find a minimum of the given functional (Problem A). They look a single, local minimum. An 

engineer, however, is usually interested in a subset of quasi-optimal solutions. He must make sure that 

the optimum does not exceed a given value (Problem C). Also, a good estimation from below will 

indicate how far a given solution is from the optimum solution (Problem D). An addition an engineer 

usually has other considerations that cannot be introduced into a mathematical model or can lead to 

impractical complications. Approach C provides him with some choice. 

  Problem D is also of particular interest. If an estimate from bottom closes to the exact infinum  of the 

function is found, the optimization can frequently be reduced to finding a quasi-optimal solution by trial 

and error. 

  Solution of the Problem B can significantly simplify the solution of any of the above problems, since it 

narrows the set containing optimal solution. 

  These non-classical Problems B.C. and D require innovative methods, different from the well-known 

method of variational calculus, maximum principle and dynamic programming. This new method is 

general, so that while solving one of the above problems, another may be solved in passing, which may 

help in the solution of the former. Thus, if a satisfactory estimate from below has been found, it can be 

compared with various engineering solutions and give rise to one very close to the optimum. 

 Our reasoning in this book is not complex. But we are using symbolic of set Theory, which many 

engineers forget. That way we are given these information in Appendix A of the book. 

 

 In Book we are using the double numbering of formulae, theorems and drawings. The first figure in 

nubbering formule or theorem notes the number of paragraph, the second figure is number formula or 

theorem in this paragraph. The first figure of drawings means the number of chapter, the second is the 

number of drawing. 

Chapter 1 

Methods of ♫ and ♬ functions 

§1. Methods of ♫ functions 

1. Statement of the Problem. Main theorems. Algorithm 1. 
 

  10. Statement of the Task. Assume that the state of the system is described by element x. A series of 

these elements form the set X={x}. The numerical function I(x) (functional) is defined and bounded by its 

lower estimate over X. The relationships and limitations imposed on the system yield a subset  XX Ì*

. 
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 Traditionally the problem of optimization has been set as follows: 

A. Find a point of the minimum of the function I(x) over the set X*. 
We shall also consider the following problems: 

B. Find a smaller subset *XM Ë  that contains point x* of global (absolute) minimum, Mx Í* . 

C. Find a subset *XNË on which LόȄύҖ c, where c җ I(x). 
D. Find the lower estimates of I(x) over X*. 
We will name the point (element) x the solution if x is result any presses, procedure, calculation or 

reasoning. It not means that x is point of optimum. We will tell the point x1 is better solution than the 

point x2, if I(x1) < I(x2) and the point of the same solution, if I(x1)=I(x2).  

For simplicity we assume that the point of global minimum x* exists in X*, but this is not impotent 

limitation. The most results can be obtained without this assumption. 

Let us introduce a set Y={y} and define a bounded numerical function (functional) ʲόȄΣȅύ over X³Y. 

We shall call it ̡-functional. 

Then we set 

).,()(),( yxxIyxJ b+=  

Call our initial problem of finding x* and ** ,)(inf)( XxmxIxI Í==     Problem 1 

and the problem of finding x and 

                  XxyxxIyyxJ Í+= )],,()(inf[)),(( b     Problem 2 

We assume that )(yx  exist over X³Y.  

We deformed arbitrarily our functional I(x) by adding ̡ όȄΣȅ). Moreover we widened the domain of 

the deformed functional and arbitrarily defined it on the set Y. we should do so in such a way that 

problem 2 will be easier to solve. 

It might seem that this makes no sense because we must find the points of minimum of our initial 

functional I(x), i.e., solve Problem 1. But it appears that from the solution of the simpler Problem 2 we 

can obtain information about Problem 1. We can use freedom in choice of   the functional ʲόȄΣȅύ and the 

set Y for such a deformation of functional J(x,y) and the set Y that we solve the initial Problem 1, but in 

an easier way. 

20. The Fundamental Theorem. The following main theorem establishes the relationship between 

Problem 1 and 2, as well as between Problems A, B, and C (The Principle 1 of Optimum). 

Theorem 1.1. Distinguishing between the sets containing: (1) The global minimum points, (2) only 

better solutions than the one given, (3) only worse solutions than one given. 
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Assume )(,* yxXX ¹  are the points of global minimum in Problem 2. Then: 

(1) The points of global minimum in Problem 1 are contained in the set 
};),),((),(:{ YyyyxyxxM Í²= bb  

(2) The set  

},:{ YyIJIJxN Í+¢+=  

      contains the same or better solutions (that is over N, we have )()( xIxI ¢  ); 

(3) The set  
};),),((),(:{ YyyyxyxxP Í¢= bb  

     contains the same or worse solutions (that is over P   )()( xIxI ²  ). 

 

Proof. 3. By subtracting the inequality 

)()()),(())((),()()),((),( xIxIgetweyyxyxIyxxIfromyyxyx ²+²+¢ bbbb  

over P. Point 3 of the theorem is proved. 

1. Point 1 of Theorem 1 is obvious because X=M+P and xIxI ()( ² ) over P, we have Mx Í* . Point 1 

of the theorem is proved. 

2. By subtracting the inequality )()( xIxIgetweIJIJfromJJ ¢+¢+² over N. 

Point 2 of the theorem is proved. 
Theorem 1 is proved. 

 

   If in sets N and P we write the strong inequality bb> , then the set N will contain only better 

solutions and the set P will contain worse solutions that xI ( ). 

   Theorem 1.1 is correct when X*  ̧X, but M,N,P contain elements from X*. 

Let us focus our attention on the fact that after solving the simpler Problem 2, we distinguished in our 

set X three subset: M, which contains a point of global minimum, subset P, containing the same or 

worse solutions, and subset N, which contains the same or better solutions. 

 Consequences: 

1. Element x  is the point of global minimum of the functional over the set PÌX. 

2. x  is the element which gives the maximum of the  functional I(x) over the set NËX. 

3. If X*Ì P, then x  is the point if global minimum Problem 1 over set X*. In this case we have M={x}. 
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4. If ̡ ҐʲόȄύ, xÍX, then 

   )},()(:{ xxxM bb ²=  )},()(:{ xxxP bb ¢= IJIJxN +²+= :{ . 

   Theorem 1 is correct when X*  ̧X, but M,N,P contain element from X*. 

5. Let X*  ̧X. If X*ÆM=Å, then )(xI  is the lower estimation I(x) over the set X* (because in this case we 

have X*Ì P). 

6. Let X*  ̧X. If X*Ë N, then )(xI  is the top estimation I(x) Җ )(xI  over the set X*. 

If xÍX*, the sets M,N,P will always contain at least one element from the set X*. This element is x . 

Remarks: 

1. NÌ M. The proof: Let us denote 
o

P =P-{ x }.  Then 
o

PÆ N=Å, because over 
o

P we have I(x)>I(x ) 

and over N we have I(x) Җ I( x ). But NË X and M=X-
o

P . Hence NÌ M. 
2. Assume the definitions of the sets N, P (see Theorem 1) contain strong inequalities. Then the set 

N will contain on; y better solutions and the set P ς only worse solutions, compared to x . 
3. We can use the dependence of the sets M,N,P from y ƛƴ ƻǊŘŜǊ ǘƻ ŎƘŀƴƎŜ ǘƘŜ άŘƛƳŜƴǎƛƻƴǎέ ƻŦ 

these sets. 
4.  ̡- functions exist and their number is infinite.  

The last statement is obvious because we can define -̡functionals over the set X³Y in any 

possible way. 

   The theorem 1 gives the Algorithm 1 (a ̡ -functional method for finding the subsets that contains the 

points of global minimum or better solutions). 

  Algorithm 1. 5ŜŦƛƴŜ ʲi(x,y) so that Problem 2 becomes easier to solve, and find sets Mi and Ni. Then 

M=Æ Mi (that is not empty) is the set that contains the points of global minimum and N=ÆNi (if that is 

not empty) is subset contains min )}({ ixI or better solutions. 

  Note: The getting M ƛǎ ƳƻǊŜ άƴŀǊǊƻǿέ όŎƻntains less points x) subset then initial M. That means the 

finding x* is easier. The decreasing of M ƛǎ ŜǎǇŜŎƛŀƭƭȅ ƛƳǇƻǊǘŀƴǘ ƛƴ ŀ άƳŜǘƘƻŘ ƻŦ ŘȅƴŀƳƛŎ ǇǊƻƎǊŀƳƳƛƴƎέ 

because it is decreasing the number of computation. 

  Theorem 1.2. (The lower estimate) Let uǎ ŀǎǎǳƳŜ ǘƘŀǘ ʲόȄΣȅύ ƛǎ ŀ defined and bounded functional over 

X³Y  then the lower estimate over X is 

)],(sup)),(())(([)( yxyyxyxIxI
X

bb -+²     for  YyÍ" .   (1.1) 

Proof: By adding the inequalities 

),(sup),()),(()(),()( yxyxandyyxxIyxxI
X

bbbb -²-+²+  
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           over X, we get the estimate (1.2). 

Remarks: 

      1. For case ̡ Ґ ʲόȄύ the estimate (1.1) is 

)(sup)(inf)( xxJxI
XX
b-²  ,     όмΦмΩύ 

2. When X ̧  X* the estimate (1.1) is correct over X*, because X*Ì X. In this case we can use the 
better estimates: 

),(sup)(inf)(
*

xxJxI
XX
b-²    ),(sup)(inf)(

*

xxJxI
XX
b-²    ),(sup)(inf)(

*
*

xxJxI
XX
b-²   όмΦмέύ 

  When we found the set M for ̡ i the following estimate may be used 

   ),(sup)(inf)(
*

xxJxI
MX
b-²      όмΦмΩέύ 

  ¢ƘŜ ǇǊƻƻŦ ƻŦ όмΦмΩύΣ όмΦмέύΣ όмΦмΩέύ ƛǎ ǎŀƳŜ ǘƘŜ ǇǊƻƻŦ ƻŦ ǘƘŜƻǊŜƳ мΦнΦ 

3. Dependence of the estimate (1.1) from y may be used for its improving 

)],(sup)(inf[sup)(
*

xxJxI
xxy

b-²     (1.1IV) 

  ²ƘŜƴ ǿŜ ǳǎŜ ǘƘŜ ŜǎǘƛƳŀǘŜǎ όмΦмΩύ - (1.1IV) we decide  the problem bb
X

sup=
%

. It may be used for 

  Theorem 1.3. Assume X=X*, x  is point of a global minimum in the problem bb
X

sup=
%

, 

Then: 

1) The points of global minimum in Problem 1 are contained in the set 
 

    Contains the same or better solutions. 
2) The set  

    

 

3)  The set 

 

 

Contains the same or worse solutions. 

},:{)( YyIIxyM Í+¢+= bb
%%

},:{)( YyIIxyN Í-²-=
%%

bb

},:{)( YyIIxyP Í+²+= bb
%%
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  Here is )(xII
%%

= . 

Proof of Theorem 1.3. 

1, 3. By subtracting the inequality bb
%
¢  from bb

%%
+²+ II  we get II

%
² over set P. 

        The statement 1, 2 follow from this. 

2. By subtracting the inequality bb
%
²  from bb

%%
-²- II  and multiply this result by -1,  

       we get II
%
¢ over N. The theorem 1,3 is proofed.  

Remark: 

 For proof of the theorems 1.1-1.3 the existence of  x, x , x
%

 is not important, but corresponding inf and 

sup must be existed. 

Example 1.1. 

Find minimum of functional 

¤<<¤-
+-

--= - x
xx

xeI x ,
12.0

1.0
cos

2

24

,  (1.2) 

Solution. Take 

       
12.0

1.0
)(

2 +-
=

xx
xb . 

Then 

2cos
4

xeIJ x-=+= b . 

  The minimum of this J is obvious: .0=x  

  From theorem 1.1 we got the point of the global minimum is in set 

M={x: ‍(ὼ) ‍(0)} 

or 

1.0
12.0

1,0
2

²
+- xx

 , 

  The solution of this inequality is 

лҖ x ҖлΦн Φ 

  LǘΩǎ ƴƻǘ ŘƛŦŦƛŎǳƭǘ ǘƻ ŦƛƴŘ ǘƘŜ Ǉƻƛƴǘ ƻŦ Ǝƭƻōŀƭ ƳƛƴƛƳǳƳ ƛƴ ǘƘƛǎ ǎƳŀƭƭ ƛƴǘŜǊǾŀƭ ōȅ ŀƴȅ ƪƴƻǿƴ ƳŜǘƘƻŘΦ 

     We get the lower estimate (theorem 1.2) 
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101.1101.01sup)0( -=--=- b
x

J . 

  Value I(0) = -1.100 . We see I(x) for x = 0 is very close to global minimum. 

Example 1.2 

  Find minimum 

¤<<¤--+
+-

-= xxx
xx

I ,2cos44cos
102

1.0
2

pp  (1.3) 

Solution: We take 

xxx ppb 2cos44cos)( +-=  . 

Then  

.1,
102

1.0
2

=
+-

=+= x
xx

IJ b  

  This solution is global minimum of Problem1 over set 

t Ґ ϑȄΥ ʲόȄύ Ґ ʲόмύϒ 

or  

32cos44cos ¢+- xx pp . 

  We transform this inequality in 

-8sin4 x̄ Җ л Φ 

  We see P ={x: |x|<¤}. Therefore P=X*. That means (see Consequence 1) x =1 is point (and alone) of 

global minimum of the functional (1.3). 

Example 1.3 . 

  More full, we are demonstrating the new method on following simple functional. 

  Find the absolute minimum of the functional  

     I=2x4+x2-2x+1  on the set X*={x: |x|<¤} .    (1.4) 

   It is a simple example, which can be solved using well-known methods. For example, take the first 

derivative, make it equal to zero. Solve an algebraic 3-d  order equation (it may not be a simple task) and 

then analyze the points so found with respect to maximum and minimum. 

  We shall try to solve this example by the above method as it follows from algorithm 1. 
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 Let us introduce a series ̡i(x). As follows from Theorem 1.1 we have the sets Mi: 

1) Take ̡ 1=2x. Then 

}0:{havewefrom,0,12 1

24

1 ²=²=++=+= xxMxxxIJ bbb . 

As we see the domain which contain a global minimum have become less in two times. 

2) Take ̡ 2= -x2+2x. Then 

}20:{havewefrom,0,12 1

4

2 ¢¢=²=+=+= xxMxxIJ bbb . 

hǳǊ ƛƴǘŜǊǾŀƭ ŎƻƴǘŀƛƴŜŘ ŀ Ǝƭƻōŀƭ ƳƛƴƛƳǳƳ ƛǎ ƻƴƭȅ лҖxҖнΦ 

  For given ̡2 we can use an estimation of the functional which follows from Theorem 1.2. 

011)2(sup1)(sup)()( 2

2 =-=+--=-² xxxxJxI
XX

b , 

where the point of supreme of ̡ is 1=x
%

. 

 From theorem 1.3 we have the additional set M: 

}1:{)}()(:{ 33 ¢=¢= xxMorxJxJxM
%

. 

 As we see the set  }10:{32 ¢¢=Æ= xxMMM , The global minimum of this problem is in the 

ƛƴǘŜǊǾŀƭ лҖxҖмΦ 

3) Take 5.022 2

3 -+= xxb . Then 5.02 24

3 --=+= xxIJ b . From inf J we have 5.02,1 @=x . 

4) Find for point x1 set M: 

}5.15.0:{,5.0 41 ¢¢-=-= xxMx , 

}5.05.0:{,5.0 52 ¢¢== xxMx  . 

  The estimation gives I(x )җ оκу ς 0 = 3/8 . 

  We see that the diameter of the set M=ÆMi decreases until reduces in the point 5.0=x . Therefore 

this point is one of the absolute minimum of the Problem 1 and I(0.5) = 3/8 . 

 

50. The geometric illustration of Theorem 1.1 is given in fig, 1.1 for single variable. The curves I(x), J(x), 

ʲόȄύΣ LόȄύҌлΦр ʲόȄύ and point x  are drawn. There are the sets M, N, P.  P is set x, where  

)()( xx bb ¢ , M is set X\P and N is set x, where )(5.0)()(5.0)( xxJxxJ bb +¢+ . 

  We can see that NË M.  

In fig.1.2 we see sets M, N, P for the case when I(x1,x2) is function of two variables x1 and x2. 
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                 Fig. 1.      Fig. 2. 

 

Fig.1.1. Geometric illustration of Theorem 1.1 for case of single variable. 

Fig.1.2. Sets M, N, P for case of two variable. 

2. About Convergence of Algorithm 1. 

 Consider condition of convergence **),(inf),(inf
8

xtoxandXxxJtoXxxJ
XxXx

ÍÍ
ÍÍ

  

for Algorithm 1. when we have the succession i̡(x), I Ґ мΣнΣΧ  ¢Ƙƛǎ ǎǳŎŎŜǎǎƛƻƴ ƎƛǾŜǎ ǘƘŜ ǎǳŎŎŜǎǎƛƻƴ ƻŦ ǘƘŜ 

sets Mi, Ni and values of functionals )( ixJ . 

  The succession )}({inf ixJ  

For i ­ ¤ ƛǎ Ƴƻƴƻǘƻƴƻǳǎ ŘŜŎǊŜŀǎƛƴƎ ŀƴŘ ōƻǳƴŘŜŘ ƻŦ ōƻǘǘƻƳΣ ǘƘŀǘΩǎ ǿŀȅ ƛǘ Ƙŀǎ ŀ ƭƛƳƛǘΦ LŦ ǘƘƛǎ ƭƛƳƛǘ Ŝǉǳŀƭǎ 

one of lower estimates, that )()( *xIxJ =  . 

  Let us to consider now convergence of diameter d(M), d(N) of sets M=ÆMi, N=ÆNi for i­¤. 

This convergence is also monotonous decreasing and bounded of bottom: d җ лΦ ¢ƘŜǊŜŦƻǊŜ ƛǘ Ƙŀǎ ŀ ƭƛƳƛǘΦ 
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  We have got the following simply criterian of convergence 

  Theorem 1.4. Assume, the point of the absolute minimum of functional I(x) over set X=X* is single. 

     If d(M)­0, than x=limM(i)=x*, i­¤. 

  In this case the set contained of point of global minimum M=ÆMi decrease in point. Therefore this 

point is the point of the absolute minimum of Problem 1. 

  Let us take succession of function Ws(x), s ҐмΣнΣΧ Φ ¢ŀƪŜ )(xib  as  

)(
1

xWc s

i

s

si ä
=

=b      (1.5) 

where cs is constants. 

We will take these constants cs from condition 

)](sup)(inf)([min xxJxI i
XX

ii
c

i b+-=D . 

  ¢ƘŜ ǾŀƭǳŜ ҟL ƛǎ ŘƛŦŦŜǊŜƴŎŜ ŦǳƴŎǘƛƻƴŀƭ ŦǊƻƳ ƛǘǎ ƭƻǿŜǊ ŜǎǘƛƳŀǘŜΦ hǘƘŜǊ ǿƻǊŘǎ ǾŀƭǳŜ ҟ ǎƘƻǿ Ƙƻǿ ƳǳŎƘ 

value )( ixI  ŘƛŦŦŜǊǎ ŦǊƻƳ ƻǇǘƛƳǳƳΦ ²Ŝ ƴŀƳŜ ǘƘƛǎ ƴǳƳōŜǊ ҟ-estimate (delta-estimate). It is obvious that 

succession ϑҟi} is monotonous decreasing because every next sum (1.5) contains previous sum. It is also 

limited of bottom (ҟiҗлύΦ ¢ƘŜǊŜŦƻǊŜ ǘƘŜ ǎǳŎŎŜǎǎƛƻƴ  ϑҟi} converge.  

  From destination ҟi  we get the following 

Theorem 1.5. LŦ ҟi ­0  Than )(inf)(inf
*

xIxJ
XX

­ .       

Theorem 1.6. Assume ·Ґ·ϝΣ ʲi=ciʲόȄύΣ LόȄύΣ ʲόȄύ ƛǎ Ŏƻƴǘƛƴǳƻǳǎ ŀƴŘ ʲόȄύ ƛǎ ƭƛƳƛǘŜŘ ƻƴ ·Φ 

Then, if ci­ 0  we have J(x)­ m=inf I(x) over X*.  

  Statement of Theorem 1.6 follows from continuous J(x). 

  This theorem may be useful for finding of the local minimum of I(x) by way of methods of successive 

approximations. Assume c1=1 and problem inf J(x) can decided simply. Because functional J(x) is 

continuous, we can wait, that small change of c give small changing (moving) x . 

Therefore x  is good the initial approximation for c2 < c1. It is known, that a good initial approximation is 

very important for speed of convergence. We come to x* by decreasing c to 0. 

  These criterions of convergence may be used for solutions Problem A, B, C, D (see §1,A). 
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3. Modification of the Theorem 1.1 
 

  Over we have considered the case, when we are looking for the additional function b(x,y) such us the 

problem 2 became simpler for solution. 

  But sometimes it's more comfatable to take such function J(x,y) that the problem ),(inf yxJ
X

 became 

easy for solution. 

 In this case Theorem 1.1. better to write as following 

Theorem 1.1'. Assume )(,
_

yxXX ¹¶  is the point of global minimum in Problem 2  .
     

                                                        
).(inf

_

yxJ
X

J=
   

 

Then  

1) The points of global minimum in Problem 1 are contained in the set 

   },:{)(
__

YyIJIJxyM Í-²-= . 

2) The set 

   },:{)(
__

YyIJIJxyN Í+¢+=  

 Contains the better or same solutions. 

3) The set 

   },:{)(
__

YyIJIJxyP Í-¢-=  

 Contains worse or same solutions. 

 

This Theorem is correct if J = kJ1, where k = const>0. 

4. Method of big steps in set of better solutions. Algorithm2. 
 

   From the Theorem 1.1 we can get the following  

Algorithm 2 (Method of big steps in set of better solutions) 

  Take any point x1 from X* and such function J1(x) that point x1  is its minimum. Find the set N1  of better 

solutions. Take from this set a point x2 and such function J2(x) that x2 is its minimum. Find the set N2 and 

so on. 
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  It is obvious that ...
321
ÉÉÉ NNN  . Let us suppose that result of this process is following - set Ni  

become point xN . 

Theorem 1.7. Assume X* is open set, I(x), Ji(x) are continuously and differential (of Freshe) on X*. 

Then point xN  is a stationary point of the function I(x) over X*. 

Proof in Appendix 4o of  Chapter 1.           

Theorem 1.8. If in point xN  we have   

)],()(sup[
*

)()( xIx
X

NN xIx -=- bb  

Then xN  is point of global minimum of Problem 1.                                                                     

Proof is in Appendix 5o of Chapter 1. 

   If conditions of Theorem 1.8 is executed only in small sphere around point xN then xN  is point of local 

minimum of Problem 1. 

  The example for illustration of this method (for tests of constrained minimum) will be given in § 4 

(remark 4.3). 

  We can get the direction in the set N, if we calcule a gradient of function in N. 

 The advantegies this method with comparison of gradient method is big steps. When you are in set N, 

you have not a danger of to get worthier solution than given one. This can substentionaly decrease 

amount of calculation. 

5. Method of b-function for Problems with constrains 

A) Assume I(x) is function by its lower estimate over set X. The subset X*  ̧Å is separated from X by 

functions 

qjxkixF
ji

,...,2,1,0)(,,...,2,10)( =¢F== ,   (1.6) 

where x - is n-dimentional vector of numerical values. 

  Take b-function as following (we have a sum for lower index i,j) 

)(),()(),(),( xyxxFyxyx
jjii
F+= wlb , 

where li(x,y), ),( yx
j
F  are functions of x,y, yÍY, .0),( ²yx

j
w  

  Write J-function  
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)(),()(),()(),( xyxxFyxxIyxJ
jjii
F++= wl .    (1.8) 

  Theorem 1.9. Assume exist x*ÍX*, y is fixed. 

In other x  to be a point of global minimum of function I(x) over X* necessary and enough to exist of 

function b(x,y) such as  

0),()4,0),()3,)2),,(inf
*

),()1 =²Í
Í

= yxXoveryxXxyxJ j
Xx

yxJ bw ,       (1.9) 

  The proof in Appendix 6o of Chapter 1. 

 

Theorem 1.10. (The lower estimation) 

 Assume y is fixed, x is point of minimum  (1.8) for conditions  0),( ²yx
j
w . 

Then ),( yxJ  is lower estimation of function I(x) on X*. 

Proof: On set X* we have 0,0 ¢F¹
jjii

F wl  (that is )0),( ¢yxb . Since over X* we have 

)(),( xIyxJ ¢ . Theorem is proved. 

 Likely a common case for b - function we can get the sets 

}:{},:{},:{ bbbb ¢=+¢+=²= xPIJIJxNxM #  

and in this case. 

  Freedom in choice of y we can use for improvement of estimation and decrease sizes of sets M, N. 

Remark only that )(yxx= and for every y corresponding  x  you must find  inf J(x,y), xÍX.  

Remark: 

  We can take b-function  (1.7) in form 

ä ä
= =

F
+=

k

i

q

j

x

i

jaxFax
1 1

)(2 )(
2

1
)(b . 

It is possible to show for some conditions:  [I(x), Fj(x), Fi(x) are continuous, x is compact set, x* is close 

set and don't contain separated points; x*ÍX* and exist], when a ­ ¤,  we have *, xxmJ =­ . 

B) Assume Fi(x) = 0 in (1.6) absent, i.e. the Problem is  

qjxxI
j

,...,2,1,0)(min,)( =¢F=  
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 For solution of this problem we can use following algorithm: 

1. Take any functions w (x,y) (it's may be less zero) and find the point )(yx of global minimum (one may 

be implicit form 0),( =yxx  ) of general numerical function 

 ä F+= XonxyxxIJ
jj

)(),()( w .    (1.12) 

2. Solve equations 

qjxyxyx
jj

,...,2,1,0)(),(,0),( ==F= wx     (1.13) 

3. Select from these solutions such which satisfy inequalities 

        qjyx
j

,...,2,1,0),( =²w .     (1.14) 

 These are points of global minimum of Problem (1.11) because all request the theorem 1.4 is satisfy. 

  We can solve (1.13) by different ways. For example, find x from equation 0),( =yxx  and substitute in 

the last equations (1.13) 

   qjyxyyx
jj

,...,2,1,0))(()),(( ==Fw     (1.15) 

Find y from this system of equations. Select from these solutions such which satisfy inequalities  

   qjyyx
j

,...,2,1,0)),(( =²w ,     (1.16) 

or we can find y from 0),( =yxx  and substitute in the last equations (1.13) and find x . 

  6. Application the method of b - functions to linear programming. 

  The Problem of Linear Programming is 

   mkbxaxcI
k

n

j
jkji

n

i
i

,...,2,1,0min,
11

=¢-== ää
==

   (1.17) 

Here kkji
bac ,,  are constant. 

  Take ij
y=w . Then equation (1.13) are 

    mkbxay
k

n

j
jkjk

,...,2,1,0)(
1

==-ä
=

    (1.18)  

    niyac
j

m

j
iji

,...,2,1,0
1

==+ä
=

     (1.19) 
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  Selective from (1.18) l equations max),,( =¢¢ lmlnl and l variables xj such that determinant 

0̧
kj

a . Find j
x~ from these l linear equations (1.18) (corresponded yk 0̧). 

   If this solution don't satisfy inequalities (1.17), we take l other equations and repeat this procedure 

(process) while we find jx~  which saticfy  (1.17). If these equations absent, we take l -1 equations (1.18) 

and repeat process, than l - 2 equations and so on, while we get l = 0. 

  If solution, which satisfy (1.17), absent that inequality (1.17) is conflicting (incompatible) and cannot be 
solved.  

  Assume that by using this procedure we find the solution jx~ , that satisfy (1.17). Take in (1.19) all yj, 

which don't belong the taken questions (1.18), equal zero and find y from equation (1.19). If all 0~ ²
j

y   

then j
x~  is point of minimum of problem (1.17). If part of 0~ <

j
y , then we change corresponded 

equations (1.18) by other and repeat this process while get all 0²j
y . 

  We can suppose that this process makes all 0~ ²
j

y . Inequality 0~ ²
j

y  means that anti-gradient has 

direction into internal of the corresponding constraints. Because our problem and constrains are linear, 

anti-gradient, which has direction into constrains, will has this direction in any point of corresponding 

hyper plate (1.17). It means that this procedure will increase the amount of 0²j
y . 

  Example 1.4.  

  Find minimum of Problem 

   01,01,0,0,
212121
¢-¢-¢-¢-+= xxxxxxI .  (1.20) 

The equations (1.18),(1.19) are 

    
.01,0)1(,0

,01,0)1(,0

422422

311311

=+-=-=-

-+-=-=-

yyxyxy

yyxyxy
   (1.21) 

 Chose equations 01,01
21
=-=- xx . From solution of them we have .1~,1~

21
== xx  They satisfy 

(1.20). From the first column of (1.21) we get y1 - y2 = 0, and from the last column (1.21) we find y3 = y4 = 

-1. Inequality yi ² 0 is not satisfied. Change equalities by others 0~,0~
21
== xx . We get 01~~

21
>==yy . 

Hence 0~~
21
==xx  is point of the global minimum. 

  Example 1.5. 

  Find point of global minimum in Problem 

     0,
2121
¢+--= xxxxI . 

Solution. Write equations (1.18),(1.19) 
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,1,0)(
21

yxxy +-=+  

From 0
21
=+xx  we get 

21

~~ xx -= . From  -1+y = 0 we get y = 1 > 0. Sence any 
21

~~ xx -=  is optimal. 

7. Application of method b-function to quadratic programming. 

This problem is following: 

  mkbxaxxcI
kjkjji

n

j

n

i
ij

,...,2,1,0,
1 1

=¢-= äää
= =

.       (1.22) 

  Assume that quadratic form in function (1.22) is positive. If don't consider constraints in (1.22), it is 

obvious the point of minimum in this problem is .0* =
j

x  If this point satisfy inequalities in (1.22), the 

process of solution is finished. In particular, we have this case when all bk ² 0. We consider not triviality 

case. Take jj
y=w . Equations (1.13) and (1.14) are: 

  0,0;,...,2,1,0)(
111

==+==- äää
===

kjk

m

j
lj

n

j
ijk

n

j
jkjk

yayxcnkibxay .  (1.23) 

  Later procedure is analogous of the Linear Programming.  

Example 1.6.   

 Problem are:  

    01,01,01,5.05.0
2121

2

2

2

1
¢-¢-¢+--+= xxxxxxI .  (1.24) 

 The equations (1.23)  

   
0,0

0)1(,0)1(,0)1(

212211

2212121

=+-=+-

=-=-=+--

yyxyyx

xyxyxxy
   (1.25) 

  Take the 2-nd and 3-rd equations. We get 1~~
21
==xx . The inequalities (1.24) are satisfied, but from two 

the last equations (1.25) for y1 = 0 we have 1~~
32
-==yy . It is contrary the request 0~ ²

i
y . 

  Take the 1-st equation in (1.25). We have 12

~1~ xx -= . Solve it together with equations 

0~~,0~~
1211
=-=- yxyx  we get 02/1~~,2/1~~

2121
>==== yyxx . Hence x1=x2=1/2 is point of global 

minimum. 

Appendix to #1. Proof of Theorems.  

1o. Proof of Theorem 1.1. Proof of: 

Statement 3. By subtracting the inequality )),((),( yyxyx bb ¢  from 

)),(())((),()( yyxyxIyxxI bb +²+  we get PxIxI over)()( ² . Statement 3 of the Theorem 1.1 is 

proved.  
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Statement 1 of the Theorem 1.1 is obvious because X=M+P and PxIxI over)()( ² , we have 

.* Mx Í Statement 1 of Theorem 1.1 is proved.  

Statement 2. By subtracting the inequality IJIJJJ +¢+² from  we get NxIxI over)()( ¢ . 

Theorem 1.1 is proved. 

2o. Proof of Theorem 1.2. By adding the inequality 

)),(())((),()( yyxyxIyxxI bb +²+  and  ),(sup),( yxyx
X

bb -²-  over X, we get the estimate (1.2). 

3o. Proof of Theorem 1.3.   Statements 1, 3. By subtracting the inequality bb Ĕ¢  from bb ĔĔ+²+ II  we 

get II Ĕ² over set P. Statement 1 follow from this. 

Statement 2. By subtracting the inequality bb Ĕ²  from II ĔĔ-²- bb and multiply this result by -1, we 

get  II Ĕ¢ over N, The theorem 1.3 is proved. 

4o. Proof of Theorem 1.7.  Assume N
x is point of the minimum of the objective function J(x).Therefore 

0)( =¡
N

xJ  because J(x) is continuously and differential, Nx is single point Ni on set X* since this is (see 

Theorem 1.1') 

)()()()(
NN

xJxIxJxI +²+ . 

This means that )]()([inf)( xJxIxJ
X

Ni
+= . The function I(x), J(x) are continuously and differential, hence 

0)()( =¡+¡
NN

xJxI . But 0)( =¡
N

xJ , therefore 0)( =¡
N

xI . Theorem 1.7 is proved. 

5o. Proof of Theorem 1.8. By subtracting the inequality N
bb² from  NN

II -¢- bb  we get N
II ² over 

set X*. The Theorem 1.8 is proved. 

6o. Proof of Theorem 1.9.  

Sufficiency. From "1)" of (1.9) we have 

jjiijjii
FIFI F++²F++ wlwl . 

From this and "4)" (1.9) we get IFI
jjii
²F++ wl . Look it inequality over X*. On X* we have 

0,0 ¢F=
jjii

F wl  hence )()( xIxI ² . Because *XxÍ  hence x  is the point of global minimum of I(x) 

on X*. 

Necessity. (Method of designing). Assume that Xx Í*  exists. Design b (x,y) following way. Take 
*on0 X

i
¹l and take functions 0, ²

ji
wl  such us  *\)( XXsetonmxJ > . Then we have as 

the result of our design 
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0,0,),(inf)( ***

*
=²Í=

Í
bw

j
Xx

XxxJxJ . 

The theorem 1.9 is proved. 

§2. Method of combining of the extremes. 

  Let us  to have the problems: 

Problem 1    ** ),(inf)( XxxIxI Í= ; 

Problem  2 XxxxIxJ Í+= )],()(inf[)( b ; 

Problem 3 .),(sup)Ĕ( Xxxx Í= bb  

  Assume that all points xxx Ĕ,,*  are exist. 

Theorem 2.1. Let X=X*, then  for every couple )Ĕ,(
ii

xx which satisfy the condition ii
xx Ĕ=  we have  

                                                                   *Ĕ
iii

xxx == . 

 Proof . Let ii
xx Ĕ=  Then 

   )()()()()()()(sup)(inf
iiiiii

xIxxxIxxJxxJ =--=-=- bbbb . 

 But with other side from Theorem 1.2  we have IxxJ inf)(sup)(inf ¢- b . That is )()( *xIxI
i
¢ . As x* 

is point of global minimum and X=X* hence must be only )()( *

ii
xIxI = . As far as ix  and *

i
x exist we can 

find the point of minimum *

i
x such that *

ii
xx = . Theorem 2.1 is proved. 

Theorem 2.2. Let X=X*.If exist at least one of the couple )Ĕ,(
ii

xx  such that 11
Ĕxx = , then in every point *

i
x

we have 

1) 
iiii

xxxx == ** )2,Ĕ . 

Proof.  1. Assume the contrast: *

ii
xx ¸ . Than summarize )Ĕ()()()()( **

iiiii
xxxandxIxI bbb =<=   

     we get )()( *

ii
xJxJ < . This contrasts )(inf)( xJxJ

i
= . 

2. Add )Ĕ()()()()( **

iiiii
xxxandxJxJ bbb ===  we get )()( *

ii
xJxJ = , hence 

ii
xx =* . Theorem  

    2.2 is proved. 

 

 From Thorems 2.1, 2.2 we have 

Consequence: 
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 If we want to find all points of minimum of Problem 1 it necessary and sufficiently to find all 

corresponding couple )Ĕ,(
ii

xx . 

  We shall call the Problems 1 and 2 equivalents if all correspondent points of minimum of these 

Problems are coincided.  

  From Theorem 2.2 we have: 

1. For equivalence of Problems 1, 2 is sufficient  to exist one couple such that 
ii

xx Ĕ= . 

2. Let exist b-functional and although one of couple )Ĕ,(
ii

xx  such that 
ii

xx Ĕ= . 

   Then any points of minimum of Problem 2 and point of maximum of Problem 3 is point of minimum of 

Problem 1, and back, any point of minimum of Problem 1 is point of minimum of Problem 2 and point of 

minimum of Problem 3. 

  Remarks: 

1. If )(inf)(infthen,0)( xIxJx ==b . 

2. If xx Ĕ= , then the lower estimate (1.1) in §1 coincide with infinum of the functional I(x). 

  From consequence 1 §2 we have the following 

Algorithm 3. (Method of combining the extremes) 

 Let us take some bounded functional b(x,y) where y is an element of the set Y. We solve this problem  

*)],,()(inf[ XxyxxI Í+b  

and find the point of minimum 

)(
11

yxx = . 

From  

),(sup yxb  

we find  

)(
22

yxx = . 

After this we equate 

    )()(
21

yxyx =     (2.1) 

and from this equation of the combination of extreme we find the roots yi.   
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  These roots are the points of minimum for Problem 1: 

)()(
21 ii

yxyxx ==  

  Since the Problem of finding of minimum is reduced to Problem of finding at least one root of equation 

of the combination of extremes (2.1). 

  The exist and difficulty of finding of roots dipend from chouse of b-functional, from freedom of its 

deformation, which give the "y" relation. 

  Note that is differ from the regular method  of finding of minimum. In the usual method  we take 

partial derivatives, equal its zero, get the set equation and from them we find only the stationary 

(extreme) points. They may be points local minimum, maximum, or inflection. By this method we find 

points of global minimum. 

  Thus we find the connect two various (different) problems. 

  The existence of solution in equation of the combination of extremes is sufficient condition for the 

existence of absolute minimum of functional in Problem 1. 

  The mathematic has good achievements in the field of existence of solution of equations. And equation 

(2.1) give connection between these problems and give some opportunity in solving of optimals 

problems. 

 Note also that equation (2.1) not requests that functional was continuous and differential function, 

hence it has wider domain for application. 

 If point of minimum cannot be get in explicit form than we can write this equation in form  

0),(,0),(
21

== yxyx jj ,                                           (2.1') 

where function j1, j2 are got from 

),(sup),,(inf yxyxJ
XX
b . 

Example 2.1. Find a point of minimum of functional 

¤<<¤-+-+= xxxxI ,122 24  

Solution: Use algorithm 3. Take 

xyx 22+-=b . 

Than 

1)1(2 24 +-+=+= xyxIJ b . 
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Denote x2=w and substitute in J: 

1)1(2 2 +-+= WywJ . 

Find point of minimum this functional 

                                              )1(
4

1
,0)1(4 2

1
-===-+=¡ yxwywJ

w
 

 and point of maximum functional b: 

                                           yxyxxyxx
x

/1,022,2)(
2

2 ==+-=¡+-= bb . 

Equate 
21

to xx  

)1)(2(4,
1

)1(
4

1 223

2

2

2

2

1
++-=--=-= yyyyy

y
yxx  

 This equation has only alone root 2=y . Since 
2

11
==

y
x . 

§3. Remark about g-functional 

A) Let us take  
     )(]1)([)( xIxx -=gb                                                    (3.1) 

then 

)()()( xxIxJ g= . 

  This form of common functional is sometimes more comfortable because we can chouse the 

multiplier to I(x) which make J(x) simpler. 

  Using  our results about b-functional for this case we get following: 

If X=X* and we finding the point of global minimum Problem 2: 

     )]()([inf)(inf xxIxJ
XX

g=                             (3.2) 

than 

1) Set 

},:{ XxIJIJxM Í-²-=  

   contains the point of global minimum of Problem 1; 

2) Set 
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},:{ XxIIIIxN Í+¢+= gg  

contains the better or same solutions than x  (that is over N, we have )()( xIxI ¢ ); 

3) Set 

},:{ XxIJIJxP Í-¢-=  

contains the worse or same solutions than x (that is over P, we have )()( xIxI ² ). 

 

  All these statement follow from (3.1) and Theorem 1.1. 

Lower estimate (from Theorem 1.3 and (3.1) look as  

    )(supinf)( IJJxI
XX
--² .                                           (3.3) 

Condition of equivalence of Problem 1 and 2 (theorem 2.1) in this case (X=X*) is: 

x and xĔ, which are founded from problems  

)]()([sup)(inf
8

xIxJandxJ
XX

= , 

must equal respectively.  

  Algorithm 3 (Method of combining the extremes) is used for this case without change. 

 

B) However for this case we get some new results.  

Let define functional g(x,y) ̧  0 over set X³Y. We call it as g-functional. Take functional 

),()(),( yxxIyxJ g=  

Theorem 3.1. 

Assume X=X*, x is point of global minimum of Problem 2: 

)()(,),(inf xxIJwhereXxxJ g=Í , 

Then: 

1) Set 
}0:{ gg¢<= xP  
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   contains worth or same solutions of  Problem 1 (that is )()( xIxI ²  over P); 

2) Set  

}0:{ gg²>= xN  

  contains better or same solution of Problem 1 (that is )()( xIxI ¢  over N); 

3) The point of global minimum is in set }0:{,\ ggb <<== xPwhereXM
o

. 

 

Proof: 1. From inequalities  gggg ¢<² 0,II  we have      1/,/ ²² ggggII . That is II ² . 

2. From inequalities gggg ²>² 0,II  we get 1/,/ ¢¢ ggggII . That is II ¢ . 

3. Because X=M+P and 0̧Æ
o

PM , we have 
o

PXM -= . Theorem is proved. 

 

Theorem 3.2. Assume 0sup >g
X

. Then we have the lower estimation 

    Xon
J

xI
bsup

)( = .     (3.4) 

If  Yyforyx
X

Í">0),(supg , we have the lower estimate 

   
ö
ö
ö

÷

õ

æ
æ
æ

ç

å

²

X

Y X

J
xI

sup
sup)( .     (3.4)' 

Proof: 1) For written conditions from gg II ² we got gg
X

JIandJI sup// ²² . 

2) Take this estimate by y, we get expression (3.4)'. 
 

Example 3.1. Find the lower estimate for functional 

   ¤<<¤-+-= - xexxI x 2)1(2 )1cos( . 

Take 

     
2)1( --= xeg . 
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Then 

     1cos2 +-= xxJ . 

Is it obvious the point of minimum this functional  

    1sup,01,0 =>== gg
X

x . 

Use the estimate (3.4) we get 0)( ²xI . But for x = 0 we have I(0) = 0. That way x = 0 is point of global 

minimum. 

§4. Application b - function to the multi-variables nonlinear problems of 

constrained optimization and to problems described by regular differential 

equations. 

A) The first problem is following. Find minimum of functional 
      I=fo(x) ,     (4.1) 

Where x-n-dimensional vector, which satisfy independent equations 

     nmixf
i

¢== ,...,2,1,0)( .    (4.2) 

Functions f(x) is defended in the open domain n-dimensional vector of space X. The admissible set X* 

separate from X by equations (4.2). 

  Let us take some functional b (x), such that to find 

     *

0
on)]()(inf[ Xxxf b= . 

It is easier to solve. 

 Then from solution of Problem 2 in accordance with thorems of §1 we get the following information 

about Problem 1: 

1) The point of global minimum is in set )}()(:{ xxxM bb ²= ;  

2) The set }22:{
00
bb +¢+= ffxN  contains better ans same solutions (that is 

Nxfxf on)()(
00

¢ ); 

3) The set )}()(:{ xxxP bb ¢=  contains worth and same solutions (that is Pxfxf on)()( 00 ² ; 

4) If  X=X*ÌP, that x is point of global minimum of problem 1 (consequence 3 of §1). 
 

Let us assume we widen the set X*  for simplification of solution. For example, we rejecte the part of 

constrains (4.2). Then we have  

5) If  Å=ÆMX * , than )(xJ  is lower estimation f0(x) on X* (consequence 5, §1). 
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  It is more comfortable some times to take the suitable J(x) at first and find the point minimum of 

problem inf J(x) on X*. 

 Then the corresponding sets will be (from theorem 1.1') 

  }:{ IJIJxM -²-= ,  }:{ IJIJxN +¢+= ,  }:{ IJIJxP -¢-= . 

If we solve the problem *)(sup)Ĕ( XXonxx É= bb  we get the additional lower estimate 

    )Ĕ()()()(
00

xxxfxf bb -+² , 

(theorem 1.3) and set 

  }ĔĔ:{
00
bb +¢+= ffxM ,  }ĔĔ:{

00
ffxN -²-= bb ,  }ĔĔ:{

00
bb +²+= ffxP . 

(theorem 1.4). 

  Take series bi  we  can get the solution of one from Problems of §1 or to facilitate thesolution of 

Problem 1. 

  The example for case X*=X was over (see Examples 1.1-1.3). Explain by simple examples (how you can 

apply the method b-functional for case, when X* X̧ that is problem  with constrains. 

Example 4.1. Find minimum of functional  

0122 =-+= yxonxI  . 

Take any admissible point, for example  )(0,1
00

xJandyx ==  functional as 

( )2
01

xxJ -= . 

  The point of minimum of this functional is obvious 0
xx= . The set M, containing the point of global 

minimum, is 

( ) 2/32/311,
2

11
²--²---²- xorxxisthatIJIJ  

 The boundaries of this inequality together with admissible subset (circle) draw on fig.1.3a. We see the 

point of absolute minimum is in left half of circle. 

  Take now the admissible point 0,1
0

=-= yx  and J-functional in more common case as 

( ) 0,
2

02
>-= cxxcJ . 

 Then M set is  

122 ²-++ xccxcx . 
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Take c = 0.5. Then we get 1²x  (fig. 1.3b). 

  Set M contain only two admissible point : x1=1 and x2= -1. But point x1=1 from the J1 cannot be the 

point of absolute minimum. Since the point of global minimum is 0,1 =-= yx . 

 

                                

      Fig. 1.3 

 

Example 4.2.  Find the point of global minimum of functional with constrain   

( ) 01ln,1222 =-°-+-+-= xxyyyxxI . 

 Take J functional 

( ) ( )2
0

2

0
yyxxJ -+-= . 

The set M is separated by inequality 

( )( ) axxyyorIJIJ +-²--²- 1212,
00

, 

where 

2

00

2

00
222 yyxxa -+-- . 

  Take the admissible point 0,1
00
=-= yx . Then 

    
ý
ü
û

í
ì
ë

-²=
2

1

2

1
:, xyyxM       (Fig.1.4). 

 From drawing we see M is small domain and find the point of global minimum no difficult. 

 



33 

 

                                  

 

    Fig. 1.4,         Fig.1.5. 

 

Example 4.3.  Given functional and constrains is 

yyxyxI ==+= 2ln,22  

Take 

( ) ( )2
0

2

0
yyxxJ ---= , 

where couple x0, y0 is admissible point. 

  The set N is separated with according Theorem 1.1 by inequality IJIJ +¢+ , that is  

( )[ ] ( )[ ] 211
2

0

2

0
¢-++-- yyxx . 

  This is interior of the circle (fig.1.5). 

 Assume that a center of this circle is located in the point A. The set N intersect with admissible curve  ln 

x = y2 - y. If we take a point x0, y0 from this intersection, we will descent along this curve whole the set N 

become by point. This take place in point B, where  the tangent to admissible  curve has the angle  -450 

(because the center of the circle is located from point x0,y0 from  -1, -1, that is the angle +450, (fig. 1.5). 

Any moving from this point will return us to it. 

  May be shown that the point B is the point of global minimum.  

  Take into consideration when we have used the methods of b-functional (Chapter 1) we have not used 

in continuously  and differ of functional (4.1) and constancies (4.2) unlike from known methods (for 

example, theory of extreme functions).  

B) Consider how we can apply the methods given in §1 to optimization problems are described by 

regular differential equations. Below we write the statement of problem, which we widely use in future.   

  Assume that the moving of object is described by set of independent differential equations 
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   ].[,,...,2,1),,,( 21 ttTtniuxtfx ii =Í==# ,    (4.3) 

where x(t) is n - dimensional continually piece-differential vector-function of the phase coordinates, 

xÍG(t); u(t) is n - dimensional function which continuous on T except the limited number of point where 

it can have discontinuities of the 1-st form, uÍU is an independed variable. Boundary values t1, t2 is 

given, x(t1)ÍG(t1), x(t2)ÍG(t2). 

  The aim function is     

   )(),(,),,(),( 2211021
2

1

txxtxxdtuxtfxxFI
t

t
==ñ+= .  (4.4) 

  Functions F(x1,x2), fi(t,x,u), i Ґ лΣмΣΧΣn are continuous over T³G³U. Set of continuous, almost  

everywhere differentiable functions x(t)ÍG(t) we denote D. Set of pies-continuous functions x(t)ÍU, we 

denote V. Set of couple x(t), u(t) which satisfy these requirements and almost everywhere comply with 

equations  (4.3) we shall call admissible and denote Q,  Q Ë D³V. 

  Consider the problems: 

a) Find the coiple u*(t), x*(t)ÍD, which give the minimum of function (4.4) (Traditional statement). 

b) Find sup-set N Ë G³U³T such that any admissible curve from N we have I(x) ¢ c, where c is constant. 
c) Find the lower estimate of I(x) over Q. 

 

Take the function ñ
2

1

),,(
t

t
dtuxtb , where b (t,x,u) is a definite and continuous function on T³G³U. 

  Theorem 4.1. Let us assume that F¹ 0 and Problem 2 is solved. That means 

    QuxJuxJ on),(inf),( = , 

where 

    ñ += 2

1

)],,(),,([ 0

t

t
dtuxtuxtfJ b . 

Then: 

1) Set 

   },22:,,{ 00 TtffuxtN Í+¢+= bb  

   contains the same or better solutions of Problem 1. 

3) Set  

     },:,,{ TtuxtP Í¢= bb  
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   contains the same or worse solutions of Problem 1. 

 

Proof: 1. On set Q from N we have 

    dtfdtf
t

t

t

t
)2()2(2

1

2

1
00 bb +ñ ñ¢+ . 

Subtract from this inequality following    

    dtfdtf
t

t

t

t
)()(2

1

2

1
00 bb +ñ ñ²+ ,                                                       (4.5) 

we get over Q from N 

dtfdtf
t

t

t

tñ ñ¢
2

1

2

1
00 . 

2. By analogy with above, subtract from inequality  

      dtdt
t

t

t

tñ ñ¢
2

1

2

1

bb  

the inequality (4.5) we get over Q from P 

dtfdtf
t

t

t

tñ ñ²
2

1

2

1
00 . 

The Theorem 4.1 is proved. 

  

     Sets N, P not empty. They contain at least one curve from Q. This curve is .)(),( Qtutx Í  

  If we solve the additional problem 

      ñ
2

1

sup
t

t
Q

dtb , 

we get additional information about sets N, P and lower estimate. It is following 

   Theorem 4.2.  Let us assume F ¹ 0   and solved the Problem 

    ñ
2

1

on),,(sup
t

t
Qdtuxtb . 

Then 

1) Set 

    },ĔĔ:,,{ 00 TtffuxtN Í-²-= bb  
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 contains the same or better solutions: 

2) Set 

    },ĔĔ:,,{ 0 TtffuxtP Í+¢+= bb  

 contains the same or worse solutions. 

  Here  )(Ĕ),(Ĕ),Ĕ,Ĕ,(Ĕ
00 tutxuxtff =  is curve of extreme  

     ñ
2

1

on)(sup
t

t
Qtb .      

Proof: 1. Over Q from N we have 

    ñ -²ñ - 2

1

2

1

)ĔĔ()( 00

t

t

t

t
dtfdtf bb  

Subtract from this inequality the following 

     ñ ñ¢
2

1

2

1

Ĕt

t

t

t
dtdt bb , 

we get 

dtfdtf
t

t

t

tñ ñ¢
2

1

2

1
00

ĔĔ
. 

2. By analogy, subtract  dtdt
t

t

t

tñ ñ¢
2

1

2

1

ĔĔbb from  

     dtfdtf
t

t

t

t
)
ĔĔĔĔ()(2

1

2

1
00 bb +ñ ñ²+  

we get 

      dtfdtf
t

t

t

tñ ñ²
2

1

2

1
00

ĔĔ
. 

The Theorem 4.2 is proved. 

 

Theorem 4.3. (Lower estimation). 

Assume F ¹ 0, the ends of x(t) are fixed, b (t,x,u) is defined and bounded on G³U³T. 

Then there is lower estimate of Problem 1: 

   dtuxtuxtuxtfuxI
T

)]Ĕ,Ĕ,(),,(),,([),( 0 bb -+ñ²    (4.6) 
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Proof:  Subtract ñ ñ¢T T
dtdt bb sup from inequality  

     dtfdtf
T T

)()( 00 bb +ñ ñ²+  

we get (4.6). The theorem 4.3 is proved.  

 

Consequence 1: Couple ux,  is curve of absolute minimum of Problem 1 over set N. 

Consequence 2: If set PÉT³G³U (or accessible) than ux,  (or  ux Ĕ,Ĕ ) is curve of global minimum of 

problem 1 over Q. 

  Similar results we can get for case, when F ̧  0 and ends of x(t) can move. 

Example 4.4. Assume the problem is described by conditions: 

  .0)1(,1)0(,1,,)(
1

0

2 ==¢ñ =+= xxuuxdtexI u #  

Use the theorem 4.1. Take ue+-=b . We get the problem 

   .0)1(,1)0(,1,,
1

0

2 ==¢ñ == xxuuxdtxI #  

Its solution is .10,1, ¢¢-=-= tutx  

 Find set P:  1,. 1 ²²¢ - ueeisThat ubb . 

 But value u < -1 is not acceptable. Since P is cover all admissible set points t,x,u. That way tx -= . 

Is the curve of global minimum (see Consequence 2). 

Example 4.5.  Find of minimum in problem 

  .0)2(,1)0(,1,,)5.0(
2

0

2 ==¢ñ =+= xxuuxdtxxI #  

We have here undifferentiated function in integral. Known methods us variational calculation or 

principle of maximum are not been used. 

  Change this problem following "good" (easy) problem: 

  0)2(,1)0(,1,,5.0
2

0

2 ==¢ñ == xxuuxdtxI #  

and find 
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     L
tx )(

sup . 

  The solution is shown in Fig. 1.6. 

                                               

     Fig. 1.6. For Example 4.5. 

 

 By according the theorem 4.2  

     }:{ xxxP ²= , 

that means set P cover all accessible domain. Since abtained, solution is curve of global minimum of 

Problem 1. 

5. Method of b - function in minimizing sequences 
 

A) The sequence {xs} such that  )(inf)( xIxI
s

s ­
­¤

 on the set X* is named as a minimizing sequence 

(for Problem 1). 
   We must design these sequence in a successive approximation methods and in case, when 

extreme is absent in an allowable (admissible) subset. 

Theorem 5.1. Assume b (x) ¢ 0 on X* and there exist sequence {xs}ÍX* such, that 

   XsJxJ s onforinf)( ¤­­     (5.1) 

Then: 1) *)(inf)( XonxImxI
s

s =­
¤­

; 

2) Any sequence {xs}ÍX, which satisfy (5.1) or JxI
X

s inf)( ­ , minimize I(x) on X*, minimize  

   and  J(x) on X. 

 Proof: 1. Because b (x) ¢ 0 on X*, we have .infinfisThat).(inf
*

JJxIJ
XXX

¢¢  From {xs}ÍX* and 

(5.1) we have that 
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     IJ
XX *

infinf = .      (5.2) 

That is I(xs) ­ m. 

2. From (5.1) and (5.2) we have the statement 2 of the theorem. 

3. From mxI
s

s
¤­
­)(  and (5.2) we have XsJxJ s onforinf)( ¤­­ . Theorem is  

    proved. 

Remark. The requirement b (x) ¢ 0 on X* of the theorem 5.1 we can change by the requirement 

*on0sup
*

X
X

¢b   because from sup b ¢ 0 on X* we have b(x) ¢ 0 on X*. 

  Theorem 5.2. Assume there exist the sequence {xs}ÍX* such that 

  *)or(onsup)(and*)or(on)(inf)( XXxXXxJxJ s
s

s bb ­­
­¤

 (5.3) 

Then this sequence is minimized. 

 

Proof: From bbbb supinf)(thatgetwesup)(andinf)()( -­­­+ JxIxJxxI ssss . 

Because 

bb supinf)(*}{supinf)( -=­Í-² JmxIhaveweXxexistthereandJxI sss . 

Q.E.D. 

Remark: From (1.1) and (1.1') we see that X and X* in (5.3) we can take in any combinations. 

B) Let us consider a case now, when we have both a sequence of elements {xs} and a sequence of 

functions {bi (x)}. 

Theorem 5.3. In order that a sequence *}{ Xxs Í  minimize function I(x) on set X*. It is sufficient 

that there exist a sequence of functions {bi (x)} such that 

(1) bi (x) ¢ 0 over X* for all i; 

(2) There exist numbers i
i

i
X

i qqJq
­¤
== lim,inf ; 

(3) J(xs) ­ q  or  I(xs) ­ q  if  s ­ ¤. 

  This theorem may be proved easy, because q = inf I over set X*. 

From theorems 2.1, 2.3 we have next statement: 
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  If there exist one sequence which satisfy theorem 2.3 then any other sequence which belong to set 

X,  Xxs Í}{ and satisfy the condition I(xs) ­ q  or J(xs) ­ q  is minimize for Problem 1. 

Appendix to Chapter 1. 

1. Operations with signs inf and sup. 
  Below there shown the characteristics of signs inf and sup, which can be useful for solution of 

problems. The proof is simply and no given. We assume that are shown constrains have place in 

domain of definition of function. 

.0)(if
)sup(

1

)(

1
inf.4

),(inf)]([inf.3

.0if)(inf)(inf

;0if)(inf)(inf.2

).(inf)](sup[),(sup)](inf[.1

¸=

+=+

<=-=

>==

-=--=-

xf
xxf

xfcxfc

constcxfcxcf

constcxfcxcf

xfxfxfxf

 

5. If  )(tx  can have breaks and ))(,( txtf  has integrality then 

    dtxtfdttxtf
t

t
x

t

t
tx

),(inf)](,[inf 2

1

2

1)(
ñ=ñ . 

6. Assume f(j) is monotone function, jµµ /f  is continuous. Then 

  ,0/)](inf[)]([inf >µµ= jjj fifxfxf
X

 

   0/)](sup[)]([inf <µµ= jjj fifxfxf
X

. 
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Consequences 

).(supargHere.0)(domainin)(
)(

inf)

).(infargHere.0)(domainin)(
)(

inf)

.)(inf)(inf)

.2/)(if),(inftan)(taninf)

).(inftan)(taninf)

).0(domainin)(supcos)(cosinf)

).5.05.0(domainin)(infsin)(sininf)

.10if,inf

.1if,inf)

.10if),(suplog)(loginf

.1if),(inflog)(loginf)

,)]([inf)(inf)

.0)(if,)]([sup)(inf

,0)(if,)]([inf)(inf

,0)(if,)]([inf)(inf)

variablesingleofFunctions

)(sup)(

)(inf)(

1212

1222

1222

22

tfttfxf
dt

d

dt

xdf
k

tfttfxf
dt

d

dt

xdf
j

xfxfi

xfxfxfh

xfaxfag

xxfxff

xxfxfe

aaa

aaad

axfxf

axfxfc

xfxfb

xfxfxf

xfxfxf

xfxfxfa

t
tt

ttt

xfxf

xfxf

aa

aa

nn

nnn

nnn

nn

=<¡¡=

=>¡¡=

=

<=

=

¢¢=

¢¢-=

<<=

>=

<<=

>=

=

<=

>=

²=

++

-

-

p

p

pp

 

.),(inf))(,(inf.4

.ifsignthe31inabovegaveWe

.0)(,0)(if,
)(sup

)(inf

)(

)(
inf.3

.0)(,0)(if)(inf)(inf)]()(inf[.2

).(inf)(inf)]()(inf[.1

variablesingleofFunctionsA.

Estimates

2

1

2

1)(

21

21

2

1

2

1

212121

2121

dtxtfdttxtf

xx

xfxf
xf

xf

xf

xf

xfxfxfxfxfxf

xfxfxfxf

t

t
x

t

t
Qtx

ñ²ñ

==-

>>²

>>²

+²+

Í
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).),((inf),(),(inf.4

.0)(,0)(if,
)(sup

)(inf

)(

)(
inf.3

.0)(,0)(if)(inf)(inf)]()(inf[.2

).(inf)(inf)]()(inf[.1.1

var.

,

21

2

1

2

1

,

212121

2121

yyxfyxfyxf

yfxf
yf

xf

xf

xf

yfxfyfxfyfxf

yfxfyfxf

iablestwoofFunctionB

yyx

yx

yx

yx

=

>²²

²²²

+=+

 

2. Exercises for b -  and  g - functions 
 

Choosing b - function, find quasi-optimal solutions to precision 5%. 

Indication: Find the lower estimate. Separate subset which contains points of global minimum and take 

quasi-0ptimal solution from it. 

           Examples:    Answers: 

}.31:{

.9.11.02)2(},20:{,1.064.7

.
8

723)0(},05.0:{,32.6

.99.01)0(},02.0:{,14.0.5

.99.01)0(},2.00:{,12.0.4

.99.01)0(},2.00:{,12.0.3

.99.01)0(},02.0:{,12.0.2

.99.01)0(},02.0:{,12.0.1

2

32

1

3 )1(2

2

2

22

28

26

24

2

¢¢=

²-=¢¢=-+-=

>=¢¢-=+-+=

²=¢¢-=+-+=

²=¢¢=+-+=

²=¢¢=+-+=

²=¢¢-=+++=

²=¢¢-=+++=

---

xxM

eIxxMexxI

IxxMxxxI

IxxMxxxI

IxxMxxxI

IxxMxxxI

IxxMxxxI

IxxMxxxI

x

m

m

n

 

.99.1
10

1
2)2(},31:{,

10)1(

1.0
64.8

2

2 ²-=¢¢=
+-

-+-= IxxM
x

xxI  

.9.3
11

1
4)1(},21:{,

144

1
52.9

2

2 ²-=¢¢=
+-

-+-= IxxM
xx

xxI  

.9.195.1)2(},13:{,
233

1.0
64.10

234

2 ²=--¢¢-=
+++

-++= IxxM
xxx

xxI  

.9.1
1

1.0
2)1(},13:{,

1.0
32.11

212

2
2 ²

+
-=-¢¢-=-++=

+- e
IxxM

e
xxI

xx
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.98.498.4)1(},1{,
10)1(

2.0
51.12

2

3
²===

+-
-+-= IxM

x
xI  

.
5

1.0
2

6

1.0
2)2(},31:{,

5)1(

1.0
84.13

2

2 -²-=¢¢=
+-

-+-= IxxM
x

xxI  

2

1.0
2

5

1.0
2)2(},31:{,

52

1.0
124.14

2

3 2 -²-=¢¢=
+-

-+-= IxxM
xx

xxI  

9.195.1)2(},13:{,
233

1.0
84.15

3 234

2 ²=--¢¢-=
+++

-++= IxxM
xxx

xxI  

.)(},:{

,0,0,0,0,.16

2

1212

2

22

11

c

d
cxIxxxxxM

mncd
cxx

d
cxxI

m

n

-²-¢-=

>>>>
+-

-+-=

 

.)(},:{

,0,0,0,0,0,0,0,.17

2

1

2

1

2

1
1212

2121

22

11

k

k

k m

k n

c

c
cxIxxxxxM

kkmnccd
cxx

d
cxxI

-²-¢-=

>>>>>>>
+-

-+-=

 

.
10

1.0

11

1.0
0)0(},20:{,

101

1.0
)2(.18 -²-=¢¢=

+-
--= IxxM

x
xxI  

.},20:{},:{

,0,0,)(.19

21
c

d
IbxxMbabxxM

cd
cbx

d
axxI

-²¢¢=-¢-=

>>
+-

--=

 

20. { } [].:.11)0(,0:. xIndicationIxxMx
x

x
I -=-²-=<=+= b  11)0( -²-=I . 

21.  { } 1.002.0)01(,18.0:.
1

1
18.1

sin

2 ²-=+¢¢=
+

++-= IxxMAnswer
e

xxI
x

. 

22. { } 1.101.10)0(,10.10cos:,
coslg10

1
1.102.02 ²=²=

+
++-= IxxMAnsfer

x
xxI  
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23.  { }
e

IxxMAnsxexI x

4

1
1010)0(,0:..1042 -²=¢=++=  . 

24. { } .)0(,10:..0,ln2 eeIxxMAnsxxx
x

e
I

x

²=¢<=²+=   

25.  { } 00)0,0(,:,..242 2266 ²===+-++= IyxyxMAnsyxyxyxI   .   =I  

26.  { } .11)0(,:,..2 222

²===+-+-= - IyxyxMAnsyxyxexI y  

27. { } .6
1

6)1,1,0(,2:,..6
1

11
2

222
222 ²+=-¢++=++++-+=

++ e
IzyxzxyMAns

e
zyxI

zyx
  

28. Find the minimum from all integer solutions of function  

                                          
.

lg

)1.5)(log5(log
)32( 222

x

xx
xI

--
+-=

 

   Indication. Take as ̡  the second member in I and consider the in the extended area  ¤<<x0  . We 

find  { }3.3432: ¢¢= xxM .  Calculate I for x = 32, 33, 34 and select better.    

 

Find the lower estimation by using the ɹ ς function. 

29. 
.2,0,0)(..

sin2

)2( *

2

*

2

22

===
-

-
= xxxIAns

x

xx
I

 

30.  .,0)(..)lg1()2( *22 exxIAnsxxI =²+-=  

31.   { } .00)0,0(,0,0..)( )( 22

²==+= +- IMAnseyxI yx  
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Chapter 2 

Methods of h  ς functions. Estimtions. 

§1. h  ς functions over arbitrary set. 

A. The special case of  ̡-function is h -function. It is defined over set Z=X×Y and has the following 
properties: 

      1) There exist subset KËZ with projection K on Xi  pr1K = X*. 

       2) 0),(~ =yxa  on K. 

  Theorem 1.1. Assume ),(~ yxa  is  a~ -function and exist the point of global minimum ** Xx Í . 

Then the element x  is point of the global minimum of object function I(x) over set X* if and only if 

there exist ),(~ yxa  such that: 

1) KyxZyxyxxIyxJ ÍÍ+= ,)2;,)],()([inf),( a . 

Proof: As Kyx Í, , then 0),( =yxa  and 

)(inf)],()([inf)],(~)([inf),(
*

xIyxxIyxxIyxJ
XKZ

=+=+= aa . 

Q.E.D. 

  One may made vice versa. Define set },,0),(~:,{1 YyXxyxyxK ÍÍ== a . Find 111 KprX =

. Then x  is the point of minimum I(x) over X1, if   1, Kyx Í  . 

   The special case of a~ -function is h -function defined over Z and such that h(x,y) = 0 over X* for all 

.YyÍ  

  The following theorem is important: 

  Theorem 1.2. Let us assume h(x,y) = 0 over X* for all  YyÍ and there exist  ** Xx Í . 

 The element x  will be the point of global minimum of objective function I(x) over X* if there exist 

function h  (x,y) such that 

1)  *)2;,)],()([inf),( XxZyxyxxIyxJ ÍÍ+= a   .      (1.1) 

Proof: As *XxÍ , then 0),( =yxa  and 

)(inf)],()([inf)],()([inf),(
*

xIyxxIyxxIyxJ
XXZ

=+=+= aa . 

Q.E.D. 

 If y is not constant, one can use it (the function ),( yxa from y) for getting *XxÍ . 

  Theorem 1.3. a~  and h  ς functions exist and their number is infinite. 
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  Theotem 1.4. (Estimate). If in (1,1) *XxÎ , we have a lower estimation of the objective function I(x) 

on X*: 

                               YyallforxIyyxJ Í¢ )()),(( . 

  One can get this estimation from 0),( =yxa  on set X* for all YyÍ and Principle of Extension1 [5], 

because XX Ì* . 

------------------------- 

1) The Principle of extension state: any extension of set, which you find on a minimum of functional, 
can only decrease on a minimum of an objective function (can only decrease value of a minimum). 
 

  The dependence J(x,y) from y one may use for improving of estimation. In particular, one can take  h

= h (x). Then from theorems 1.2,  1.3 one can get the following consequences: 

  Consequence 1. Assume h(x) = 0  on  X* and exist ** Xx Í . Element x  is point of a minimum of the 

objective function I(x) on X* if and only if the exist h(x) such, that 

1)  *)2;)],()([inf)( XxXxyxxIxJ ÍÍ+= a   .      όмΦмΩύ 

Consequence 2. If  IJthenXx
XYX *

infinf,* =¹Í
³

ab . 

 

  As far as h-function is the particular case ̡-function consequently the theorem 1.1 of Chapter 1 is 

right in this case. 

  Theorem 1.5. Assume x  is point of global minimum of Problem 2:  

                                    XxxxIxJ Í+= )],()(inf[)( a . 

   Then: 1) The points of global minimum of Problem 1 are in the set   

                          }:{,** aa²=Æ= xMwhereXMM  ;   

             2)  Set { }IJIJxNwhereXNN +¢+=Æ= :,** , contain same or better solution 

that is in N  the object function )()( xIxI ¢  ; 

    3)  Set { }aa¢=Æ :,** xPwhereXPP  contains same or worse solutions  

         (that is )()( xIxI ²    in P ). 

The same way for this case we can be formulated the Theorem 1.1  

Since the set *X is selected by equal 0)( =xa  we get from Theorem 1.5 the consequences: 

Consequence 3: If  

.,0)(:3 * PXthenxIfeConsequenc Ì>a   
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.,0)(:4 * MXthenxIfeConsequenc Ì<a  

.,0)(:5 *XxthenxIfeConsequenc Í=a  

From Theorems 1.2 ς 1.4 and Consequence 1 we get Algorithm 4 :   

  We take the bounded of below functional (objective function) defined  on X*Y, find minimal  )(yxx=  

of Problem 2: XxI Í+ ,)(inf a   or minimal in implicit form 0),( =yxx . We solve together the 

system equations (combining equations of -h function): XxI Í+ ,)inf( a . Then value x  - root pf this 

system is the absolute minimal of Problem1: XxI Í+ ,)inf( a . 

!ƭƎƻǊƛǘƘƳ  пΩ (solution by choice of h πfunction). 

  We take the bounded of below functional h defined on X (or X*Y), Solve the Problem 2: 

XxI Í+ ,)(inf a . If *XxÍ , we get minimal  of Problem 1, if *XxÎ , we get the estimation below 

)()( *xIxJ ¢  of value of the objective function I(x) on set *X and we get the sets M, N, P. 

Comments:  1. If the admissible set *X allocates by functional () 0=xFi  , you can find the  h ­ 

functional in form ()()xFx iila=  (here i means sum), where ()xil  are some function of x. 

2. If the admissible set allocate by functional () 0¢F xj , you can find h ς functional in form  

                                                () () ()[ ],xxx lll F+F=wa  

where ()xlw  are some function of x , or in form 

                                                         () (),xx ll F=wa  

where () 0²xw  and it is fulfilled the condition () () 0¹F xx llw  on *X . 

3. Assume there is some h ςfunctional and element *XxÍ such XxxxIxJ Í+= )],()(inf[)( a . 

Then any element *

1 Xx Í and is satisfying the condition 

                                                 () () ()[ ] .,inf1 XxxxIxJ Í+= a     όмΦмέύ 

is point of the absolute minimum the functional I(x)  on *X and any point of  the absolute minimum the 

functional I(x)  on *X  ǎŀǘƛǎŦȅ ǘƘŜ ŎƻƴŘƛǘƛƻƴ όмΦмέύΦ 

   This direct statement follows immediately from condition 1. 

We proof the converse. Since the global minimal *

1 Xx Í , it means () 01 =xa  , then  

                            () () () )]()([inf)(inf 11 *
xxIxJxJxIxI

XX
a+==== .  

Q.E.D. 
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  Thus if it is exist one element which satisfy (1.1) then all rest minimal elements of Problem 1 must 

satisfy it. 

  I illustrate the idea of h-functional the next sample. 

Let us take some function f(x) definite on interval [a, b]. Digital values ],[ banÍ  are admissible for it. 

We want find the minimum of this function. The addition member ( hςfunctional) do not change f(n) 

in points  n, but deforms f(x) in gaps between n (see fig. 2.1). 

                                                 

                                                                         Fig. 2.1. 

If h  ς ŦǳƴŎǘƛƻƴŀƭ ƛǎ άƎƻƻŘέΣ ǘƘen .)(inf)]()([inf
],[],[

xfxxf
baxbax ÍÍ

>+a  If in addition nx= , then we get 

the minimum of Problem 1. 

  Remark: There are different ways to solve problems by the h-functional: 

a) You can take the known function as -hfunctional. 

b) You can take h-functional as unknown function and find it together with the point of minimum. 

c) You can take h-functional as function h = h (x,y) where h  is known function but y = y(x) is unknown 

function of x. You must find it together with the point of minimum. 

 Let us consider the example. We take as example the non-good the functional which is difficult to solve 

by conventional method. 

 

  Example 1.1. Find the minimum of function 

)2.1(...},2,1,0:5.0{
)cos)(sincos(sin

cossincossinsin

)1(4

1.444 *

33

3245

22

22

°°===
+-

Ö+Ö-
Ö

+++

+++
= nnxXin

xxxx

xxxxx

xx

xx
I p

pp

pp

 

It is difficult to apply the known methods here because the functional is defined on digital set. The 

current methods offer only the calculation of all *XxÍ . But number of *X equals infinity and 

calculation may be meaningless. 

  Let us to solve this example by the offered method. Take h όȄύ  in form 

      .
)cos)(sincos(sin

cos2sin5.0

)1(4

1.444
3322

22

xxxx

xx

xx

xx

+-

Ö
Ö

+++

+++
-=

pp

pp
a  
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 You can see that h(x) = 0 in *X because for x = 0.5̄ n  .0sin2sin,...,2,1,0 ==°°= nxn p  

Let us to create the general functional 

.
)cos)(sincos(sin

cos2sin5.0cossincossinsin

)1(4

1.444
33

3245

22

22

xxxx

xxxxxxx

xx

xx
IJ

+-

Ö-Ö+Ö-
Ö

+++

+++
-=+=

pp

pp
a  

   Here the variable x is uninterrupted and - қ ғ x ғ қ όǎŜǘ X) 

   The additive h(x) allows to change the functional (1.2) to simple form 

.sin1
)2(4

1.0

)coscossin)(sincos(sin

sin)cossin1)(cos(sin

)1(4

1.444
22222

22

22

22

x
xxxxxxx

xxxxx

xx

xx
J öö

÷

õ
ææ
ç

å
+

++
=

+Ö--

Ö--
Ö

+++

+++
=

ppp

pp

This general functional is simple. His minimum may be found the conventional method of theory the 

function one variable.  Here x  = - ̄ /2 , *XxÍ  for 025.1,1 -== In . Consequently, that is absolute 

minimum (and sole) of initial functional (1.2). 

  We can apply an analogical method for finding of minimum on x the next functional 

,...}.2,1,0:5.0{,1.05.0)cos(coscos22cos2cos5.0cos *2 2

°°===-++-+= - nnxXexxxI x pjjjj

Here ˒  is given, x is digital. Let us take ja 2sin2sin5.0 x-= . After this we can change our functional J 

= I +  h   to simple form:  xeJ x 2sin1.0
2

+-= - . The point of absolute minimum this task (Problem 2) is 

x = 0 . This point is in allowable set *X  for 0=n . That means 0=n  is point of the absolute minimum 

od the initial Problem 1. 

  The reader can think: if the allowable numerical set is limited we can use the conventional LagrangeΩǎ 

method [7]. Let us show: that is not correct. 

   Example 1.2. Find minimum of functional: 

                               }3,0{3 *23 ===+-= xxXonxxxI .    (1.3) 

 Let us to write the LagǊŀƴƎŜΩǎ ŦǳƴŎǘƛƻƴ  

                                   )3(23 21

23 -+++-= xxxxxF ll ,  

where 21 ,ll  ŀǊŜ [ŀDǊŀƴƎŜΩǎ ŦŀŎǘƻǊǎΦ CƛƴŘ ǘƘŜ ŦƛǊǎǘ ŘŜǊƛǾŀǘƛǾŜ   

                                           21

2 263 ll+++-=¡ xxF  . 

Substitute to here x = 0 , x = 3 and write the  equations .0)3(,0)0( =¡=¡ FF  We find from these 

equations 21 ,ll . Find the second deviation .66 -=¡¡ xF  When x = 0 the function .06)0( <-=¡¡F  

When x = 3 the function .012)3( >=¡¡F  Consequently x = 0 is the point of maximum, x = 3 is the point 

of minimum. Let us check up. Substitute x = 0 and x = 3 in (1.3). We find I(0) = 0, I(3) = 6 . 

²Ŝ ǎŜŜ ǘƘŜ [ŀDǊŀƴƎŜΩǎ ƳŜǘƘƻŘ ƎƛǾŜǎ ǘƘŜ ƻǇǇƻǎŜŘ ǊŜǎǳƭǘΥ ƛǘ ŘŜŎƭŀǊŜ ǘƘŜ Ǉƻƛƴǘ ƻŦ ƳƛƴƛƳǳƳ ŀǎ ǘƘŜ Ǉƻƛƴǘ ƻŦ 

maximum, but the point of maximum as the point of minimum. In here it is violate one condition of 

[ŀDǊŀƴƎŜΩǎ ƳŜǘƘƻŘΥ ¢ƘŜ ƴǳƳōŜǊ ƻŦ ŀŘŘƛǘƛƻƴŀƭ Ŝǉǳŀǘƛƻƴǎ ƛǎ ƳƻǊŜ ƻŦ ƴǳƳōŜǊ ƻŦ ǾŀǊƛŀōƭŜǎΦ ¢Ƙƛǎ ŜȄŀƳǇƭŜ ƛǎ 

ǎƘƻǿǎΥ ǘƘƛǎ Ǿƛƻƭŀǘƛƻƴ ŦƻǊ [ŀDǊŀƴƎŜΩǎ ƳŜǘƘƻŘ ƛǎ ǳƴŀŎŎŜǇǘŀōƭŜΦ 
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   Let us to solve this example by the offered method. Take the (hx) in form 

                                                    h= x(x-3)(2/3-x) . 

Then 

    03/4,0,03/4),3/2)(3(23 *23 >=¡¡Í===¡--++-=+= JXxxJxxxxxxIJ a . 

From Consequence 1 the point 0=x is absolute minimum of functional (1.3). That shows the method of  

 hς functional has moǊŜ ŀǇǇƭƛŎŀǘƛƻƴ ǘƘŜƴ ǘƘŜ ǘƘŜ [ŀDǊŀƴŘŜΩǎ ƳŜǘƘƻŘΦ 

 

  Example 1.3. Find minimum of integral 

             }400,...,2,1:10{)10tg(ln
310

3*3 ===-=ñ
--

-- nnaXondttI

a

p       (1.4) 

Here the interval of integration is discrete. The direct search is difficult because integral (1.4) cannot be 

presented by simple function and it not have of tabulations.   

  Let us to find h-functional in form:  a36 10sin10--=a  . You see on *X  the function h (x) = 0. Further 

          

.10sin
2sin

2

,2504/,010cos1010ln

,10sin10)10(ln

3

*333'

10

363

3

a
a

J

nforXxaatgJ

adtttgIJ

a

a

+=¡¡

=Í==--=

ñ --=+=

--

--

-

p

a

  (1.5) 

As p4.010 3 <<- x , then J¡¡> 0 into this interval. That means the root is single and 250=n  is point of 

the absolute minimum. 

  Analogically we find the minimum of other integral which cannot be presented in simple functions 

               }105.1...,,1,0:10{]10)[sin( 33*

0

53 Ö===ñ +-= -- nnaXondttI
a

pp . (1.6) 

Here is .1000;10sin10sin10 383 == -- napa  

Example 1.4 . Find the minimum of integral 

      }...,2,1,0:10{20
cos 3

2/

3 °°===ñ ö
÷

õ
æ
ç

å
+= -* nnaXondta

t

at
I

p

p

.   (1.7) 

 Here the under integral function is discrete. The integral from this function cannot be presented as 

elementary functions. 

  Let us take apa +== - IJa,10sin10 323 . Then  

aaaa
a

adtaatIJ aaa

ppp
p

p

ppa
p

p

34

3

2/

4'''

102sin1020
4

sin
4

3
sin

2

102sin102)40sin(

Ö++Ö-=

=Öñ Ö++-=+=

-

-

      (1.8) 
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  This derivative not exist for *0 Xa Í= .                         

)00(;0,0;0,0 ¸">¡¡<¡<>¡² aforJorJaforJaFor  . 

Consequently 0=n  is point of absolute minimum. 

 

B) Consider the case when the point of optimum ** Xx Í not exist, but exist the sequence such that 

¤­

=
n

n mxI )(lim . This sequence is named the minimizing sequence (see §5 of Ch.1). 

Similarly point A we can show that consequence 1 can be generalized in this case. 

/ƻƴǎŜǉǳŜƴŎŜ мΩ. Let us h (x) = 0 only on X*, For minimizing sequence *ËXxn}{ is necessary and 

sufficient the existing of function h(x) such that 

                                  .)],()(inf[)]()([lim XxxxIxI nn
n

Í+=+
¤­

aaa   (1.9) 

The sufficiency of this consequence is same the lemma in [2] and J(x) = L in [2]. 

   We can generalize remark 3 of item 1 in this case: If exist  hfunction and one sequence *ËXxn}{

which satisfy (1.9), then the any sequence *ËXxn}{  which satisfy (1.9) is the minimizing sequence. 

And on the contrary any the minimizing seuence satisfy the condition (1.9).                                              

  2.  h  ς function in Banach space. 

Let us to apply Theorem 1.2 to optimal problem is described in Banach space by equation 

                                ,)(,)(,,),( 221121 xtxxtxtttuxf
dt

dx
==¢¢=    (1.10) 

where x, f(x,u) ς element complete  linear normed space X1 and X2 respectively and  

TtttXX =Í=Ë ],[, 2112
 is segment of real axis. 

  Let us name the permissible control the measurable limited function (in term [1], p.85)with value 

UuÍ , where U is set in arbitrary topological space. In particular the set U may be metric, closed and 

limited. Let us assume that for any control u(t)the equation (1.10) has single solution x(t) with 
1)( Xtx Í  

for almost all ],[ 21 tttÍ , where x(t) is continuous almost everywhere differentiable on function on 

],[ 21 tttÍ . 

  Operator f(x,u) is defined on the direct product X×U . One is continuous and bounded.  Boundary 

conditions are given t1, t2, x(t1) = x1, x(t2) = x2. 

  State the problem: Find the admissible control which transfers the system from given initial state in 

given final state with function  
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ñ=

2

1

),(0

t

t
dtyxfI

     (1.11) 

has a minimum. 

    Let us the set of the measurable functions u (t) is denoted V: set of the continuous, almost 

everywhere differentiable on (t1,t2) the functions x (t) is denoted D. Set of couple x(t), u(t) having named 

over properties and almost all satisfied the equation (1.10), we name admissible and denote Q. It is 

obvious  .VDQ ³Ë  

    Assume ),( xtyy= is the some unequivocal continuous differential function defined on X×T . We 

name it the characteristic function . We will find the h  ς function in form 

                                        dxuxfx
t

t
x )],([

2

1

-*=ñ #ya      (1.12) 

Here 
x

x
µ

µ
=
y

y is particular deviation of Freshe. One is linear function. The * is  sign of composition. 

Obvious that request of h -function is performed.  

  Compose the generalized function I = J + h and produce the function txx yyy += ##  we get 

                  ññ +-=--+-= BdtdtfftxttxtJ xt

t

t
1201122 )()](,[)](,[

2

1

yyyyyy A    ,   (1.13) 

where ffB xt Ayy--= 0 . Because the set Q is different from the set D×V only that couple x(t), u(t) 

satisfy almost every where (1.10). For -hfunction in form (1.12) with according of Theorem 1.2 we can 

the initial Problem 1 (find the minimum (1.11) on Q) replace the Problem 2 ς find minimum (1.13) on the 

broader set  D×V. In this set the x(t), u(t) not bind  the equation (1.10). So we have 

                                         dtuxtBJ
t

tVtuDtx
ñ

ÍÍ

+-=
2

1

),,(inf
)(,)(

12 yy .    (1.14) 

  Theorem 1.6. If function )(tu getting from solution of problem dtB
t

tVtuDtx
ñ

ÍÍ

2

1

inf
)(,)(

  is Vtu Í)( ,   

that it is same almost everywhere the function getting from solution the problem  dtB
t

t

Vtu
Dtx
ñ

Í
Í

2

1

inf

)(
,)(

  and  

                                           BdtdtB
t

t VuDtx

t

tVtuDtx
ññ

ÍÍÍÍ

=
2

1

2

1

infinfinf
)()(,)(

         (1.15)  

Proof. Assume the contrary: )(inf)( *
uBuB

UuÍ

¸  on subset of interval [t1, t2] with measure not equal 

zero. In this case dtuBdtuBuBuB
t

t

t

t
)()(i.e.)()(

2

1

2

1

**

ññ >> on the subset. This contradict: the 

function )(* tu made the minimum for integral ,
2

1

dtB
t

tñ   
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From requirement (1.14) and Theorem 1.6 we have 

                                       dtuxtBJ
t

t VuDtx
ñ

ÍÍ

+-=
2

1

),,(infinf
)(

12 yy     (1.16) 

If function )](),([ tutxa  is such that absolute minimum of Problem (1.16): Qtutx Í)(),(
C

, then 

ʰ ahccording to Theorem 1.1 functions )(),( tutx  are absolute minimum of the initial Problem. 

   So, we proofed  

  Theorem 1.7. To couple function were the absolute minimum the function I ,  it is sufficient the 

existing the characteristic function  ),( xty  such that  

QtutxdtuxtBdtuxtBuxtBuxtB
t

tDtx

t

tUu

Í== ññ
ÍÍ

)(),()3;),,(inf),,()2;),,(inf),,()1
2

1

2

1 )(

C
;   (1.17) 

In particular, if take htp A)(=y , where p(t) is linear function 
1XhÍ , then from item 1 and 

stationary condition item 2 [1.17] we get 

                                       
x

H
xpuxtHuxtH

Uu µ

µ
-==

Í

)(,),,(supsup),,( # ,   (1.18) 

where ).,(),()( 0 uxfuxftpH -= A Assumed xH µµ /  is Frechet derivative, which is continuous.As 

we see the necessary condition of Problem 2 following from (1.17) is same the necessary condition 

of Pontriagin principe of maximum generalized in Banach spaces. 

 

3. Design of  h-function for allowable subset of two function connected by logical conditions 

  Assume two functions F1(x) and F2(x) are refinished on the set X. Allowable are only points xÍX and 

functions F1 and F2 which are connected the logical conditions. Assume F1(xύ Ґ л ƛǎ άǘǊǳŜέ ŀƴŘ F2όȄύ ґ 0 

ƛǎ άŦŀƭǎŜΩΦ ¢ƘŜ ŦƛǾŜ Ƴŀƛƴ ƭƻƎƛŎŀƭ ŎƻƴƴŜŎǘƛƻƴǎ όҭΣ ȅΣ ǾΣ │, ~)   ( ,,,, ØÙª y ~) are presented in next 

tables: 

 F1 F2 F1ҭC2 

  t   t      t 

  t   f      f 

  f   t      f 

  f   f      t 
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Double implication 

F1 F2 F1 y F2 

  t   t      f 

  t   f      t 

  f   t      t 

  f   f      f 

disjunction in the exclusive sense 

                                                  

F1 F2 F1 ͵  F2 

  t   t      t 

  t   f      t 

  f   t      t 

  f   f      f 

disjunction in the sense of a non-exclusive 

 

F1 F2 F1 │ F2 

  t   t      t 

  t   f      f 

  f   t      f 

  f   f      t 

Conjunction 

 

F p 

t f 

f t 

Denial  
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We will use the symbol:  

,01sign

,00sign

,01sign

<-=

==

>=

FifF

FifF

FifF

 

In this case the h-function we can search in form: 

                           

|],sign|1[()},(~)(:{)5

,)},()(:{)4

,)},()(:{)3

|],)(sign|1[)},()(:{)2

|],)(sign|1)[()},()(:{)1

21

221121

2121

2

2

2

1221121

21221121

FpxFxFxX

FpFpxFxFxX

FpFxFxFxX

FFpFFpxFyxFxX

FFFpFpxFxFxX

-==

+=Ø=

=Ù=

+-+==

-+=ª=

*

*

*

*

*

a

a

a

a

a

 

Here p, p1, p2 are some function x . 

It is using these five connections we can create all other complex logic statements. 

 

        §2. The general principle of reciprocity the optimization problems 

 

  Let us suppose we want to solve the optimal problem Ch.1 §4 p.4 : 

                                            mixfxfI i ,...,2,1,0)(,)(0 === ,   (2.1) 

Design general function in form 

                                                   ä
=

=
=

ni

i ii xfyxJ
0 ,

)(),(l  ,     (2.2) 

where ˂ i(x,y) arbitrary functions of x, y. 

  Assume )(yx  is absolute minimum (2.2) on X. 

The general principle of reciprocity the optimization problems 

 1. For any YyÍ the point of an absolute minimum  of the function J (2.2) is the point of the absolute 

minimum any function 

                               )forsumno(,...,1.0,)().( jmjxfyx jj =l   ,  (2.3) 

for limits in form 

               )forsumno(,,,...,1,0,))(()),((),( ijimiyxfyyxyx iii ¸==ll .  (2.4) 
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Any numbers of equality (2.4) you can change by non-equalities   

                                        ))(()),((),( yxfyyxyx iii ll ¢ .    (2.5) 

  2. For any YyÍ the point of the absolute minimum of the function J (2.2) is point of the absolute 

minimum any sum the functions 

                                                   )(),( xfyx
j

jjäl      όнΦоύΩ 

for restrictions absent in sum (2.3) 

               )forsumno(,,,...,1,0,)(()),((),( ijimiyxfyyxyx iii ¸==ll .  όнΦпύΩ 

!ƴȅ ƴǳƳōŜǊǎ ƻŦ Ŝǉǳŀƭƛǘȅ όнΦпύΩ ȅƻǳ Ŏŀƴ ŎƘŀƴƎŜ ōȅ ƴƻƴ-equalities  (2.5). 

  Proof.  

  1) For any function (2.3) for conditions (2.4) the Theorem 1.2 is made. The point )(yx  is point of its 

absolute minimum. As every function reaches the global minimum, obvious, the change equality (2.4) by 

restrictions (2.5) not influence to minimum. The point 2 is proofed similarly. Principle is proved. 

Consequence 1.   

Magnitude )),(( yyxJ  ƛǎ ǘƘŜ ƭƻǿŜǊ ŜǎǘƛƳŀǘƛƻƴ ƻŦ ŀƴȅ ŦǳƴŎǘƛƻƴ ŦǊƻƳ όнΦоύΣ όнΦоύΩ ƛŦ ǇŀǊǘ ƻǊ ŀƭƭ ŜǉǳŀƭƛǘƛŜǎ 

όнΦпύΣ όнΦпύΩ ŎƘŀƴƎŜ ŜǉǳŀƭƛǘƛŜǎ ƛƴ ŦƻǊƳ 

                                                     0)(),( =xfyx iil      (2.6) 

Consequence 2.  In case corresponded (2.6) the absolute minimum of any functions (2.3) are located 

in set 

                   ))(()),((()(),(:{)( 11 yxfyyxxfyxxyM i

m

ji
i ii

m

ji
i ij ää

¸
=

¸
= ²= ll   (2.7) 

Consequence 3. If possible the solution of Problem (2.1) by Algorithm 4, there are y such that 

                                                  )forsumno(0)(()),((( iyxfyyx ii ¢l   (2.8) 

  From the existence of solutions (2.1) follows that 0)( =xfi . So ii fl  is minimum, than (2.8) is 

obvious. 

       §3. Applications h -function to well-known Problems of optimization 

1. Problem the searching of conditional extreme the function of the limited number variables. 

 It is given 
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                                     nmixfxfI i <=== ,...,2,1,0)(,)(0    (3.1) 

Here x is  n-dimensional vector given in some numerical open region of n-dimensional space X*.  

Let us take the h -function in form 

                                           mixfxp ii ,...,2,1,)()( ==a     (3.2) 

(repeated indexes means summarization). Here pi(x)  are functions x, given on X:  

                                      .},0|)(|:{ *

1

* XXxfxX
m

i i === ä=
   

Let us to design generalized functional )()()( 0 xxfxJ a+= take some pi(x) and sole the problem  

.,)(inf XxxJ Í From this solution the Problem 2, according Theorems §1, we can get the following 

information about Problem 1: 

1) If  xXx than,*Í  is absolute minimum of Problem 1 (consequence 1, §1).   

2) If  *ÎXx , then:  

    a) )(xJ  is the lower estimation of function fo(x) on X*  (Theorem 1.4). 

    b) For *> xx 0)(a  is located in set )}()(:{ xxxP aa ¢= (consequence 3, §1). 

    c) For *< xx 0)(a  is located in set )}()(:{ xxxM aa ²= (consequence 4, §1). 

   d) Set ** Æ= XNN where }22:{ 00 aa +¢+= ffxN  contains the equal or worse solutions  

       (Theorem 1.5). 

  As we see even if *ÎXx our computation is useful. We received the lower estimation and narrow the 

region for searching of the optimal solution. Take row of h i we can get the solution one of the Problems 

a, b, c, d or facilitate the solution of Problem a (see Ch, 1, §1). 

   Look your attention: the offered method does not require continuity and differentiability of the 

functions f0(x), fi(x) in contrast to the classical method of Lagrange multipliers. The method can be 

applied to non analitical function, for example, to the functions definished on the discret set and 

extremal problems of the combinatorics (see Ch. 10).  

2. Application the Theorems §1 to optimal problems described the conventional 
differential equations. 

 
Assume the moving of object is described by system of the differential equations 

                                     ,],[,,...,2,1,),,( 21 ttTtniuxtfx ii =Í==#    (3.3) 
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where x(t) ςn-dimensional continuous piecewise differentiable function, x  G(t) ; u(t) ς r-dimensional 

functions continuous everywhere on T, except limited number of points  where one can have 

discontinuity of the first kind  u  U(t). Boundary values t1, t2 are given, x(t1), x(t2)  R.     

  Optimal function is 

                                  
.)(),(,),,(),( 2211021

2

1

txxtxxdtuxtfxxFI
t

t
==+= ñ

   (3.4) 

  Functions F(x1,x2), fi(x,u,t), i Ґ лΣмΣΧΣn are continuous, F(x1,x2)>- қΦ  Set of the continuous almost 

everywhere differentiable functions x(t)  with x  G(t) we designate D. Set of the piecewise continuous 

(they can have the discontinuity of the first kind) functions u(t) such that u  U(t) we designate V. 

Couple x(t), u(t) have named over properties and almost everywhere satisfy the equations (3.3) we 

name allowable and designate Q, VDQ ³Ë .    

  Enter in our research n single-valued functions ˂i(t.x)  i Ґ мΣнΣΧΣn. which are continuous and have 

continuous derivatives  on T³G. Let us to take the h-function in form 

                                                 
dtuxtfxxt i

t

t
i )],,()[,(

2

1

-=ñ #la
      (3.5) 

 It is obvious h = 0 on Q. Let us design the general function J = I + h , integer the term 
ii x#l by part and 

exclude 
ix#by (3.3). We get 

                                    
dt

t
xf

x
xfxFJ i

iii

i

j

j

t

t

t

tii ])([|
2

1

2

1 0
µ

µ
-+

µ

µ
-++= ñ

l
l

l
l

   (3.6) 

Designate  

                                  

t
xf

x
xfBxFa i

iii

i

j

j

t

tii
µ

µ
-+

µ

µ
-=+=

l
l

l
l )(,| 0

2

1

 

Apply to (3.6) Consequence 1 §1. Here the Q is X* and DxV is X (see Consequence 1 §1). Since now the 

couple of functions x(t), u(t) from DxV (having ends in R for condition 

)(),(,)(,)( 2211 txxtxxVtuDtx ==ÍÍ ) are not connected by the equations (3.3) we can write  

                                        
ññ ÍÍÍ³
+=+

2

121

2

1 ,,
infinf)(inf

t

t UuGxRxx

t

tVD
BdtABdtA

 

and final 

                                                       
ñ ÍÍÍ
+=

2

121 ,,
infinf

t

t UuGxRxx
BdtAJ

    (3.7) 
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So we proofed the Theorem 3.1: 

The couple vector-function )(),( tutx  will be point of absolute minimum of function (3.4) if it is exist 

n differentiable ˂ i(t,x) such that: 

                                   QuxAABB
RxxUuGx

Í-¤>==
ÍÍÍ

,)3,inf)2,inf)1
21,,

  (3.8) 

 NoteΥ ¢Ƙŀǘ ƛǎ ǎǳŦŦƛŎƛŜƴǘ ŎƻƴŘƛǘƛƻƴ ƻƴƭȅΦ ¢Ƙŀǘ Ŏŀƴƴƻǘ ōŜ ŀ ƴŜŎŜǎǎŀǊȅ ŎƻƴŘƛǘƛƻƴ ōŜŎŀǳǎŜ ǿŜ ŘƻƴΩǘ ƪƴƻǿ 

advance about an existence of (˂t,x).  

  From (3.8) it is follow: if we find  at least one solution of an equation in particular derivations  having 

n-unknown functions ˂i(t,x) : 

                                              
,0])([inf 0 =

µ

µ
-+

µ

µ
-

Í t
x

x
xf i

ii

i

j

j
Uu

l
l

l     (3.9) 

for boundary condition A = const, than points 1, 2 of the Theorem 3.1 will be executed. Any 

unsuccessful ˂i(t,x) (if Qtutx Î)(),( ) with according Theorem 1.4 gives the lower estimation of the 

global minimum.   

   Assume, for example, 0̧nx *. Substitute them in (3.7), we get the result published in work [2]**,  

(condition Bellman-Pikone): 

                                       
,),,(supinf

2

12211 ,,

dtuxtRJ
x

x UuGxGxGx
ñ

ÍÍÍÍ

-F=
       (3.10) 

 Here ., 0
2

1
BffRF ixt

t

t i
-=-+=+=F jjj  

--------------------------------- 

* This limitation is not important becouse any 0̧ix  in [t1,t2]. 

** Note: in given method (in difference from [2]) not request a priory assamption about existing the  

     single potensial function ˒όǘΣȄύ such that ˒ xi = ˂ i. 

  Sometimes it is more comfortable take function ˒όǘΣȄύ   

or in other terms (see [4]) ̞όǘΣȄύΦ Then A, B are written: 

                                            
tix ffBFA

i
yyyy --=-+= 012 ,  ,   (3.11) 

    And Theorema 3.1 is same with [2], (see also [3]). 

   CǳƴŎǘƛƻƴ ʰ ŦƻǊ ƎƛǾŜƴ ǘŀǎƪ ǿŜŎŀƴ ŘŜŦƛƴŜ ŀƭǎƻ ǘƘŜ ƴŜȄǘ ǿŀȅΦ ¢ŀƪŜ ǎƻƳŜ ŦǳƴŎǘƛƻƴ ̞ όǘΣȄύ. Than                      

ñ -=
2

1

)],,([
t

t
ix dtuxtfx

i
#ya

 

Integrate but parts the first member we get 
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ñ +-=
2

1

)(|21
t

t
tix dtf

i
yyya

 

Note: 1. Theorema 3.1 is corrected and in notations (3.8) p.1: 

.infinf
2

1

2

1 )( ññ ÍÍ
=

t

t UuBtx

t

t
BdtBdt

 

This form is offered in [4]. Difference between these forms is important in consideration the second 

variation, conditions in angle points and in some other cases. Let us takethe last corrected form of V. 

Krotov optimization [8] (problem of speed): 

   Example 3.1. Find minimum t2 in task: 

.0)(,1)0(,1||,, 2

2

1

=====ñ txxuuxdtI
t

t
#  

 

Fig.2.2. 

If we take ˒  = 0, we get R = -1. Consequently
ux

R
,

sup  is reached in ANY curve, for example, u = - 0.01 (I = 

100). In case whem min forward integral for ̞  = 0 we have 

                                                      
.)]([infinf 2

)()(

2

1

txtdt
Btx

t

tDtx ÍÍ
=ñ

 

Since the set all serves with bounded derivative 1|| ¢x#  for x(0) = 1 located between lines x = t ς 1, x  = 

- t+1 (Fig. 2.2), we get .11,1 min,1 ==-=-= tIandutx  

Notes: 1. As set B we can take a set {x(t)} with bounded derivative }:),,({ UuuxtfXx iii Í=Í# . This 

narrowing can help in finding of optimal solution. 

2. Note 3 §1 in given case has the following view: If exist the function ˕όǘΣȄύ and  at list one allowable 

couple )(),( tutx , satisfying (3.8). That any other couple satisfying (3.8) is minimum of problem 1 and 

any allowable minimum the problem 1 satisfy p.1, 2 (3.8). 

3. If t1, t2 are not fixed, we can show that point 1, 2 (3.8) are: 
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                                   -¤>===
ÍÍÍ

AABB
RxxttUuGx 2121 ,,,,

inf)2,0inf)1  

We can satisfy the condition inf B = 0, if we take ̞  Ґ ˒όǘΣȄύ Ҍ ȅn+1  and 

                                         
tixn ffy

i
jj --=+ 01

# . 

4) Theorem 3.1 is particular case of morŜ ŎƻƳƳƻƴ ǘƘŜƻǊŜƳ нΦм ŎƻƴǎƛŘŜǊŜŘ ƛƴ  /ƘŀǇǘŜǊ ̊Φ 

 

  Assume we take some ˂i(t,x) (or ̞ όǘΣȄύ). 

 

Theorem 3.2. Assume F = 0 and solved the problem B
ux,

inf . That: 

1) Set },:,,{ 00 TtfBfBuxtN Í+¢+=  contains same and better solutions of Problem 1; 

2) Set  },:,,{ 00 TtfBfBuxtP Í-¢-=  contains same and worse solutions of Problem 1. 

Proof: 1) Deduct BB² from inequality  
00 fBfB +¢+ . We get                    

dtfdtfTff
TT ññ ¢¢ 0000 i.e.,on  . 

2) Deduct BB² from inequality  
00 fBfB -¢- . We get                    

dtfdtfTff
TT ññ ²-¢- 0000 i.e.,on .  Theorem is prooved (QED). 

Let us take instead function (3.4) simpler function dtuxtB
T

),,(1ñ
 (here B1 is given function). Than 

Theorem 3.3. Assume F = 0 and solved the problem QdtuxtBJ
T

on),,(inf 11 ñ= . Than: 

3) Set },:,,{ 0101 TtfBfBuxtN Í+¢+=  contains the same and better solutions of Problem 1; 

4) Set  },:,,{ 0101 TtfBfBuxtP Í-¢-=  contains the same and worse solutions of Problem 1. 

Proof: 1) From N we have the inequality dtfBdtBf
TT

)()( 0110 +¢+ ññ
. Deduct from this inequality 

the inequality dtBdtB
TT ññ ² 11

. We get  dtfdtf
TT ññ ¢ 00

 . 

2) From P  we have the inequality   
dtfBdtfB

T
)()( 0!01 ññ -¢-

. Deduct 
ññ ² dtBdtB

T
11

 from this 

inequality. We get dtfdtf
TT ññ ² 00

. Theorem is prooved (QED). 

o˿nsequence. If set P cover the set UGT ³³ (or reachability set) and uxQux ,then,, Í are 

absolute minimum of Problem 1. 
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 Note. Delete part equation (3.1) or (3.2) [in case (3.2) xi correspoded deleted equations became the 

control in the rest equations]. Then getten solution is the low estimation of initial Problem as it is follow 

from principle of expension [5]: )(),(where),,(),(and)()( tutxuxIuxIxIxI ²² are absolute 

ƳƛƴƛƳǳƳ άǘǊǳƴŎŀǘŜŘέ ǘŀǎƪΦ 

  When right parts of equations (3.3), (3.4) do not depent clearly from x(t), we can stand out not only set 

N,P but the set M. It is correct the following theorema 

  Theorem 3.4. Assume 0²F , ends  x(t) is free, the right parts of equations (3.3), (3.4) depent only 

from t, u , i.e.: fi = fi(t,u)  ƛ Ґ лΣмΣΧΣƴΦ ŀƴŘ ǎƻƭǾŜŘ ǘŀǎƪ ),(inf 1
,

utB
ux

. Than: 

1) Set },:,{ 0101 TtfBfButM Í-²-=  contains the absolute minimum of Problem 1; 

2) Set  },:,{ 0101 TtfBfButN Í-²-=  contains the same and better solutions of Problem 1; 

3) Set  },:,,{ 0101 TtfBfBuxtP Í-¢-=  contains the same and worse solutions of Problem1. 

  Proof for sets N, P full equally with the proof of Theorem 3.2. Proof for M follows from discontinuity  

u(t) and depends the right parts of equation only from u. 

                  3. Task the dynamic programming of Bellman  

     Assume there is physical system S. The control of this system separated in m steps. On every i step we 

have the control Ui. Using this control  we transver  our system from allowable stand Si-1 getted in (I - 1) 

step  in new allowable stand  Si = Si(Si-1, Ui). This transwer is bounded by some conditions. The purpose is 

minimum function 

                                                             
ä
=

=
n

k

kwW
1

 

Let us to biuld the common function 

                                 
miwWWJ

n

k

kiii ,...,2,1,where,
1

==+= ä
=

a
 . 

In this case we can change the task of the conditional minimum inf Wi in the task of direct minimum  

i
V

Jinf . If the limitations are absent or they allow the select Uk in every step to make with associated 

conditions, then from h  = 0 in the admisseble elements we get the Bellman equation [6]. 

                              .,...,2,1},,({min)( 11 miUSWSW iii
U

ii
i

== --
  

3. Application h -function for solution the problems with distributed    
                                            parameters 

Let us consider about absolute minimum the Problem with distributed parameners 
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                                           ))((),,(),( 0 txFdtuxtfuxI
P

+=ñ
,     (3.12) 

where ),...,,(),,...,,(),,...,,( 212121 rnm uuuuxxxxtttt ===  are elements of vector space T, X, U * 

respectively. P is closed area in space T, bounded continuous piecewise smooth, fixed hypersurface S. 

On S the t = ̱ . P* is internal part this area, functions xi(t) on P are absolute-continious, u (ht) are 

measurable on P and have velues from area U, which can be closed and bounded. 

  Functions x(t), u(t) satisfy almost everywhere the system n.m independed differensial equetions with 

particulal deviations  

                         
mjniuxtf

t

x i

j

j

i ,...,2,1;,...,2,1),,,( ===
µ

µ     (3.13) 

  Funsions 
0, ff i

j
are continiouly together with its particular derivitives the first order. The function x(t), 

u(t) we name allowable if they satisfy the named above conditions (set Q). 

 Statement og Problem: Find couple function u(t), x(t), which give the function I (3.12) the minimal value. 

  Add to system (3.13) the integrability condision: 

                           
.;,...,2,1,;,...2,1,0 jkmkjni

t

f

t

f

j

i

ki

k

i

j
>===

µ

µ
-

µ

µ
=gj

   (3.14) 

Not difficult to calculate, that number of difficalt equation (3.14) may be 

mnmeimnm )1(5.0,...,2,1..,)1(5.0 -=- g  (number of combinations )2nCm
. For simplicity we will 

assume: all functions ˒  ɹin (3.14) contain u and these u may be find from (3.14) Assume the number of 

independed equations (3.14) are less r. 

  Let us lead to consider m-dimentional function ̞ όǘΣȄύ = {̞ 1Σ˕2ΣΧΣ˕m}. The components of this function 

˕j(t,x)   j Ґ мΣнΣΧΣm  are continious and have the continuous partial derivatives almost everywhere in T. 

Name this function ς charasteric function. Let us lead also the integrable vector-function  

)(),...,(),( 21 ttt plll . 

  [Ŝǘ ǳǎ ǘŀƪŜ ʰ- function in form 

                           dtfdtnx i

j
P

j

x

j

t

j

S

j

ij
)(),cos(),( g

gjlyyttya ++-= ññ
,   (3.15) 

Where n is outer normal to surface SΣ Řˍ  is element surface SΦ ²Ŝ ǇǊŜǎŜƴǘ ǘƘŜ ŦǳƴŎǘƛƻƴ W Ґ L Ҍ ʰ ƛƴ ŦƻǊƳ    

g
gjlyytty ++-==+= ññ

i

j
s

j

x

j

t

jj

P
ffBdtnxAwhereBdtAJ

ii0,),cos(),(, . (3.16) 
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Theorem 3.5. Assume .)( Vtu Í  In order to couple u(t), x(t) will be the absolute minimum the purpose 

function (3.12) it is sufficientlȅϝ ŜȄƛŎǘƛƴƎ ƻŦ ʰ-fuction (3.15) such that  

  QtutxBAuxtBB
xUux

Í-¤>==
Í

)(),()3,inf)2),,,(inf)1
)(, t

.    (3.17) 

 The proof is identical [2] Ѕ7, but in difference  from [2] the theorem 3.5 contain the integrability 

condition. 

  If JQtutx than,)(),( Î is the lower estimation the function (3.12). 

  If exist the functions ̞ Σ ˂ and  at least one pair )(),( tutx satisfying (3.17), then any other pair 

satisfying (3.17) is minimum of the function (3.12) and any allowable minimum the function  (3,12) is 

satisfying the points 1, 2 (3.17) (consicvently remark 3 §1). The set contains the same or better solution, 

then )(),( tutx is  

                               UPonfBuxtfuxtBuxtN ³+²+= *}),,(),,(:,,{ 00
, 

 Assume, functions ),,(),,,( uxtuxtf i

j

gj  are continuous and differentiable. Let us take ̞ j in form ̞ j = 

pij(t)xi. Let us denote: 

                             ),,(),,(),,()( 0 uxtuxtfuxtftpH ijij

g
gjl+-= . 

 Then p.1 (3.17) of theorem 3.4 we can rewrite: HuH
UuÍ

=sup)(  and nessusary condition of minimum 

(stationarity condition) following  from p.2 (3.17) gives: 

                                     
.,...,2,1,0 ni

x

H

t

p

x

B

ii

ij

i

==
µ

µ
-

µ

µ
-=

µ

µ     (3.18) 

 

                                    §4. Inverse substitution method 
 

    A. From previous paragraph we have: if we know the minimum any function on acceptable set, we can 

get information about solution the Problem 1 and solve one from Problem a, b, c, g the §1. 

  It is known , that the most direct Problems inf f0(x)  on X* or 

ñ
2

1
0inf

t

t
dtf

   

on Q  (i.e. finding  the minimum  of main Problem) are difficult or do not have the satisfaction solution. 

However, if purpose function is not in advance definished, the solution for this non-definished purpse is 

finding easy. This is not suprising. In mathematics it has long been known that many inverse problems 

are solved more easily than direct problems. An example, let us consider the problem of finding the 

roots of an algebraic equation.  In the general case for n> 5 it is solved with difficulty and her decision 
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(roots) not to be expressed in terms radicals.  If the roots are given, then the corresponding algebraic 

equation may be found easy.  On the basis of this idea below it is given  method to build function for 

which an admissible element would be the point of absolute minimum on an admissible set.  Since we 

thus have to solve a problem back to the original problem (not find the minimum given function, but 

find the function for given the minmum  or for fiven field). This method is called the method of 

reverse lookup. The method is presented for two cases: problems of the theory of extrema of 

functions of a finite numbers of variables ( p.B) and optimization problems described by ordinary 

differential equations (p.C). 

B. Let us consider usial Problem of minimum the function of finite variables 
   nmixfxfI i <=== ,...,2,1,0)(),(0

.     (4.1) 

 Let us convert this Problem. Select m componets x and name them main (base). Suppose for 

definiteness that this is the first components m of the vector x. The rest of components n - m = r denote 

uj  (j Ґ мΣнΣΧΣǊύΦ  

Rganthe Problem (4.1) we can re-write 

nmiuxfuxfI i <=== ,...,2,1,0),(),,(0
.    (4.2) 

where x ς m - dimentional vector, XxÍ , u ς r - dimentional vector, UuÍ . 

  Let us take more simple purpos function J1(x,u) ŀƴŘ ŦƛƴŘ ƛǘΩǎ ǘƘŜ ŀōǎƻƭǳǘŜ ƳƛƴƛƳǳƳ  ƻƴ UX³ . This 

solution may be used for building  of sets M, N, P:                           

                    

)5.4(.}:,{

)4.4(,}:,{

)3.4(,}:,{

0101

0101

0101

fJfJuxP

fJfJuxN

fJfJuxM

-¢-=

+¢+=

-²-=    

 Desandvantage this method is next: the some of these sets can di not have the admissible 

elements (i.e. x, u satisfacting  fi = 0).    

  Assume, the limitations 0),( =uxf i
 in (4.2) may be solved abou x: 

                    miiuxx ii ,...,2,1),( ===  (4.6) 

and XxÍ for any UuÍÙ .  

  Assume we take simple function J1(x,u)Φ {ǳōǎǘƛǘǳǘŜ ƛƴ ƛǘΩǎ ǘƘŜ όпΦсύ ŀƴŘ ŦƛƴŘ uuuxJ
U

),),((inf 1
, and 

(4.6) x . This solution is analog (4.3)-(4.5). One may be used for finding sets M, N, P. The intersection of 

these sets with admissible set is not empty. You can take  J1(x,y,u), than  )( yuu= . You can use 

the dependance of M, N, P from y ŦƻǊ ŎƘŀƴƎƛƴƎ ǘƘŜ άǎƛȊŜέ ƻŦ ǘƘŜǎŜ ǎŜǘǎΦ It is clear assesment  
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                                      ])),(()),(([supinf 1 uuxIuuxJ
uy

-=D  . 

C.  In point 2 §3 we considered the optimization Problem described by conventional differencial 

equations   

                          
.,,...,2,1),,,(,),,(

2

1
0 UuniuxtfxdtuxtfI i

t

t
Í===ñ #    (4.7)  

We was shown: if we take some function ˕όǘΣȄύ  and find  minimum of B
ux,

inf  in (t1, t2) and A
xx 21 ,

inf , we 

get the  minimum of Problem 1 or the its lower estimation. 

   Statement of the Problem. Let us to state the Problem 1 the other way: the find the function which 

matches  the  function ̞όǘΦȄύ and minimum of this function of the admissible set.   

   Note. Let us note: the offered statement very different from the back problem of variation calculation. 

In variation calculation, the back problem states next: we have a curve. Find the function, which gives 

the minimum in this curve. In common case this problem is more difficult then a direct problem.  

 In our case the minimum curve not given. We find it by given function ˕όǘΣȄύΦ 

  Theorem 4.1.  The minimum function corresponding function ˕όǘΣȄύ is 

                          
dtuxtfdtxtBJ

t

t
tix

Uu

t

t i
]),,([inf),(

2

1

2

1
11 ññ ---==

Í
yy

   .   (4.8) 

And correcponding to it the minimum curve is given by equations 

                                ,,...,2,1)],,.(,,[ nixtuxtfx txii i
== yy#     (4.9) 

where ),,,( txi
xtuu yy=  we find from (4.8). 

Proof. Write the expression B (see (3.11)) for problem (4.7) and check up condition (3.8) of theorem 3.1: 

                         ]),,(),([infinf)( 2
,

2 tix
ux

uxtfxtBtB
i

yy --= .    (4.10) 

Obviosly, the (4.10) identically equals zero for ̞  Ґ ˕όǘΣȄ) from (4.8) and ux, satisfacting (4.7). If we take 

as x(t2) the value x(t), received from (4.9) for t2, then the point 2 (3.8) disappear and all condition (3.8) of 

theorem is executed. Theorem is prooved. 

  Consequence. If ),(01 xtfB = , then x(t) getting from (4.10) give the set of the minimal curves for 

boundary condition ̞ 2 Ґ ˕. In particulary, if the end of curve x(t) from (4.9) match with given boundary 

conditions, that this curve is minimum curve of Problem 1. 

  Note. Boundary conditions in the left end can always be performed. For it we must start the intgration 

from the given conditions (4.9). We can perform the boundary condition in the right end the next 

method. Take in form ̞όǘΣȄΣŎύ where c ς n ς dimentional constant. Substitute ̞ όǘΣȄΣŎύ in (4.9) and select c 

such that to perform the given end condition in the right end. 
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  Getting numerical function may be used for receiving the set N, P of Theorem 3.3 : 

                     

.givenis),()],,,,(,,[where

},:,{},:,{

00

01011010

xtxtuxtff

fBfBxtPBfBfxtN

tx yyy=

-¢-=+¢+-  

If we find  

                                   
dtBfJ

t

t x
)(inf 1012

2

1

-+-= ñyy
 , 

We get also the lower estimation. 

  Memo, the assignment ̞όǘΣȄύ gives us not single nometical function and its point of minimum. One 

gives a set of minimums satisfaction the boundary conditions 2̞ ς ̞ 1 = c.  

  Note: We can take ̞όǘΣȄΣȅύ. Then B1(t,x,y). If we can select such )(ty  that ),(),,( 01 xtfyxtB = and 

boundary conditions is perfomed, then ),,( yxtu  is the optimal synthesis of Problem 1. 

D.  We also show: how you can find the numerical function for given the syntes of control u = u(t,x). 

Equate the given u = u(t,x) to the control findedfrom (4.8). We get the equation in particular derivities 

                                                 ),,,(),( txi
xtuxtu yy= .    (4.11) 

Substitute its solution ̞ όǘΣȄύ and given u(t,x) in (4.8), we find the numerical corresponding function. If B1 

= f0(t,x) that is synthesis the Problem 1 for the bounded condition 2̞ Ґ ˕Φ 

  Possible the other method . We take u = u(t,x,y). Substitute its in (4.8). Then B1 = B1(t,x,c,y). We can try 

using y to reach the identify 
10 Bf ¹  and using c to minimize the nymerical function I. 

  Example 4.1. Let us consider the task of design the regulator 

                                               

)14.4(,0)(,)0(

)13.4(,0,

)12.4(,

,

2

1

=¤=

¤¢¢+=

=ñ

ioii

jiji

ji

t

t
ij

xxx

tuxax

dtxxbI

#

 

where f0 = bijxixj  is the positive definite form. 

  Take u  = cixi, where ci are constants. Let us to search  ̞as the quadratic form ̞  Ґ !ijxixj  with unknown 

coefficients. Equate :0 y#¹f      

                                        ).( jjjijiijjiij xcxaxAxxb +=  

  Let us equate coefficient in same xi, xj in left and right of this equation. We get the set n(n+1)/2 the 

linear inhomogenius equations having the same number of unknown  Aij. If the determinant of this 
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system 0̧D , we find  Aij. We substitute y#¹0f  in (4.12), integrate and find ),0(),( ccI yy -¤= or 

using (4.14)  I = - ̞ όȄio,c). When we find minimum of this expression for c,we get the optimal syntes.If 

),( cxy- is the positive definite form then this function is the Lyapunov function (because 0²-y#  and 

the regulator is assimptotic stable. 

 

                 §5.  Method of combining extrema in problems of constrained minimum. 

   We will show in this paragraph that method combining extrema, considered in  §2 the Chapter 1, it is 

apply in tasks of theory the functions of a finite number of variables (point A) and tasks described  the 

conventional difference equations. 

A) Let us again consider the Problem of the theory the functions of a finite number of variables 
                             .,...,2,1,0)(),(0 mixfxfI i ===    (5.1) 

Write the numerical function 

                                     )(),()(),( 10 xcxxfcxJ ab ++= ,   (5.2) 

Here h 1(x) is h  ς function, c is n ς dimentional constant. 

  From condition 

                                                       ),(inf
*

cxJ
XxÍ

,     (5.3) 

  we find .0),( )1(

1 =cxj  

  From condition  

                                     )](),([sup),( 2
*

xcxcx
Xx

ab +=F
Í

,    (5.4) 

we find .0),( )2(

2 =cxj  Solve equations ˒1Σ ˒2 together with (5.1) (cjmbining equations): 

                          0),( )1(

1 =cxj ,  0),( )2(

2 =cxj ,  x(1) = x(2) ,    (5.5) 

we receive the absolite minimum  the Problem 1. The edditive ʲόȄΣŎύ selectes so that tasks (5.3), (5.4) 

are solved easier. 

 For example, ., 21 iiii ff nala == Functions fi(x),  i Ґ лΣмΣ ΧΣn are  continious and difference , 

the functions WόȄΣŎύΣ ʊόȄΣŎύ have single minimum and maximum for any c.  That  we have system (3n + 

2mύ Ŝǉǳŀǘƛƻƴǎ ǿƛǘƘ ǎŀƳŜ ƴǳƳōŜǊǎ ƻŦ ǳƴƪƴƻǿƴ ƳŀƎƴƛǘǳŘŜǎ  ʰόмύΣ ʰόнύΣ ŎΣ ˂Σ ˄Φ 

Example is not include. 

B)  Let us to consider the task, described the conventional different equations: 
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22110 )(,)(,,,...,2,1),,,(,),,(
2

1

xtxxtxUuniuxtfxdtuxtfI ii

t

t
==Í===ñ #  ,         (5.9) 

  Take ̞  in form )1()1()1( )( ii tp ay = and create the function  

          )1()1()1()1()1()1()1()1()1(

01 ),,,( iiiiii xpHxpfpzuxtfB ## --=--+= b . 

Here z(t) is r ς dimentinal function. One can have the limited gaps the first type. 

  From 
1

,
inf B

ux

and (5.9) we find 

                ).,,(),,,,(, )1()1()1()1()1()1()1()1()1( uxtfxzpxtuuHp x ==-= ###    (5.10) 

  Take )2()2()2(

ii xp=y and create the function 

                    )2()2()2()2()2()2()2()2()2(

2 ),,,( iiiiii xpHxpfpzuxtB ## --=--=b . 

 From 
2

,
inf B

ux

and (5.9) we find 

               ).,,(),,,,(, )2()2()2()2()2()2()2()2()2( uxtfxzpxtuuHp x ==-= ###    (5.11) 

Using the combining equation: )2()1()2()1( , uuxx == we get final: 

     ),,,(),,,(,,),,,( )2()2()1()1()2()2()1()1()1( zpxtuzpxtuHpHpuxtfx xx =-=-== ### ,  (5.12) 

That is system 3n + r equations with 3n + r unknown x, p(1), p(2), z . Last equation in (5.12) is the 

combining equation. The additive function ̡ selecting so that the solution task of finding  inf and sup 

were simpler. 

      §6. Generalizing the Theorem 3.1 in case the brocken ˕όǘΣȄύ. 

Theorem 6.1. Assume there is numerical ŦǳƴŎǘƛƻƴ ˕όǘΣȄύ ŘŜŦƛƴŜŘ on set GT³  , bounded below, 

piecewise differentiable and ǇƛŜŎŜǿƛǎŜ ŎƻƴǘƛƴǳƻǳǎΦ ¢ƘŜ ŦǳƴŎǘƛƻƴ ˕όǘΣȄύ ŀƴŘ ƛǘǎ ŘŜǊƛǾŀǘƛǾŜǎ Ŏŀƴ ƘŀǾŜ ǘƘŜ 

breaks the first types on the limited set 1,...,2,1),,( -=F ksxtss
 zero measure. This function is such 

that there is: 

.)(),()4,0inf)3

,1,...,2,1,,),(inf)2),(inf)1 '

1

'

1
,

QtutxB

ksttttF

TG

kkssss
xt

ok
R ss

Í=

-=--+

³

--

+-

FÍ
==yyyy  

 Then ux, (are got from points 1 -3) is the absolute minimum the Problem 1.  

  Here +-

ss yy ,  are value ̞  in left and right side (along )(tx ) of the breaks the function ̞ and its 

derivatives. 
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Proof: From poins 1 ς 3 we have 

                     
BdtFJ

k

s

t

t ux
ss

k

s
xt

k
R

s

ss

äñä
-

=

+-
-

=

-

+-+-+=
1

0
,

1

1
,

0

1

inf)(inf)(inf yyyy
 . 

 On feasible cirves (from Q)  the J convert in function 
ñ+=

2

1
0

t

t
dtfFI

. In this case if we apply the 

consequence 4 , §1, point 4 of the theorem statement is obviously. Theorem is prooved. 

 Note. The conditions 3 of Therem 6.1 is sometimes difficult to check up. In this case the requirements 

2 - 3 of theorem 6.1 we can change the damage 

                                      
]infinf)(inf[inf

1

1
BdtBdt

s

s
UG

s

s UG
ss

xts
ññ
+

³
- ³

+- ++-yy
 . 

One must be checked up in every point  ts,  s Ґ мΣнΣΧΣƪ-1.     

§7. Optimization the problems described the conventional differential 

equations having the limitations. 

  We find minimum A, B in Theorem 3.1, chapter II on the corresponding sets  R and GU³ . The most 

widely method of separating the feasible sets is the separation of them from more widely set by 

equilities and inequilities. In this case, we can solve our problem by the methods the -h and ̡ -

functions.  

  Let us shortly consider  the most common cases. 

                                1. Limitations are the equilities 

a) Assume the admissible set R is separated by equilities: 

                                      nlixxgi 2,...,2,1,0),( 21 <== .    (7.1) 

Then the task inf A we can change the task  

                                   )],(),,([inf 2121
, 21

xxgzxxA iii
xx

m+  .    (7.2) 

Here µi is known functins, z is l-dimentional unknown vector. In particulary, we can take µi = zi. 

  b) Assime the admissible set GU³  is separated by equilities  

                                      rliuxti <== ,...,2,1,0),,(j .    (7.3) 
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Assume, we can find from (7.3) the l component the vector u. Than the problem  B
UG³

inf  we can change 

the problem 

                                 )],,(),,([inf
,

uxtwxtB ii
ux

jl+ ,     (7.4) 

Where ˂ i are known function, wi is l - dimantional unknown vector function. In particular, we can take  

i˂ = wi . 

c) Assume the admisseble set G is separated by the equilities 

                                       rlixti <== ,...,2,1,0),(j .    (7.5) 

Differenciate (7.5) full case for t and find 

                     
nli

t
uxtf

x
uxt i

j

j

i
i <==

µ

µ
+

µ

µ
¹ ,...,2,1,0),,(),,()1( jj

j
.  (7.6) 

 If in system (7.6) there is equations do not contain u, we differenciate them next time and so on 

whole we get the the system where all l eqution contain u. Assume we can find all l components from 

this system (l < r). 

  Than the problem (7.5) is redused to the tasks the point a, b in which (7.6) is (7.3), but (7.5) and all 

equtions (7.6) not contain u, are (7.1). 

                        2. Limitations are inequalities. (excerpt) 

a) Feasible set R is allocated by inequalities: 

                                                 .,...,2,1,0),( 21 lixxgi =¢  

Then acording the Teorem 1.4 Chapter 1 we change the problem A
R

inf  by problem (7.2) with the 

additional conditions: 

                               )sumnotishere(0,0 ig iii ²= ll    (7.7) 

b) Feasible set GU³  is allocated by inequalities: 

                                              .,...,2,1,0),,( liuxti =¢j     (7.8) 

All inequalities contain u. Then the task B
GU³

inf we change the task (7.4) wuth conditions 

                               )sumnotishere(0,0 iiii ²= ljl    (7.9) 

Example 7.1. Assume in task  
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,,...,2,1),,,(,),,(
2

1
0 niuxtfxdtuxtfI ii

t

t
===ñ #  

Control u is scalar, the feasible set U limited inaquility )(, babua <¢¢ . Compose (7.4): 

                                         .)]()([inf 21 aubuB
U

+-+-+ ll  

According (7.9) on feasible u: .0)(,0)( 21 =+-=- aubu ll  That way we have 

                              .inf)]()([inf
21,

21 BaubuB
Uuuu Í

=+-+-+ ll  

In right side we have one condition the Pontryagin method. 

 

(Part of the text are missing) 

=====================================================   

ΧΧΦ 

=====================================================  

                   

            §10.  Note on the equivalence of different forms of variational problems 

 

A) In §3 the next problem of minimization was considered   

                                      ñ+=
2

1

),,(),( 021

t

t
dtuxtfxxFI ,                                            (10.1) 

on solution of equations 

                                           .,...,2,1),,,( niuxtfx ii ==#                                           (10.2) 

  In the theoretical analysis for the sake of simplicity, we often assume that in (3.1) 

.00 0 ¹¹ forF  

 We show that it does not restrict the generality of our reasoning.  

Take                                         

ñ=
2

1

),,(0

t

t
dtuxtfI

 

And differentiate it for the variable upper limite t and designate .01 fxn =+# We get the task 

                                  .,),( 0111 fxfxtxI niin === ++
##     (10.3) 

B) Assume ).,( 21 xxFI =  Differenciate it by t and integrate, we get numerial function  

             
dtfFI i

t

t
xi

)(
2

1
ñ=

      (10.4) 



74 

 

We can same way to convert (10.1) in (10.4) and in (10.3). 

C) Let us to assume the (10.1) and (10.2) depend from constants ck which must be optimal. Designate 

ck = xi+k and add to (3.3) equation 0=+knx# . We reduced the task having the optimising constants to 

conventional task. 

  In practice it is camfortable to solve the problema (10.1), (10.2) with constant parameters. Than to 

change them (for example the gradient method) so, the function (3.1) decreases. 

D)  The problem with fi (t,x,u) which obviously depend from t , we can reduse to problem fi (x,u) do not 

depend obviously from t , if to designate t = xn+1 and add to (10.1) the equation 11=+nx# . 

C) Let us to show how the task with the mooving ends t1 and t2 we can reduse the task with fix interval 
of integrate. Take the new variable ǘ Ґ Ŏˍ. Than task (10.1),(10.2) having variables t1 or t2 was 
redused in task with fix interval (̱1, 2̱): 
                                        

,),,(,),,(
2

1
0 uxccfxduxcfFI i

t

t
ttt =¡+= ñ

 

where the touch means the derivative for ̱. The constant c > 0 is selected from minimum I. 

 

                                                Application to Chapter II. 

1. Theorem 3.1 and known methods of solution the problem described the 
ordinary differential equations. 

 

From Theorem 3.1 we can to get the conditions which are same with known algorithms of optimal 

ŎƻƴǘǊƻƭΣ ŦƻǊ ŜȄŀƳǇƭŜΥ tƻƴǘǊƛŀƎƛƴ ǇǊƛƴŎƛǇƭŜ ώмϐΣ .ŜƭƭƳŀƴ Ŝǉǳŀǘƛƻƴ ώсϐΣ ŎƭŀǎǎƛŎŀ͒ calculus of vatiation [7], 

  Let us to request additional that function ŦΣ ˕ have the need continious derivatives. 

a) Pontriagin principle. According [2] take ̞ (t,x) in form ̞  = piόǘύɲȄi , where pi(t) are some 

differenciable functions t, .iii xxx -=D Create the Hamiltonian 

),,(),,( 0 uxtfuxtfpH ii -= .    (1) 

Then B = - H - pixi . Necessary condition of the minimum B for x, which follows from p.1 (3.8) of Theorem 

3.1 (stationarity condition) is 

.,...,2,1,0 niHpB
ii xix ==--¹     (2) 

Moreover of claim 1 (3.8) we have 
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HHuxtBuxtB
UuUuUu ÍÍÍ

-=-= sup)(infor),,(inf),,(    (3) 

Terms and conditions (2), (3) together with (3.3) coincide with the corresponding terms and conditions 

of the Maximum principle* [1]. 

b) Belman equation. Assume  0̧nx . Take all ˂i = 0  ƛ Ґ мΣнΣΧΣƴ-1 with exeption  
nn xxt /),(yl= . 

Sabstitute them in (3.9) §3, we get the known Belman equation [6] 

0)(inf 0 =--
Í

tix
Uu

ff
i
yy      (4) 

Boundary condition for them is A = const. Solution of this equation is the field of all optimal trajectories. 

c) Classical calculus of variation. From claims 1, 2 Theorem 3.1 easy to get the conditions of a relative 

minimum coinciding with the relevant terms of the calculus of variations [7]. 

  Let us assune U is the open area, )(),( tutx# are continiosly, fi(t,xu) have continious partial deriveties up 

the third order. Take ̞ = piόǘύɲȄi . From (3) that at minimum 

                                      ,,..,2,1,0),,(),,( riuxtHuxtB
ii uu ==-=     (5) 

Equtions (2),(4) equal the conventional Eiler-Lagrange equations [7] §2 p.1. From [3] also follow 

                                       .,...,2,1,,0 rjiuuH jiuu ji
=²- dd      (6) 

That matches with Klebs condition. 

 

(Itanslation of the Chapter 2 is not finished) 

===================================================================== 

ΧΧΧ  

====================================================================== 
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                                                            Attachment  1 

/ƘŀǇǘŜǊ п! ŦǊƻƳ ōƻƻƪ άbƻƴ-wƻŎƪŜǘ {ǇŀŎŜ [ŀǳƴŎƘ ŀƴŘ CƭƛƎƘǘέΣ ōȅ !ƭŜȄŀƴŘŜǊ .ƻƭƻƴƪƛƴΣ 9ƭǎŜǾƛŜǊΣ нллтΦ пуу 

pgs.  ISBN-13: 978-0-08044-731-5,  ISBN-10: 0-080-44731-7 . pp.383-422 

Optimal Trajectories of Air and Space Vehicles 

                                                                 Summary  
 

  The author has developed a theory on optimal trajectories for air vehicles with variable wing 

areas and with conventional wings.  He applied a new theory of singular optimal solutions and 

obtained in many cases the optimal flight. The wing drag of a variable area wing does not depend 

on air speed and air density.  At first glance the results may seem strange, however, this is the 

case and this chapter will show how the new theory may be used.  The equations that follow 

enable computations of the optimal control and optimal trajectories of subsonic aircraft with 

pistons, jets, and rocket engines, supersonic aircraft, winged bombs with and without engines, 

hypersonic warheads, and missiles with wings.  

    The main idea of the research is to use the vehicleôs kinetic energy to increase the range of 

missiles and projectiles. 

    The author shows that the range of a ballistic warhead can be increased 3ï4 times if an 

optimal wing is added to it, especially a wing with variable area. If we do not need increased 

range, the head mass of rockets can be increased. The range of large gun shells can also be 

increased 3ï9 times. The range of an aircraft may be improved by 3ï15% or more. 

    The results can be used for the design of aircraft, space ship, head of rockets, missiles, flying 

apparatus and shells for large guns. 

------------------------------------------- 

Key words: Methods of optimizatiom, optimization, optimal control, aviation, space ships. 

Nomenclature (in metric system) 

a ς the speed of sound, m/s,  

a1, b1, a2, b2 ς coefficients of  exponential atmosphere,  

CL ς lift coefficient,  

CD ς drag coefficient,   

CDo ς drag coefficient for CL = 0,  

CDW  ς wave wing drag coefficient when a  = 0,  

CDb  ς body drag coefficient,  

c ς relative thickness of a wing,  
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cb ς relative thickness of a body, 

c1 ς relative thickness of a vehicle body, 

cs ï fuel consumption, kg/s/ kg thrust,  

D  ς drag of vehicle, N, 

D ς drag of vehicle without a, N, 

D0W ς wave wing drag when a = 0, N, 

D0b ς drag of a vehicle body, N, 

H ς Hamiltonian, 

h ς altitude, m, 

K = CL/CD  ς the wing efficiency coefficient, 

 k1, k2, k3 ς vehicle average aerodynamic efficiencies for sub-distances 1, 2, 3 respectively, 

 L ς range,   

M = V/a  ς Mach number, 

m ï mass of vehicle, kg, 

p = m/S  ς  load on a square meter of wing,  

q=rV2
/2  ï a dynamic air pressure,  

R ï aircraft range or R = distance from flight vehicle to Earth center;  

R = Ro + h, where Ro = 6378 km is Earth radius,   

tς time,  

T = beV  ς thrust,  N, 

V ς vehicle speed, m/s, 

Ve ς speed of throw back mass (air for propeller engine, jet for jet and rocket engine), m/s, 

S ς wing area, m2, 

s ς length of trajectory, 

T ï engine thrust, N,  

Y ς lift force, N, 

a ς wing attack angle,  

b ς fuel consumption,  
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q  ς angle between the vehicle velocity and the horizon,  

w  ς thrust angle between thrust and velocity,  

wE ς Earth angle speed, 

jE ς ƭŜǎǎŜǊ ŀƴƎƭŜ ōŜǘǿŜŜƴ ǘƘŜ 9ŀǊǘƘΩǎ tƻƭŀǊ ŀȄƛǎ ŀƴŘ ŀ ǇŜǊǇŜƴŘƛŎǳƭŀǊ ǘƻ ŀ ŦƭƛƎƘǘ ǇƭŀǘŜΣ  

r ς air density. kg/m3. 

Introduction  
 

  The topic of the optimal flight of air vehicles is very important. There are numerous 

articles and books about the optimal trajectories of rockets, missiles, and aircraft. The 

classical research of this topic is by Miele1. Unfortunately, the optimal theory of this 

problem is very complex. In most cases, the researchers obtained complex equations, that 

allow one to compute a single optimal trajectory for a given aircraft and for given 

conditions, but the structure of optimal flight is not clear and simple formulas of optimal 

control (which depend only on flight conditions) are absent.  
    The authorôs new theory of singular optimal solutions, developed earlier

2ï14
, does not contain 

unknown coefficients or variables as previous theories have. He found that the optimal flight 

path depends only on the flight conditions and the addition of certain variable wing structures.  

    In conclusion, the author applies his solution to ballistic missiles, warheads, flying bombs, large gun 

shells, and subsonic, supersonic, and hypersonic aircraft with rocket, turbo-jet, and propeller engines. 

He shows that the range of these air vehicles can be increased 3ς9 times. 

1. General equations  

 
Let us consider the movement of an air vehicle given the following conditions: (1) The vehicle moves in a 

ǇƭŀƴŜ ŎƻƴǘŀƛƴƛƴƎ ǘƘŜ 9ŀǊǘƘΩǎ ŎŜƴǘŜǊΦ όнύ ¢ƘŜ ǾŜƘƛŎƭŜ ŘŜǎƛƎƴ ŀƭƭƻǿǎ ǘƘŜ ǿƛƴƎ ŀǊŜŀ to be changed (this will 

ǇǊƻǾŜ ƛƳǇƻǊǘŀƴǘ ƛƴ ǘƘŜ ǊŜƳŀƛƴŘŜǊ ƻŦ ǘƘƛǎ ŎƘŀǇǘŜǊύΦ όоύ ²Ŝ ƛƎƴƻǊŜ ǘƘŜ ŎŜƴǘǊƛŦǳƎŀƭ ŦƻǊŎŜ ŦǊƻƳ ǘƘŜ 9ŀǊǘƘΩǎ 

rotation (it is less then 1%). (4) Earth has a curvature.  

  Then the equations for flying vehicle (in a system of coordinates where the center of the system is 

located at the center of gravity of the flying vehicle, the x-axis is in the direction of flight, the y-axis is 

perpendicular to the x- axis, Fig. A4.1) are 
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Fig. A4.1 Vehicle forces and coordinate system. 
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EE
 (A4.3) ς (A4.5) 

    All values are in the metric system and all angles are taken to be in radians. 

Flight with a small change of vehicle mass and flight  path angle  

 

 Most air vehicles fly at an angle q in the range °15o (q  =  ° 0.2618 rad), with the engine located along 

the velocity vector. This means  

sinq  = q,    cosq  = 1 , w = 0 ,    (A4.6) ς (A4.8) 

because sin15o = 0.25882, cos15o = 0.9659. 

    Let as substitute (A4.6) ς (A4.8) into (A4.1) ς (A4.5) 
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                 (A4.9) ς (A4.10) 
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                (A4.11) ς (A4.12) 

,b-=
dt

dm
         (A4.13) 

where 

maxqq¢ .     (A4.14) 

    Many air vehicles fly with a low angular speed of dq/dt.  The change of mass is also low in flight. This 

means m = const, dm/dt @ 0. 

    dq/dt º  0,   dm/dt  = 0 .   (A4.15) ς (A4.16) 

Let us take a new independent variable s = length of trajectory  

dt = ds/V,             (A4.17) 

and substitute  (A4.14)-(A4.17) in (A4.9)-(A4.13). Then system (A4.9)-(A4.13) takes the form 
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++-=
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    (A4.18) ς (A4.21) 

Let us re-write equation (A4.21) in the form 

.0cos2),,(
2

=++- EEmV
R

mV
mghVY jwa     (A4.22) 

If we ignore the last element, equation (A4.22) takes the form  
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0),,(
2

=+-
R

mV
mghVY a .                        ό!пΦннύΩ 

    If V is not very large (V <  3 km/s), the two last elements in equation (A4.21) are small and they may be 

ignored. Equations (A4.22) ŀƴŘ ό!пΦннύΩ Ŏŀƴ ōŜ ǳǎŜŘ ŦƻǊ ŘŜƭŜǘƛƴƎ a from D . 

    Note the new drag without a is 

D=D(h,V).      (A4.23) 

If we substitute a from (A4.22) into equation (A4.20) the equation system take the form 

,
),(),(

,

,1

q

q

V

g

mV

hVDVhT

ds

dV

ds

dh

ds

dL

-
-

=

=

=

     (A4.24) ς (A4.26) 

Here the variable q is new control limited by 

     maxqq¢ .     (A4.27) 

 

                                                          Statement of the problem 

 Consider the problem: finding the maximum range of an air vehicle described by equations (A4.24) ς 

(A4.26) for the limitation (A4.27). This problem may be solved using conventional methods. However, it 

is a non-linear problem but contains the linear control, which means the problem has a singular 

solution. To find this singular solution, we will use methods developed previously2, 4. 

    Write the Hamiltonian (for purpose ς minimum of time): 

ö
÷

õ
æ
ç

å
-

-
++= qlql g

m

DT

V
H

1
1 21

 ,   (A4.28) 

where )(),( 21 ss ll are unknown multipliers. Application of the conventional method gives 
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  (A24.29) ς (A4.31) 

Where '''' ,,, vhvh TTDD  denote the first partial derivatives of D, T by h, V respectively.  

    The last equation shows that the control q can have only two values °qmax. We consider the singular 

case when  

       A = 021 ¹-
V

g
ll .    (A4.32) 

This equation has two unknown variables l1 and l2 and does not contain information about the control 

q.    Let us to differentiate equation (A4.32) for the independent variable s. After substitution the 

equations (A4.26), (A4.29), (A4.30), and (A4.32) into the result of differentiation , we obtain the relation 

for l1 ̧  0, l2  ̧0 

( ) ( )VVhh DTgDTV ¡-¡=¡-¡     (A4.33) 

    This equation does not contain q either, but it contains the important relation between the variables 

V and h on the optimal trajectory.  

If we have the formulas (or graphs) 

D = D(h,V),      (A5.34) 

T = T(h,V),      (A4.35) 

we could find the relation 

h = h(V)      (A4.36) 

and the optimal trajectory for a given air vehicle. 

    This also gives important information about the structure of the optimal solution. Investigation 

of  equation (A4.33) shows that the equation has one solution in each of the subsonic, 

supersonic, and hypersonic fields. The equation can have two solutions for a transonic field.  

 

    This means the optimal trajectory in most cases has three parts (see Fig. A4.2): 
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a) When climbing and in flight a vehicle moves from the initial point A with the angle ° maxq up to 

the optimal curve (A4.36), then continues along the optimal curve (A4.36) and moves with at an 

angle ° maxq  to point B.    

b) When descending and in flight (Fig. A4.3) a vehicle moves from the initial point A with the angle 

° maxq (up or down) to the optimal curve (A4.36), then continues down the optimal curve 

(A4.36), and moves at an angle ° maxq (up or down) to the point B.   

 

 

 

 

 

                                                                           

 

 

Fig. A4.2.. Optimal trajectory for air vehicle climb and flight. 

 

 

 

 

 

 

Fig. A4.3. Optimal trajectory for air vehicle descent and flight. 

    The selection of direction (up or down, with maxq  or  ς maxq respectively) depends only on the position 

of the initial and end points A and B.                      

    For air vehicles with rocket engines T = const, equation (A4.33) has a very simple form 

     Vh DgDV ¡=¡  .     (A4.37) 

    The same form (same curve) also applies for a ballistic warhead, which does not have engine thrust 

(after its short initial burn)  (T = 0). 
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If we want to find an equation for the control q, we continue to differentiate equation (A4.33) with the 

independent variable s, and substitute into the equations (A4.25), (A4.26), (A4.29), (A4.30), (A4.32), and 

(A4.33). We obtain the relation for q  if l1 ̧  0, l2  ̧0 

     ,
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¡¡-¡¡-¡¡-¡¡=
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    Here signs in form "

hVD  are the second partial derivates D for h, V. 

Vh
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DhV

µµ

µ
=¡¡
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 .    (A4.41) 

    If the thrust does not depend on h, V  (T = const) or no engine (T = 0), the equation for q  becames 

simpler 
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-¡¡-¡-¡¡
=q     (A4.42) 

    In accordance with other publications2ς8 (e,g, equation (4.2)4) the necessary condition for optimal 

trajectory is 
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     (A4.43) 

where k = 1. 

    To obtain results for different forms of the drags and thrusts, we must take formulas (or 

graphs) for subsonic, transonic, supersonic, or hypersonic speed, and specific formulas for the 

thrust and substitute them in the equation (A4.33) and (A4.38). Consider two cases: subsonic and 

hypersonic speeds. 

Subsonic speed (V < 270 m/s) and different engines.  

Lift, drag, and derivative equations for subsonic speed are 
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  where ,,
2

24.6 2

pl

V
e

l

l
V =

+
=  magnitude e º z2/pl is an induced drag coefficient, l = l2/S, l is a wing 

span.  

    It is known in conventional aerodynamics that the coefficient of flight efficiency k is 
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a) Aircraft with rocket engine. For this aircraft the thrust T is constant or 0. Equation (A4.33) has 
form (A4.37). Find the partial derivatives 

.0,0 =¡=¡ hV TT      (A4.46) 

    Substituting (A4.44) to (A4.46) in (A4.37) we obtain the relation between air density r, altitude h, and 

aircraft speed V: 
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===     ,   (A4.47) 

where p = m/S  is the load on a square meter of wing. For a diapason of h = 0ς11 km the coefficients a1 = 

1.225, b1 = 9086.  

    Results of this computation are presented in Fig. A4.4. 

b) Aircraft with turbo-jet engine. The thrust for this engine is  

 .0,,
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0 =¡-=¡= Vh T
b

T
TTT

r

r
    (A4.48) 

Substitute (A4.48) in (A4.33). We obtain 
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and substituting (A4.44) and (A4.48) in (A4.33), we obtain 
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We can then find r, h from (A4.49) 
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Results of computation for the different p, T = 0.8 N/kg, a1 = 1.225, b1 = 9086 are presented in Fig. A4.5. 

 

Fig. A4.4. Air vehicle altitude versus speed for wing load p = 400, 500, 600, 700 kg/m2 and a rocket 

engine. 
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Fig. A4.5. Air vehicle altitude versus speed for wing load p = 400, 500, 600, 700 kg/m2, turbo-jet engine, 

and relative thrust 0.8 N/kg vehicle. 

 

c) Piston and turbo engines with propeller. All current propeller engines have propellers with 

variable pitch. The propeller coefficient efficiency, h, approximately is constant. The thrust of this engine 
is 
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where N0 = Neh,   Ne  is engine power at h = 0. 

    Substituting (A4.44) in (A4.33). We obtain the equation for thrust  
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Substitute (A4.44) and (A4.51) in (A4.33). We obtain 
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We can then find r, h from (A4.52) 
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Results of computation for CDo = 0.025, l = 10, for different values of p, N are presented in Fig. A4.6.  
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Fig. A4.6. Air vehicle range versus speed for wing load p = 250, 300, 350, 400 kg/m2, piston (propeller) 

engine, and relative engine power 100 W/kg vehicle. 

 

Hypersonic speed (1 km/s < V < 7 km/s). 

 

¢ƘŜ ƭƛŦǘ ŀƴŘ ŘǊŀƎ ŦƻǊŎŜǎ ƛƴ ƘȅǇŜǊǎƻƴƛŎ ŦƭƛƎƘǘ ŀǊŜ ŀǇǇǊƻȄƛƳŀǘŜƭȅ όǎŜŜ ό!пΦннύΩύ 

.
2

,
/

2

)/(2

2
,

)/(2

,
22

)(,
2

),,(

2
2

,

2
22

2
2

aV
q

p

q
C

RVg

q

p

p

q
C

m

D
or

S
Va

CS
S

RVgm

aV

Va
CD

aV

RVgp

S
Va

CS
Va

CDS
Va

R

mV
mghVL

b

DbDW

bDbDW

bDbDW

r

V

e

r

Vr

er

Vr
a

rr
ea

r
Vaa

=+
ù
ù

ú

ø

é
é

ê

è

öö
÷

õ
ææ
ç

å -
+=

+
ù
ù

ú

ø

é
é

ê

è

öö
÷

õ
ææ
ç

å -
+=

-
=

++==-=

  (A4.54) 
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The derivatives of D by V, h are 
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a) Rocket engine or hypersonic glider. The derivatives from T = const and T = 0 are 

.0,0 =¡=¡ hV TT      

 (A4.57) 

Substituting (A4.55) in (A4.56), and expressions (A4.56) and (A4.57) in (A4.37) to find r, h, we obtain for 

h  > 11,000 m 
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where a2  =  0.365, b2  =  6997 are coefficients of the exponent atmosphere for the stratosphere at 11 to 

60 km. 
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In the limit as R­ ¤ in (2-54), we find 
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    Here optDoC ae=/  is an optimal (maximum CL/CD) wing attack angle of the horizontal flight.  

Results of the computation in (A4.58) are presented in Fig. A4.7. 
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Fig. A4.7. Optimal vehicle altitude versus speed for specific body load Pb = 3, 5, 7, 10 ton/m2, body drag 

coefficient Cb = 0.02, wing drag coefficient Cd  =  0.025, wing load p = 600 kg/m2. 

 

b) Ramjet engine. The thrust of the jet engine is approximately (M < 4) 
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where x is a numerical coefficient, r2 is the air density at the lower end of the selected atmospheric 

diapason (in our case 11 km). 

    Substituting (A4.60) and (A4.56) in our main equation (A4.33), by repeat reasoning we can obtain the 

equation for the given engine 
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where T0 is taken at the lower end of the exponent atmospheric diapason (in our case 11 km). The curve 

of air density versus altitude h is computed similarly to (A4.58).  

Optimal wing area  
The lift force and drag of any wing may be written as 

),,(,),,( 2 SqDDSqYmgY aa === .               (A4.62) 
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Substituting  (A4.62) in (A4.28) and finding the minimum H versus S, we obtain the equation 

,0,0 =¡+=¡¡+ SDDorSDD SSaa     (A4.63) 

where a is the value found from the first equation (A4.62). Equation (A4.63) is the general equation for 

the optimal wing area and optimal specific load p = m/S on a wing area. 

a) Subsonic speed.   Lift force and drag of the subsonic wing are 
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where q = rV2/2 is a dynamic air pressure for subsonic speed.   

    Substituting the last equation in (A4.62) into the first equation in (A4.63), we obtain the optimal 

specific load on the wing area 
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Here D/m ƛǎ ǎǇŜŎƛŦƛŎ ŘǊŀƎ όŘǊŀƎ ǇŜǊ ǳƴƛǘ ǿŜƛƎƘǘ ŦƻǊ ǘƘŜ ǾŜƘƛŎƭŜύΦ {ǳōǎǘƛǘǳǘƛƴƎ ό!пΦсоύΩ ƛƴǘƻ ό!пΦспύΦ ²Ŝ 

abtain the minimum drag for a variable wing 
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 where the term on the right is wing drag for the lift of one unit of weight for the vehicle. We discover 

the important fact than the optimal wing drag of a variable wing does not depend on air speed, it 

depends only on the geometry of the wing.  This may look wrong, but consider the following example. 

Wing drag is D = mg/K, where K = CL/CD  is the wing efficiency coefficient. The value D/m does not 

depend on speed.  

    If the air vehicle has a body, the minimum drag is 
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Full vehicle drag depends on speed because the body drag depends on V. 
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This is the angle of optimal efficiency, but CDW is the wing drag coefficient only when a = 0 (not the full 

vehicle as in  conventional aerodynamics). The coefficient of flight efficiency 
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b) Hypersonic speed. The equations of wing lift force and wing air drag for hypersonic speed are as 

follows: 
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Substituting a from (A4.68) into D , we obtain 
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Substituting the wing load p = m/S ƛƴǘƻ ό!пΦсуύΩΣ ǿŜ ƻōǘŀƛƴ 

qp
q

RVg

p
C

m

D
DW

ù
ù

ú

ø

é
é

ê

è

öö
÷

õ
ææ
ç

å -
+=

2
2 /1

x
e .     (A4.69) 

To find the minimum the air drag D for p, we take the derivatives and set them equal to zero, then we 

obtain 
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Substituting (A4.70) into (A4.69), we find the minimum wing drag 
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The sum of the minimum vehicle drag plus body drag is 
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Substituting (A4.70) into the term for a in (A4.65), we find the optimal attack angle of a vehicle without 

a body 
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The coefficient of flight efficiency k = Y/D is 
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For hypersonic speed the coefficients are approximately   
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    In numerical computation the angle q can be found from (A4.25) as q  = Dh/DRg. 

For the rocket engine or gliding flight we find the following relation: when S is optimum (variable), the 

partial derivatives from (A4.71) are 
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    Substituting these into (A4.37), we find the relationship between speed, altitude, and optimal wing 

load for a hypersonic vehicle with a rocket engine and variable optimal wing: 
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For z = 4, e Ґ н  Ŝǉǳŀǘƛƻƴ ό!пΦтоύΩ Ƙŀǎ ǘƘŜ ŦƻǊƳ 
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    Results of computation using (A4.74)ô for z = 4, e = 2, a2 = 0.365, b2 = 6997 and different pb 

are presented in Fig. A4.7 (dashed lines). As you see, the variable area wing saves kinetic 

energy, because its curve is located over an invariable (fixed) wing. This is advantageous only at 

orbital speed (7.9 km/s) because no lift force is necessary. 

 

Estimation of flight range 
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Air and space vehicles without thrust  
 

The aircraft range can be found from equation (A4.26)  
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Consider a missile with the optimal variable wing in a descent trajectory with thrust T = 0.  

a) Make the simplest estimation using equations for kinetic energy from classical mechanics. Separate 

the flight into two stages: hypersonic and subsonic. If we have the ratio of vehicle efficiency 

DLDL CCkCCk /,/ 21 == , where k1, k2 are the ratios of flight efficiency for the hypersonic and 

subsonic stages respectively, we find the following equations for a range in each region:      
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where R1 is the hypersonic part of the range, R2 is the subsonic part of the range, V1 is the initial 

(maximum) vehicle hypersonic speed, V2 is a final hypersonic speed, and h is the altitude at the initial 

stage of the subsonic part of the trajectory. 

b) To be more precise. Assume in (A4.75) r = const (taking average air density).  

1. For the hypersonic part of the trajectory: substitute (A4.71) into (A4.76). We then have  
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2. For the subsonic part of the trajectory: substitute (A4.65) into (A4.75). We then have  
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where the values for C1, C2 are 
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The trajectory (without the rocket part of the trajectory) is 

211111 RRRRorRRR SHgSH ++=+= .   (A4.80) 

where R2 = k2h computed for altitude h at the end of the kinetic part of the subsonic trajectory. 

3. The ballistic trajectory of a wingless missile without atmosphere drag is 
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where h is the initial altitude, V1 is the initial horizontal speed of the wingless missile at altitude 

h, Vy is  initial (shot) vertical speed at h = 0, Vi is the full initial (shot) speed at h = 0 . 

    For the hypersonic interval 5 < V < 7.5 km/s, we can use the more exact equation 
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where R = 6378 km is the radius of Earth. The full range of a ballistic rocket plus the range of a 

winged missile is  

 Rf = Rb + Ra + Rg,     (A4.83) 

where Rg = kh is the vehicles gliding range from the final altitude h2  (see Fig. A4.11) with 

aerodynamic efficiency k. 

The classical method finding of the optimal shot ballistic range for spherical Earth without 

atmosphere is  
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where bopt is the optimal shot angle, VA is the shot projectile speed, and Vc is an orbital speed for 

a circular orbit at a given altitude. 

4. Cannon projectile. We divide the distance into three sub-distances: 1) 1.2M < M, 2) 0.9M < 

M < 1.2M, 3) 0 < M < 0.9M.  The range of the wing cannon projectile may be estimated using 

the equation 
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where k1, k2, k3 are the average aerodynamic efficiencies for sub-distances 1, 2, 3 respectively. 

Conventionally, these coefficients have the following values: subsonic k3 = 8ï15, near sonic k2 = 

2ï3, supersonic and hypersonic k1 =  4ï9. If  V  >  600 m/s, the first term in (A4.85) has the 

greatest value and we can use the more simple equation for range estimation: 
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    At the top of its trajectory, a modern projectile can have an additional impulse from small 

rocket engines. Their weight is 10ï15% of the full mass of the projectile and increases the 

maximum range by 7ï14 km. In this case we must substitute V = V1 + dV  into (A4.84)ô, where 

dV is the additional impulse (150ï270 m/s). 

Subsonic aircraft with thrust. Horizontal flight  

 The optimal climb and descent of a subsonic aircraft with a constant mass and fixed wing is 

described by equations (A4.50) and (A4.47). Any given point in a climb curve may be used for 

horizontal flight (with different efficiency). We consider in more detail the horizontal flight 

when the aircraft mass decreases because the fuel is spent. This consumption may reach 40% of 

the initial aircraft mass. The optimal horizontal flight range may be computed in the following 

way: 
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where m is fuel mass, cs is fuel consumption, kg/s/ kg thrust. 

a) For a fixed wing, we have (from (A4.44)) 
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    Substituting (A4.87) into (A4.86), we obtain 
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b) For a variable wing we have (from (A4.65) 
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Results of the computation are presented in Fig. A4.8. The aircraft have the following 

parameters: CDW = 0.02; CDb = 0.08; b1 = 9086; S = 120 m
2
; m = 100 tons, mk = 80 tons, cs =  

0.00019 kg/s/kg thrust; wing ratio l = 10. 
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    As you see, the specific fuel consumption does not depend on speed and altitude, a good 

aircraft design reaches the maximum range only at one point, in one flight regime: when the 

aircraft flies at the maximum speed possible for the critical Mach number, at the maximum 

altitude possible for that  engine. The deviation from this point decreases in the range in 5ï10ï15 

percent or more. The variable wing increases efficiency of the other regime, which that 

approximately reduces the losses by a half.   

    The coefficient of flight efficiency may be computed using equation k = g/(D/m), where the 

values 
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apply for fixed and variable wings respectively. Results of computation are presented in Fig. 

A4.9. The curve of the variable wing is the round curve of the fixed wing.  

 

Fig. A4.8.  Aircraft range for altitude H = 6, 8, 10, 11, 12 km; maximum range Rm = 4361 km; 

relative fuel mass Mr = 0.2; body drag coefficient Cb = 0.08; wing drag coefficient Cd 

= 0.02.  
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Fig.  A4.9.  Aerodynamic efficiency of non-variable and variable wings for wing load p = 400, 600, 800, 

1000 kg/m2, wing drag CD = 0.02, body drag CDb = 0.08, wing ratio 10.    

Optimal engine control for constant flight pass angle  

    Let us to consider equations (A4.1) ς (A4.5) for a constant angle of trajectory, q = const. Substituting q  

=  constant, thrust T = Veb , and a new independent variable s = Vt (where s is the length of the 

trajectory) into the equation system (A4.1) ς (A4.5). We obtain the following equations 
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   (A4.91) ς (A4.96) 

Equation (A4.95) is used to substitute for a in equation (A4.93) and for a change of air drag 

     ),,( hVD a = D(V, h).    (A4.97) 

    We find a non-linear system with a linear fuel control b. This means the system can have a singular 

solution.  
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Solution  
Consider the maximum range for vehicles described by equation (A4.91) ς (A4.96). 

Let us write the Hamiltonian H  

blq
b

lqlq
VV

g

mV

hVDVhV
H e 1

sin
),(),(

sincos 321 -ù
ú

ø
é
ê

è
-

-
++= ,  (A4.98) 

where )(),(),( 321 sss lll are unknown multipliers. Application of conventional methods gives 
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 (A4.99) ς (A4.101) 

Where VD¡ is the first partial derivate of D by V.  

    The last equation shows that the fuel control b can have only two values, °bmax. We consider the 

singular case when  

      A = 032 ¹- mVe ll .     (A4.102) 

    This equation has two unknown variables, l2 and l3, and does not contain information about fuel 

control b.  

    The first two equations (A4.91) ς (A4.92) do not depend on variabls and can be integrated  

L = s cosq ,       (A4.103) 

H = s sinq .         (A4.104) 

In accordance with the References2 let us differentiate equation (A4.102) by the independent variable s. 

After substitution into equations (A4.93) ς (A4.95), (A4.97), (A4.99), (A4.100), (A4.102), and (A4.104) we 

obtain the relation for l2 ̧  0, l3 ̧   0: 

  0)sin()sin( ,

2

, =¡+-¡-¡+--+¡-= seVeVem VmVmgDVVDVmgDVDmVVDA qq# . (A4.105) 

    This equation also does not contain b, however it does contain an important relation between 

variables m, h and V, on an optimal trajectory. This is a 3-dimentional surface. If we know  

D = D(h,V) ,     (A4.106) 

Ve = Ve(h,V) ,     (A4.107) 
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The mass of our apparatus m, and its altitude h, we can find the optimal flight speed. This means we can 

calculate the necessary thrust and the fuel consumption for every point m, h, V  (Fig. A4.10).  

    If we want to find an equation for the fuel control b, we continue to differentiate equation (A4.105) to 

find the independent variable s and substitute in equations (A4.91) ς (A4.104). If we calculate the 

relation for b, if l2 ̧  0, l3 ̧   0, Ve = const, then 
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Fig. A4.10. Optimal fuel consumption of flight vehicles. 

 

    The necessary condition of the optimal trajectory as it is shown in the References2ς 8 (see for example, 

equation (4.2)4) is 
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where k = 1. 

    If the flight is horizontal (q = 0), the expression (A4.108) is very simply 

eV

D
=b  .    (A4.111) 

This means the thrust equals the drag, a fact that is well known in aerodynamic science.  
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    To obtain the specific equations for different forms of drag and thrust, we must take formulas (or 

graphs) for  subsonic, transonic, supersonic and hypersonic speed for  thrust and substitute them into 

the equations (A4.105) and (A4.108).   

Simultaneous optimization of the path angle and fuel consumption 

Consider the case where the path angle and the fuel consumption are simultaneously optimized. 

In this case the general equations (A4.1) ς (A4.5) have the form: 
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Let us write the Hamiltonian 
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The necessary conditions of optima give 
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The lambda equations are  
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If we differentiate A (A4.118), from dA/ds = 0, we find the optimal fuel consumption 
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Then we differentiate B (A4.119), from dB/ds = 0 we find the optimal path angle 

  
)(

/

,,

,

gVVVgm

DmDVDVDVDV

Vehe

meVeVe

¡-¡+

¡+--¡-¡
=q  .    (A4.124) 

    We have used the conventional forms for the partial derivatives in (A4.120)ς(A4.124) as in the earlier 

sections of the chapter (see for example (A4.51)). 

    If we know from analytical formulas or graphical functions Ve, D, Y we can find the optimal trajectory 

of the air vehicle.  

    In the general case, this trajectory includes four parts: 

1. Moving between limitations q and b. 

2. Moving between one limitation q or b and one optimal control b or q. 

3. Moving simultaneously with both optimal controls q and b. 
4. Moving at a given point along one limitation and/or both limitations 

. 

Application to aircraft, rocket missiles, and cannon projectiles 

A) Application to rocket vehicles and missiles.  

Let us apply the previous results to typical current middle- and long-distance rockets with 

warheads. We will show: if the warhead has wings and uses the optimal trajectory, the range of 

the warhead (or its useful load) is increased dramatically in most cases. We will compute the 

optimal trajectories for a  rocket-launched warhead at a particular altitude (20ï60 km) and speed 

(1ï7.5 km/s). Point B is located on the curve (A4.58) for a fixed wing and on curve (A4.73)ô for 

a variable wing (Fig. A4.11). Further, the winged warhead flies (descends) along the optimal 

trajectory BD (Fig. A4.58) according to equations (A4.58) (fixed wing) or equations (A4.73)ô 

(variable wing) respectively. When the speed is reduced by a small amount (for example, 1 km/s) 
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(point D in Fig. A4.11), the winged warhead glides (distance DE in Fig. A4.11). 

 

                                 

Fig. A4.11. Trajectory of flying vehicles. 

The following equations are used for computation: 

1. The optimal trajectory for a fixed wing space vehicle.  

a) Equation (A4.58) is used to calculate h = h(V) to find the optimal trajectory of a warhead 

with a non- variable fixed wing in the speed interval 1 < V < 7.5 km/s. The result is 

presented in Fig. A4.7. 

b)  Equation (A4.54) gives the magnitude (D/m).  

c) The equation (A4.75) in the form 
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is used for computation in the intervals Ra, Rg (Fig. A4.11). Here Rg is the range of a 

gliding vehicle.  

d) Equation (A4.75) is used to calculate Rb in the launch interval AB (Fig. A4.11). 

e) The full range, R, of a warhead with a fixed wing and the full ballistic warhead range, Rw,  

are  

bwgab RRRRRR 2, =++= .    (A4.126) 

f) Equation (A4.84) is used to calculate the optimal ballistic trajectory of a shot without air 

drag (a vehicle without  wings). The range of this trajectory, as it is known, may be 

significantly more than the range in the atmosphere.  
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Fig. A4.12. Range of NON-VARIABLE wing vehicle for body drag coefficient Cb = 0.02, wing  

       drag coefficient Cd = 0.025, wing load p = 600 kg/m
2
. 

 

Fig. A4.12. The relative range of a non-variable wing vehicle for the body drag coefficient Cb = 0.02,  wing 

drag coefficient Cd = 0.025, wing load p = 600 kg/m2, body load Pb = 3ς10 ton/m2. 

 

    The results are presented in Fig. A4.12. Computation of the relative range (for different pb) 

using the formula  
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